code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = name
lowerCAmelCase_ = val
def __str__( self ) -> List[str]:
'''simple docstring'''
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self , lowercase_ ) -> int:
'''simple docstring'''
return self.val < other.val
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = {}
lowerCAmelCase_ = {}
lowerCAmelCase_ = self.build_heap(lowercase_ )
def __getitem__( self , lowercase_ ) -> Dict:
'''simple docstring'''
return self.get_value(lowercase_ )
def _lowercase ( self , lowercase_ ) -> Tuple:
'''simple docstring'''
return (idx - 1) // 2
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return idx * 2 + 1
def _lowercase ( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
return idx * 2 + 2
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = len(lowercase_ ) - 1
lowerCAmelCase_ = self.get_parent_idx(lowercase_ )
for idx, i in enumerate(lowercase_ ):
lowerCAmelCase_ = idx
lowerCAmelCase_ = i.val
for i in range(lowercase_ , -1 , -1 ):
self.sift_down(lowercase_ , lowercase_ )
return array
def _lowercase ( self , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
while True:
lowerCAmelCase_ = self.get_left_child_idx(lowercase_ ) # noqa: E741
lowerCAmelCase_ = self.get_right_child_idx(lowercase_ )
lowerCAmelCase_ = idx
if l < len(lowercase_ ) and array[l] < array[idx]:
lowerCAmelCase_ = l
if r < len(lowercase_ ) and array[r] < array[smallest]:
lowerCAmelCase_ = r
if smallest != idx:
lowerCAmelCase_ , lowerCAmelCase_ = array[smallest], array[idx]
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowerCAmelCase_ = smallest
else:
break
def _lowercase ( self , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.get_parent_idx(lowercase_ )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowerCAmelCase_ , lowerCAmelCase_ = self.heap[idx], self.heap[p]
lowerCAmelCase_ , lowerCAmelCase_ = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowerCAmelCase_ = p
lowerCAmelCase_ = self.get_parent_idx(lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return self.heap[0]
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.heap[-1], self.heap[0]
lowerCAmelCase_ , lowerCAmelCase_ = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowerCAmelCase_ = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def _lowercase ( self , lowercase_ ) -> Optional[int]:
'''simple docstring'''
self.heap.append(lowercase_ )
lowerCAmelCase_ = len(self.heap ) - 1
lowerCAmelCase_ = node.val
self.sift_up(len(self.heap ) - 1 )
def _lowercase ( self ) -> int:
'''simple docstring'''
return len(self.heap ) == 0
def _lowercase ( self , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowerCAmelCase_ = new_value
lowerCAmelCase_ = new_value
self.sift_up(self.idx_of_element[node] )
lowerCamelCase_ = Node("""R""", -1)
lowerCamelCase_ = Node("""B""", 6)
lowerCamelCase_ = Node("""A""", 3)
lowerCamelCase_ = Node("""X""", 1)
lowerCamelCase_ = Node("""E""", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
lowerCamelCase_ = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("""Min Heap - before decrease key""")
for i in my_min_heap.heap:
print(i)
print("""Min Heap - After decrease key of node [B -> -17]""")
my_min_heap.decrease_key(b, -1_7)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
lowerCamelCase_ = ["""gpt2"""]
lowerCamelCase_ = """gpt2"""
if is_tf_available():
class a_ ( tf.Module ):
'''simple docstring'''
def __init__( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
lowerCAmelCase_ = tokenizer
lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFGPTaLMHeadModel.from_config(lowercase_ )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.tokenizer(lowercase_ )
lowerCAmelCase_ = tokenized['input_ids'].to_tensor()
lowerCAmelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
lowerCAmelCase_ = self.model(input_ids=lowercase_ , attention_mask=lowercase_ )['logits']
return outputs
@require_tf
@require_keras_nlp
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> int:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = [GPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
lowerCAmelCase_ = [TFGPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
lowerCAmelCase_ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
lowerCAmelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
lowerCAmelCase_ = tokenizer([test_inputs] , return_tensors='tf' )
lowerCAmelCase_ = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
lowerCAmelCase_ = python_outputs[key].numpy()
lowerCAmelCase_ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa ) == tf_outputs_values ) )
@slow
def _lowercase ( self ) -> Any:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase_ = tf.function(lowercase_ )
for test_inputs in self.test_sentences:
lowerCAmelCase_ = tf.constant(lowercase_ )
lowerCAmelCase_ = compiled_tokenizer(lowercase_ )
lowerCAmelCase_ = tf_tokenizer(lowercase_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _lowercase ( self ) -> int:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase_ = ModelToSave(tokenizer=lowercase_ )
lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase_ = model.serving(lowercase_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
lowerCAmelCase_ = Path(lowercase_ ) / 'saved.model'
tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': model.serving} )
lowerCAmelCase_ = tf.saved_model.load(lowercase_ )
lowerCAmelCase_ = loaded_model.signatures['serving_default'](lowercase_ )['output_0']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase_ = tf_tokenizer(lowercase_ ) # Build model with some sample inputs
lowerCAmelCase_ = tf_tokenizer.get_config()
lowerCAmelCase_ = TFGPTaTokenizer.from_config(lowercase_ )
lowerCAmelCase_ = model_from_config(lowercase_ )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
lowerCAmelCase_ = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase_ = tf_tokenizer(lowercase_ , max_length=lowercase_ )
lowerCAmelCase_ = out['input_ids'].numpy().shape[1]
assert out_length == max_length
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
from __future__ import annotations
from typing import Any
def lowerCamelCase ( a_ ) -> None:
create_state_space_tree(a_ , [] , 0 )
def lowerCamelCase ( a_ , a_ , a_ ) -> None:
if index == len(a_ ):
print(a_ )
return
create_state_space_tree(a_ , a_ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(a_ , a_ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
lowerCamelCase_ = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(["""A""", """B""", """C"""])
generate_all_subsequences(seq)
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = XGLMTokenizer
__a: Any = XGLMTokenizerFast
__a: int = True
__a: Union[str, Any] = True
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ = XGLMTokenizer(lowercase_ , keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = '<pad>'
lowerCAmelCase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(len(lowercase_ ) , 1_0_0_8 )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = XGLMTokenizer(lowercase_ , keep_accents=lowercase_ )
lowerCAmelCase_ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
lowerCAmelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_ , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def _lowercase ( self ) -> Any:
'''simple docstring'''
return XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowercase_ , f.name )
lowerCAmelCase_ = XGLMTokenizer(f.name , keep_accents=lowercase_ )
lowerCAmelCase_ = pickle.dumps(lowercase_ )
pickle.loads(lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = self.get_rust_tokenizer()
lowerCAmelCase_ = 'I was born in 92000, and this is falsé.'
lowerCAmelCase_ = tokenizer.tokenize(lowercase_ )
lowerCAmelCase_ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.get_rust_tokenizer()
lowerCAmelCase_ = tokenizer.encode(lowercase_ )
lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
@slow
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'Hello World!'
lowerCAmelCase_ = [2, 3_1_2_2_7, 4_4_4_7, 3_5]
self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) )
@slow
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowerCAmelCase_ = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5]
# fmt: on
self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) )
@slow
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = {
'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='facebook/xglm-564M' , padding=lowercase_ , )
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase_ = """\
"""
lowerCamelCase_ = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase_ = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'input_texts': datasets.Value('string' ),
} ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = 1_6 , lowercase_ = True , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
lowerCAmelCase_ = 'cuda'
else:
lowerCAmelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu'
lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = model.to(lowercase_ )
lowerCAmelCase_ = AutoTokenizer.from_pretrained(lowercase_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
lowerCAmelCase_ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(lowercase_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
lowerCAmelCase_ = model.config.max_length - 1
else:
lowerCAmelCase_ = model.config.max_length
lowerCAmelCase_ = tokenizer(
lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors='pt' , return_attention_mask=lowercase_ , ).to(lowercase_ )
lowerCAmelCase_ = encodings['input_ids']
lowerCAmelCase_ = encodings['attention_mask']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
lowerCAmelCase_ = []
lowerCAmelCase_ = CrossEntropyLoss(reduction='none' )
for start_index in logging.tqdm(range(0 , len(lowercase_ ) , lowercase_ ) ):
lowerCAmelCase_ = min(start_index + batch_size , len(lowercase_ ) )
lowerCAmelCase_ = encoded_texts[start_index:end_index]
lowerCAmelCase_ = attn_masks[start_index:end_index]
if add_start_token:
lowerCAmelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase_ )
lowerCAmelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
lowerCAmelCase_ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase_ ), attn_mask] , dim=1 )
lowerCAmelCase_ = encoded_batch
with torch.no_grad():
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ).logits
lowerCAmelCase_ = out_logits[..., :-1, :].contiguous()
lowerCAmelCase_ = labels[..., 1:].contiguous()
lowerCAmelCase_ = attn_mask[..., 1:].contiguous()
lowerCAmelCase_ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , lowercase_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase_ )}
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
from __future__ import annotations
def lowerCamelCase ( a_ , a_ ) -> list[str]:
if partitions <= 0:
raise ValueError('partitions must be a positive number!' )
if partitions > number_of_bytes:
raise ValueError('partitions can not > number_of_bytes!' )
lowerCAmelCase_ = number_of_bytes // partitions
lowerCAmelCase_ = []
for i in range(a_ ):
lowerCAmelCase_ = i * bytes_per_partition + 1
lowerCAmelCase_ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(F'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_input_mask
lowerCAmelCase_ = use_token_type_ids
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = type_vocab_size
lowerCAmelCase_ = type_sequence_label_size
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = num_labels
lowerCAmelCase_ = num_choices
lowerCAmelCase_ = scope
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ = None
if self.use_input_mask:
lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ = None
lowerCAmelCase_ = None
lowerCAmelCase_ = None
if self.use_labels:
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase_ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = DistilBertModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ , lowercase_ )
lowerCAmelCase_ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = DistilBertForMaskedLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = DistilBertForQuestionAnswering(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(
lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.num_labels
lowerCAmelCase_ = DistilBertForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.num_labels
lowerCAmelCase_ = DistilBertForTokenClassification(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.num_choices
lowerCAmelCase_ = DistilBertForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase_ = model(
lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_config_and_inputs()
((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = config_and_inputs
lowerCAmelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: List[Any] = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
__a: Tuple = (
{
'''feature-extraction''': DistilBertModel,
'''fill-mask''': DistilBertForMaskedLM,
'''question-answering''': DistilBertForQuestionAnswering,
'''text-classification''': DistilBertForSequenceClassification,
'''token-classification''': DistilBertForTokenClassification,
'''zero-shot''': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__a: str = True
__a: Optional[int] = True
__a: Optional[int] = True
__a: Tuple = True
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = DistilBertModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , dim=3_7 )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase_ )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase_ )
@slow
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ = DistilBertModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@slow
@require_torch_gpu
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
lowerCAmelCase_ = True
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ )
lowerCAmelCase_ = torch.jit.trace(
lowercase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase_ , os.path.join(lowercase_ , 'traced_model.pt' ) )
lowerCAmelCase_ = torch.jit.load(os.path.join(lowercase_ , 'traced_model.pt' ) , map_location=lowercase_ )
loaded(inputs_dict['input_ids'].to(lowercase_ ) , inputs_dict['attention_mask'].to(lowercase_ ) )
@require_torch
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = DistilBertModel.from_pretrained('distilbert-base-uncased' )
lowerCAmelCase_ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = torch.tensor(
[[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4 ) )
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """spiece.model"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
lowerCamelCase_ = {
"""albert-base-v1""": 5_1_2,
"""albert-large-v1""": 5_1_2,
"""albert-xlarge-v1""": 5_1_2,
"""albert-xxlarge-v1""": 5_1_2,
"""albert-base-v2""": 5_1_2,
"""albert-large-v2""": 5_1_2,
"""albert-xlarge-v2""": 5_1_2,
"""albert-xxlarge-v2""": 5_1_2,
}
lowerCamelCase_ = """▁"""
class a_ ( a_ ):
'''simple docstring'''
__a: Optional[Any] = VOCAB_FILES_NAMES
__a: Tuple = PRETRAINED_VOCAB_FILES_MAP
__a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
lowerCAmelCase_ = (
AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ )
if isinstance(lowercase_ , lowercase_ )
else mask_token
)
lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
lowerCAmelCase_ = do_lower_case
lowerCAmelCase_ = remove_space
lowerCAmelCase_ = keep_accents
lowerCAmelCase_ = vocab_file
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return len(self.sp_model )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.__dict__.copy()
lowerCAmelCase_ = None
return state
def __setstate__( self , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase_ = {}
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self , lowercase_ ) -> Any:
'''simple docstring'''
if self.remove_space:
lowerCAmelCase_ = ' '.join(inputs.strip().split() )
else:
lowerCAmelCase_ = inputs
lowerCAmelCase_ = outputs.replace('``' , '"' ).replace('\'\'' , '"' )
if not self.keep_accents:
lowerCAmelCase_ = unicodedata.normalize('NFKD' , lowercase_ )
lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] )
if self.do_lower_case:
lowerCAmelCase_ = outputs.lower()
return outputs
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.preprocess_text(lowercase_ )
lowerCAmelCase_ = self.sp_model.encode(lowercase_ , out_type=lowercase_ )
lowerCAmelCase_ = []
for piece in pieces:
if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase_ = cur_pieces[1:]
else:
lowerCAmelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowercase_ )
else:
new_pieces.append(lowercase_ )
return new_pieces
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
return self.sp_model.PieceToId(lowercase_ )
def _lowercase ( self , lowercase_ ) -> Any:
'''simple docstring'''
return self.sp_model.IdToPiece(lowercase_ )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = []
lowerCAmelCase_ = ''
lowerCAmelCase_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase_ ) + token
lowerCAmelCase_ = True
lowerCAmelCase_ = []
else:
current_sub_tokens.append(lowercase_ )
lowerCAmelCase_ = False
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is not None:
return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowercase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , 'wb' ) as fi:
lowerCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Dict = KandinskyVaaControlnetImgaImgPipeline
__a: List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
__a: List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
__a: Optional[int] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
__a: List[str] = False
@property
def _lowercase ( self ) -> Dict:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
return 1_0_0
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
lowerCAmelCase_ = UNetaDConditionModel(**lowercase_ )
return model
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return {
"block_out_channels": [3_2, 3_2, 6_4, 6_4],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = VQModel(**self.dummy_movq_kwargs )
return model
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.dummy_unet
lowerCAmelCase_ = self.dummy_movq
lowerCAmelCase_ = {
'num_train_timesteps': 1_0_0_0,
'beta_schedule': 'linear',
'beta_start': 0.0_00_85,
'beta_end': 0.0_12,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
lowerCAmelCase_ = DDIMScheduler(**lowercase_ )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> str:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowercase_ )
# create init_image
lowerCAmelCase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) )
# create hint
lowerCAmelCase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 6_4,
'width': 6_4,
'num_inference_steps': 1_0,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = 'cpu'
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**lowercase_ )
lowerCAmelCase_ = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = pipe(**self.get_dummy_inputs(lowercase_ ) )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = pipe(
**self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
lowerCAmelCase_ = init_image.resize((5_1_2, 5_1_2) )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
lowerCAmelCase_ = torch.from_numpy(np.array(lowercase_ ) ).float() / 2_55.0
lowerCAmelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCAmelCase_ = 'A robot, 4k photo'
lowerCAmelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(lowercase_ )
lowerCAmelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
lowerCAmelCase_ = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase_ , lowerCAmelCase_ = pipe_prior(
lowercase_ , image=lowercase_ , strength=0.85 , generator=lowercase_ , negative_prompt='' , ).to_tuple()
lowerCAmelCase_ = pipeline(
image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , hint=lowercase_ , generator=lowercase_ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-openqa""": (
"""https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-reader""": (
"""https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-openqa""": (
"""https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-reader""": (
"""https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase_ = {
"""google/realm-cc-news-pretrained-embedder""": 5_1_2,
"""google/realm-cc-news-pretrained-encoder""": 5_1_2,
"""google/realm-cc-news-pretrained-scorer""": 5_1_2,
"""google/realm-cc-news-pretrained-openqa""": 5_1_2,
"""google/realm-orqa-nq-openqa""": 5_1_2,
"""google/realm-orqa-nq-reader""": 5_1_2,
"""google/realm-orqa-wq-openqa""": 5_1_2,
"""google/realm-orqa-wq-reader""": 5_1_2,
}
lowerCamelCase_ = {
"""google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-reader""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-reader""": {"""do_lower_case""": True},
}
class a_ ( a_ ):
'''simple docstring'''
__a: int = VOCAB_FILES_NAMES
__a: List[Any] = PRETRAINED_VOCAB_FILES_MAP
__a: str = PRETRAINED_INIT_CONFIGURATION
__a: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Optional[Any] = RealmTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Any:
'''simple docstring'''
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , )
lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowercase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , lowercase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowercase_ ) != tokenize_chinese_chars
):
lowerCAmelCase_ = getattr(lowercase_ , normalizer_state.pop('type' ) )
lowerCAmelCase_ = do_lower_case
lowerCAmelCase_ = strip_accents
lowerCAmelCase_ = tokenize_chinese_chars
lowerCAmelCase_ = normalizer_class(**lowercase_ )
lowerCAmelCase_ = do_lower_case
def _lowercase ( self , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = PaddingStrategy.MAX_LENGTH
lowerCAmelCase_ = text
lowerCAmelCase_ = kwargs.pop('text_pair' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('return_tensors' , lowercase_ )
lowerCAmelCase_ = {
'input_ids': [],
'attention_mask': [],
'token_type_ids': [],
}
for idx, candidate_text in enumerate(lowercase_ ):
if batch_text_pair is not None:
lowerCAmelCase_ = batch_text_pair[idx]
else:
lowerCAmelCase_ = None
lowerCAmelCase_ = super().__call__(lowercase_ , lowercase_ , return_tensors=lowercase_ , **lowercase_ )
lowerCAmelCase_ = encoded_candidates.get('input_ids' )
lowerCAmelCase_ = encoded_candidates.get('attention_mask' )
lowerCAmelCase_ = encoded_candidates.get('token_type_ids' )
if encoded_input_ids is not None:
output_data["input_ids"].append(lowercase_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(lowercase_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(lowercase_ )
lowerCAmelCase_ = {key: item for key, item in output_data.items() if len(lowercase_ ) != 0}
return BatchEncoding(lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCamelCase_ = None
lowerCamelCase_ = {
"""7B""": 1_1_0_0_8,
"""13B""": 1_3_8_2_4,
"""30B""": 1_7_9_2_0,
"""65B""": 2_2_0_1_6,
"""70B""": 2_8_6_7_2,
}
lowerCamelCase_ = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowerCamelCase ( a_ , a_=1 , a_=256 ) -> Optional[Any]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowerCamelCase ( a_ ) -> int:
with open(a_ , 'r' ) as f:
return json.load(a_ )
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
with open(a_ , 'w' ) as f:
json.dump(a_ , a_ )
def lowerCamelCase ( a_ , a_ , a_ , a_=True ) -> Dict:
os.makedirs(a_ , exist_ok=a_ )
lowerCAmelCase_ = os.path.join(a_ , 'tmp' )
os.makedirs(a_ , exist_ok=a_ )
lowerCAmelCase_ = read_json(os.path.join(a_ , 'params.json' ) )
lowerCAmelCase_ = NUM_SHARDS[model_size]
lowerCAmelCase_ = params['n_layers']
lowerCAmelCase_ = params['n_heads']
lowerCAmelCase_ = n_heads // num_shards
lowerCAmelCase_ = params['dim']
lowerCAmelCase_ = dim // n_heads
lowerCAmelCase_ = 10_000.0
lowerCAmelCase_ = 1.0 / (base ** (torch.arange(0 , a_ , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
lowerCAmelCase_ = params['n_kv_heads'] # for GQA / MQA
lowerCAmelCase_ = n_heads_per_shard // num_key_value_heads
lowerCAmelCase_ = dim // num_key_value_heads
else: # compatibility with other checkpoints
lowerCAmelCase_ = n_heads
lowerCAmelCase_ = n_heads_per_shard
lowerCAmelCase_ = dim
# permute for sliced rotary
def permute(a_ , a_=n_heads , a_=dim , a_=dim ):
return w.view(a_ , dima // n_heads // 2 , 2 , a_ ).transpose(1 , 2 ).reshape(a_ , a_ )
print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
lowerCAmelCase_ = torch.load(os.path.join(a_ , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
lowerCAmelCase_ = [
torch.load(os.path.join(a_ , F'''consolidated.{i:02d}.pth''' ) , map_location='cpu' )
for i in range(a_ )
]
lowerCAmelCase_ = 0
lowerCAmelCase_ = {'weight_map': {}}
for layer_i in range(a_ ):
lowerCAmelCase_ = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
lowerCAmelCase_ = {
F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute(
loaded[F'''layers.{layer_i}.attention.wq.weight'''] ),
F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute(
loaded[F'''layers.{layer_i}.attention.wk.weight'''] ),
F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''],
F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''],
F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''],
F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''],
F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''],
F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''],
F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
lowerCAmelCase_ = {
F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][
F'''layers.{layer_i}.attention_norm.weight'''
].clone(),
F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][
F'''layers.{layer_i}.ffn_norm.weight'''
].clone(),
}
lowerCAmelCase_ = permute(
torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(a_ , a_ , a_ )
for i in range(a_ )
] , dim=0 , ).reshape(a_ , a_ ) )
lowerCAmelCase_ = permute(
torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view(
a_ , a_ , a_ )
for i in range(a_ )
] , dim=0 , ).reshape(a_ , a_ ) , a_ , a_ , a_ , )
lowerCAmelCase_ = torch.cat(
[
loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view(
a_ , a_ , a_ )
for i in range(a_ )
] , dim=0 , ).reshape(a_ , a_ )
lowerCAmelCase_ = torch.cat(
[loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(a_ )] , dim=1 )
lowerCAmelCase_ = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(a_ )] , dim=0 )
lowerCAmelCase_ = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(a_ )] , dim=1 )
lowerCAmelCase_ = torch.cat(
[loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(a_ )] , dim=0 )
lowerCAmelCase_ = inv_freq
for k, v in state_dict.items():
lowerCAmelCase_ = filename
param_count += v.numel()
torch.save(a_ , os.path.join(a_ , a_ ) )
lowerCAmelCase_ = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'''
if model_size == "7B":
# Unsharded
lowerCAmelCase_ = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
lowerCAmelCase_ = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(a_ )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(a_ )] , dim=0 ),
}
for k, v in state_dict.items():
lowerCAmelCase_ = filename
param_count += v.numel()
torch.save(a_ , os.path.join(a_ , a_ ) )
# Write configs
lowerCAmelCase_ = {'total_size': param_count * 2}
write_json(a_ , os.path.join(a_ , 'pytorch_model.bin.index.json' ) )
lowerCAmelCase_ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
lowerCAmelCase_ = params['multiple_of'] if 'multiple_of' in params else 256
lowerCAmelCase_ = LlamaConfig(
hidden_size=a_ , intermediate_size=compute_intermediate_size(a_ , a_ , a_ ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=a_ , )
config.save_pretrained(a_ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
lowerCAmelCase_ = LlamaForCausalLM.from_pretrained(a_ , torch_dtype=torch.floataa , low_cpu_mem_usage=a_ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(a_ , safe_serialization=a_ )
shutil.rmtree(a_ )
def lowerCamelCase ( a_ , a_ ) -> Any:
# Initialize the tokenizer based on the `spm` model
lowerCAmelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' )
lowerCAmelCase_ = tokenizer_class(a_ )
tokenizer.save_pretrained(a_ )
def lowerCamelCase ( ) -> Tuple:
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=a_ , help='Whether or not to save using `safetensors`.' )
lowerCAmelCase_ = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
lowerCAmelCase_ = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , a_ )
if __name__ == "__main__":
main()
| 14 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 1 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
# TODO Update this
lowerCamelCase_ = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class a_ ( a_ ):
'''simple docstring'''
__a: int = '''esm'''
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_6 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_="absolute" , lowercase_=True , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Dict:
'''simple docstring'''
super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = position_embedding_type
lowerCAmelCase_ = use_cache
lowerCAmelCase_ = emb_layer_norm_before
lowerCAmelCase_ = token_dropout
lowerCAmelCase_ = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
lowerCAmelCase_ = EsmFoldConfig()
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = EsmFoldConfig(**lowercase_ )
lowerCAmelCase_ = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
lowerCAmelCase_ = get_default_vocab_list()
else:
lowerCAmelCase_ = vocab_list
else:
lowerCAmelCase_ = None
lowerCAmelCase_ = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowercase_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = super().to_dict()
if isinstance(self.esmfold_config , lowercase_ ):
lowerCAmelCase_ = self.esmfold_config.to_dict()
return output
@dataclass
class a_ :
'''simple docstring'''
__a: str = None
__a: bool = True
__a: bool = False
__a: bool = False
__a: bool = False
__a: float = 0
__a: bool = True
__a: bool = False
__a: int = 1_2_8
__a: "TrunkConfig" = None
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
if self.trunk is None:
lowerCAmelCase_ = TrunkConfig()
elif isinstance(self.trunk , lowercase_ ):
lowerCAmelCase_ = TrunkConfig(**self.trunk )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = asdict(self )
lowerCAmelCase_ = self.trunk.to_dict()
return output
@dataclass
class a_ :
'''simple docstring'''
__a: int = 4_8
__a: int = 1_0_2_4
__a: int = 1_2_8
__a: int = 3_2
__a: int = 3_2
__a: int = 3_2
__a: float = 0
__a: float = 0
__a: bool = False
__a: int = 4
__a: Optional[int] = 1_2_8
__a: "StructureModuleConfig" = None
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
if self.structure_module is None:
lowerCAmelCase_ = StructureModuleConfig()
elif isinstance(self.structure_module , lowercase_ ):
lowerCAmelCase_ = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
lowerCAmelCase_ = self.sequence_state_dim // self.sequence_head_width
lowerCAmelCase_ = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = asdict(self )
lowerCAmelCase_ = self.structure_module.to_dict()
return output
@dataclass
class a_ :
'''simple docstring'''
__a: int = 3_8_4
__a: int = 1_2_8
__a: int = 1_6
__a: int = 1_2_8
__a: int = 1_2
__a: int = 4
__a: int = 8
__a: float = 0.1
__a: int = 8
__a: int = 1
__a: int = 2
__a: int = 7
__a: int = 1_0
__a: float = 1E-8
__a: float = 1E5
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return asdict(self )
def lowerCamelCase ( ) -> Any:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 14 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 | 1 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
lowerCAmelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 | 1 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCamelCase_ = 1_6
lowerCamelCase_ = 3_2
def lowerCamelCase ( a_ , a_ = 16 ) -> List[Any]:
lowerCAmelCase_ = AutoTokenizer.from_pretrained('bert-base-cased' )
lowerCAmelCase_ = load_dataset('glue' , 'mrpc' )
def tokenize_function(a_ ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase_ = datasets.map(
a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase_ = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(a_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase_ = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase_ = 8
else:
lowerCAmelCase_ = None
return tokenizer.pad(
a_ , padding='longest' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='pt' , )
# Instantiate dataloaders.
lowerCAmelCase_ = DataLoader(
tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
lowerCAmelCase_ = DataLoader(
tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCamelCase_ = mocked_dataloaders # noqa: F811
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , a_ ) == "1":
lowerCAmelCase_ = 2
# Initialize accelerator
lowerCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase_ = config['lr']
lowerCAmelCase_ = int(config['num_epochs'] )
lowerCAmelCase_ = int(config['seed'] )
lowerCAmelCase_ = int(config['batch_size'] )
lowerCAmelCase_ = evaluate.load('glue' , 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=a_ )
def inner_training_loop(a_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase_ = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase_ = AdamW(params=model.parameters() , lr=a_ )
lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(a_ , a_ )
# Instantiate scheduler
lowerCAmelCase_ = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# Now we train the model
for epoch in range(a_ ):
model.train()
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase_ = model(**a_ )
lowerCAmelCase_ = outputs.loss
accelerator.backward(a_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
lowerCAmelCase_ = outputs.logits.argmax(dim=-1 )
lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=a_ , references=a_ , )
lowerCAmelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def lowerCamelCase ( ) -> List[str]:
lowerCAmelCase_ = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=a_ , default=a_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
lowerCAmelCase_ = parser.parse_args()
lowerCAmelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 14 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase_ = {
"""roberta-base""": 5_1_2,
"""roberta-large""": 5_1_2,
"""roberta-large-mnli""": 5_1_2,
"""distilroberta-base""": 5_1_2,
"""roberta-base-openai-detector""": 5_1_2,
"""roberta-large-openai-detector""": 5_1_2,
}
class a_ ( a_ ):
'''simple docstring'''
__a: Optional[Any] = VOCAB_FILES_NAMES
__a: str = PRETRAINED_VOCAB_FILES_MAP
__a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Optional[Any] = ['''input_ids''', '''attention_mask''']
__a: Optional[Any] = RobertaTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="replace" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Any:
'''simple docstring'''
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , )
lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space:
lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) )
lowerCAmelCase_ = add_prefix_space
lowerCAmelCase_ = pre_tok_class(**lowercase_ )
lowerCAmelCase_ = add_prefix_space
lowerCAmelCase_ = 'post_processor'
lowerCAmelCase_ = getattr(self.backend_tokenizer , lowercase_ , lowercase_ )
if tokenizer_component_instance:
lowerCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase_ = tuple(state['sep'] )
if "cls" in state:
lowerCAmelCase_ = tuple(state['cls'] )
lowerCAmelCase_ = False
if state.get('add_prefix_space' , lowercase_ ) != add_prefix_space:
lowerCAmelCase_ = add_prefix_space
lowerCAmelCase_ = True
if state.get('trim_offsets' , lowercase_ ) != trim_offsets:
lowerCAmelCase_ = trim_offsets
lowerCAmelCase_ = True
if changes_to_apply:
lowerCAmelCase_ = getattr(lowercase_ , state.pop('type' ) )
lowerCAmelCase_ = component_class(**lowercase_ )
setattr(self.backend_tokenizer , lowercase_ , lowercase_ )
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowercase ( self , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value
lowerCAmelCase_ = value
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding:
'''simple docstring'''
lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowercase_ , **lowercase_ )
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding:
'''simple docstring'''
lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_=None ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 14 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' )
lowerCAmelCase_ = AutoTokenizer.from_pretrained('google/mt5-small' )
lowerCAmelCase_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids
lowerCAmelCase_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ ).loss
lowerCAmelCase_ = -tf.math.reduce_mean(lowercase_ ).numpy()
lowerCAmelCase_ = -21.22_81_68
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 14 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase_ = logging.getLogger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_=-1 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = label_idx
def _lowercase ( self , lowercase_ , lowercase_ ) -> List[InputExample]:
'''simple docstring'''
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = mode.value
lowerCAmelCase_ = os.path.join(lowercase_ , f'''{mode}.txt''' )
lowerCAmelCase_ = 1
lowerCAmelCase_ = []
with open(lowercase_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) )
guid_index += 1
lowerCAmelCase_ = []
lowerCAmelCase_ = []
else:
lowerCAmelCase_ = line.split(' ' )
words.append(splits[0] )
if len(lowercase_ ) > 1:
labels.append(splits[self.label_idx].replace('\n' , '' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) )
return examples
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = 0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(lowercase_ )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowerCAmelCase_ = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(lowercase_ )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
if path:
with open(lowercase_ , 'r' ) as f:
lowerCAmelCase_ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase_ = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class a_ ( a_ ):
'''simple docstring'''
def __init__( self ) -> int:
'''simple docstring'''
super().__init__(label_idx=-2 )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
if path:
with open(lowercase_ , 'r' ) as f:
lowerCAmelCase_ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase_ = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class a_ ( a_ ):
'''simple docstring'''
def _lowercase ( self , lowercase_ , lowercase_ ) -> List[InputExample]:
'''simple docstring'''
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = mode.value
lowerCAmelCase_ = os.path.join(lowercase_ , f'''{mode}.txt''' )
lowerCAmelCase_ = 1
lowerCAmelCase_ = []
with open(lowercase_ , encoding='utf-8' ) as f:
for sentence in parse_incr(lowercase_ ):
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(lowercase_ ) == len(lowercase_ )
if words:
examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) )
guid_index += 1
return examples
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 0
for sentence in parse_incr(lowercase_ ):
lowerCAmelCase_ = preds_list[example_id]
lowerCAmelCase_ = ''
for token in sentence:
out += f'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '''
out += "\n"
writer.write(lowercase_ )
example_id += 1
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
if path:
with open(lowercase_ , 'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 14 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class a_ ( a_ ):
'''simple docstring'''
__a: str = '''facebook/bart-large-mnli'''
__a: Optional[int] = (
'''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '''
'''should be the text to classify, and `labels`, which should be the list of labels to use for classification. '''
'''It returns the most likely label in the list of provided `labels` for the input text.'''
)
__a: List[Any] = '''text_classifier'''
__a: Optional[int] = AutoTokenizer
__a: Optional[Any] = AutoModelForSequenceClassification
__a: Tuple = ['''text''', ['''text''']]
__a: int = ['''text''']
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setup()
lowerCAmelCase_ = self.model.config
lowerCAmelCase_ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('entail' ):
lowerCAmelCase_ = int(lowercase_ )
if self.entailment_id == -1:
raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = labels
return self.pre_processor(
[text] * len(lowercase_ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , )
def _lowercase ( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
lowerCAmelCase_ = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 14 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 1 |
def lowerCamelCase ( a_ , a_ ) -> int:
return int(input_a == input_a == 0 )
def lowerCamelCase ( ) -> None:
print('Truth Table of NOR Gate:' )
print('| Input 1 | Input 2 | Output |' )
print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' )
print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' )
print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' )
print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = 1_0_0 , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if audio_length_in_s is None:
lowerCAmelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate
lowerCAmelCase_ = audio_length_in_s * self.unet.config.sample_rate
lowerCAmelCase_ = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowerCAmelCase_ = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowerCAmelCase_ = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
' process.' )
lowerCAmelCase_ = int(lowercase_ )
lowerCAmelCase_ = next(iter(self.unet.parameters() ) ).dtype
lowerCAmelCase_ = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowerCAmelCase_ = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowerCAmelCase_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowerCAmelCase_ = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 14 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
def lowerCamelCase ( a_ = 50 ) -> int:
lowerCAmelCase_ = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 14 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowerCamelCase_ = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def lowerCamelCase ( a_ , a_ , a_ ) -> Any:
lowerCAmelCase_ = state_dict.pop(a_ )
lowerCAmelCase_ = val
def lowerCamelCase ( a_ ) -> Optional[int]:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
lowerCAmelCase_ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' )
lowerCAmelCase_ = value
else:
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_=False ) -> Dict:
lowerCAmelCase_ = ''
if is_panoptic:
lowerCAmelCase_ = 'conditional_detr.'
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ = in_proj_weight[:256, :]
lowerCAmelCase_ = in_proj_bias[:256]
lowerCAmelCase_ = in_proj_weight[256:512, :]
lowerCAmelCase_ = in_proj_bias[256:512]
lowerCAmelCase_ = in_proj_weight[-256:, :]
lowerCAmelCase_ = in_proj_bias[-256:]
def lowerCamelCase ( ) -> Tuple:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
lowerCAmelCase_ = 'resnet101'
if "dc5" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = 'panoptic' in model_name
if is_panoptic:
lowerCAmelCase_ = 250
else:
lowerCAmelCase_ = 91
lowerCAmelCase_ = 'huggingface/label-files'
lowerCAmelCase_ = 'coco-detection-id2label.json'
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
# load image processor
lowerCAmelCase_ = 'coco_panoptic' if is_panoptic else 'coco_detection'
lowerCAmelCase_ = ConditionalDetrImageProcessor(format=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' )
lowerCAmelCase_ = encoding['pixel_values']
logger.info(F'''Converting model {model_name}...''' )
# load original model from torch hub
lowerCAmelCase_ = torch.hub.load('DeppMeng/ConditionalDETR' , a_ , pretrained=a_ ).eval()
lowerCAmelCase_ = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
lowerCAmelCase_ = 'conditional_detr.' + src
rename_key(a_ , a_ , a_ )
lowerCAmelCase_ = rename_backbone_keys(a_ )
# query, key and value matrices need special treatment
read_in_q_k_v(a_ , is_panoptic=a_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
lowerCAmelCase_ = 'conditional_detr.model.' if is_panoptic else 'model.'
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('conditional_detr' )
and not key.startswith('class_labels_classifier' )
and not key.startswith('bbox_predictor' )
):
lowerCAmelCase_ = state_dict.pop(a_ )
lowerCAmelCase_ = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
lowerCAmelCase_ = state_dict.pop(a_ )
lowerCAmelCase_ = val
elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ):
continue
else:
lowerCAmelCase_ = state_dict.pop(a_ )
lowerCAmelCase_ = val
else:
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
lowerCAmelCase_ = state_dict.pop(a_ )
lowerCAmelCase_ = val
# finally, create HuggingFace model and load state dict
lowerCAmelCase_ = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ )
model.load_state_dict(a_ )
model.eval()
model.push_to_hub(repo_id=a_ , organization='DepuMeng' , commit_message='Add model' )
# verify our conversion
lowerCAmelCase_ = conditional_detr(a_ )
lowerCAmelCase_ = model(a_ )
assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 )
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class a_ ( a_ ):
'''simple docstring'''
__a: torch.FloatTensor
class a_ ( a_ , a_ ):
'''simple docstring'''
@register_to_config
def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (6_4,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 2_5_6 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = 0.1_82_15 , lowercase_ = "group" , ) -> Any:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
lowerCAmelCase_ = Encoder(
in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , )
lowerCAmelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 )
lowerCAmelCase_ = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_ )
lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 )
# pass init params to Decoder
lowerCAmelCase_ = Decoder(
in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , )
@apply_forward_hook
def _lowercase ( self , lowercase_ , lowercase_ = True ) -> VQEncoderOutput:
'''simple docstring'''
lowerCAmelCase_ = self.encoder(lowercase_ )
lowerCAmelCase_ = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowercase ( self , lowercase_ , lowercase_ = False , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if not force_not_quantize:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.quantize(lowercase_ )
else:
lowerCAmelCase_ = h
lowerCAmelCase_ = self.post_quant_conv(lowercase_ )
lowerCAmelCase_ = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
lowerCAmelCase_ = sample
lowerCAmelCase_ = self.encode(lowercase_ ).latents
lowerCAmelCase_ = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=6_4 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_=[1, 1_6, 4, 4] , lowercase_=None , ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = image_size
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = type_sequence_label_size
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = scope
lowerCAmelCase_ = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ = (self.image_size // 3_2) ** 2
lowerCAmelCase_ = num_patches + 1
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ = None
if self.use_labels:
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ = self.get_config()
return config, pixel_values, labels
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
'hidden_sizes': [4, 8, 1_6, 3_2],
'num_groups': 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase_ , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = ViTHybridModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.type_sequence_label_size
lowerCAmelCase_ = ViTHybridForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__a: List[str] = (
{'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__a: Optional[Any] = False
__a: Optional[int] = False
__a: str = False
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = ViTHybridModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
pass
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = model_class(lowercase_ )
lowerCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ = [*signature.parameters.keys()]
lowerCAmelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ = _config_zero_init(lowercase_ )
for model_class in self.all_model_classes:
lowerCAmelCase_ = model_class(config=lowercase_ )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ = [f'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ = ViTHybridModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def lowerCamelCase ( ) -> int:
lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
lowercase_ )
lowerCAmelCase_ = self.default_image_processor
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowerCAmelCase_ = model(**lowercase_ )
# verify the logits
lowerCAmelCase_ = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowercase_ )
lowerCAmelCase_ = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
@slow
@require_accelerate
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' )
lowerCAmelCase_ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' )
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='pt' )
lowerCAmelCase_ = model(**lowercase_ )
lowerCAmelCase_ = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
lowerCamelCase_ = (7_2_0, 1_2_8_0) # Height, Width
lowerCamelCase_ = (0.4, 0.6) # if height or width lower than this scale, drop it.
lowerCamelCase_ = 1 / 1_0_0
lowerCamelCase_ = """"""
lowerCamelCase_ = """"""
lowerCamelCase_ = """"""
lowerCamelCase_ = 2_5_0
def lowerCamelCase ( ) -> None:
lowerCAmelCase_ , lowerCAmelCase_ = get_dataset(a_ , a_ )
for index in range(a_ ):
lowerCAmelCase_ = random.sample(range(len(a_ ) ) , 4 )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = update_image_and_anno(
a_ , a_ , a_ , a_ , a_ , filter_scale=a_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowerCAmelCase_ = random_chars(32 )
lowerCAmelCase_ = path.split(os.sep )[-1].rsplit('.' , 1 )[0]
lowerCAmelCase_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'''
cva.imwrite(F'''{file_root}.jpg''' , a_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' )
lowerCAmelCase_ = []
for anno in new_annos:
lowerCAmelCase_ = anno[3] - anno[1]
lowerCAmelCase_ = anno[4] - anno[2]
lowerCAmelCase_ = anno[1] + width / 2
lowerCAmelCase_ = anno[2] + height / 2
lowerCAmelCase_ = F'''{anno[0]} {x_center} {y_center} {width} {height}'''
annos_list.append(a_ )
with open(F'''{file_root}.txt''' , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def lowerCamelCase ( a_ , a_ ) -> tuple[list, list]:
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for label_file in glob.glob(os.path.join(a_ , '*.txt' ) ):
lowerCAmelCase_ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(a_ ) as in_file:
lowerCAmelCase_ = in_file.readlines()
lowerCAmelCase_ = os.path.join(a_ , F'''{label_name}.jpg''' )
lowerCAmelCase_ = []
for obj_list in obj_lists:
lowerCAmelCase_ = obj_list.rstrip('\n' ).split(' ' )
lowerCAmelCase_ = float(obj[1] ) - float(obj[3] ) / 2
lowerCAmelCase_ = float(obj[2] ) - float(obj[4] ) / 2
lowerCAmelCase_ = float(obj[1] ) + float(obj[3] ) / 2
lowerCAmelCase_ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(a_ )
labels.append(a_ )
return img_paths, labels
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ , a_ = 0.0 , ) -> tuple[list, list, str]:
lowerCAmelCase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
lowerCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase_ = int(scale_x * output_size[1] )
lowerCAmelCase_ = int(scale_y * output_size[0] )
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for i, index in enumerate(a_ ):
lowerCAmelCase_ = all_img_list[index]
path_list.append(a_ )
lowerCAmelCase_ = all_annos[index]
lowerCAmelCase_ = cva.imread(a_ )
if i == 0: # top-left
lowerCAmelCase_ = cva.resize(a_ , (divid_point_x, divid_point_y) )
lowerCAmelCase_ = img
for bbox in img_annos:
lowerCAmelCase_ = bbox[1] * scale_x
lowerCAmelCase_ = bbox[2] * scale_y
lowerCAmelCase_ = bbox[3] * scale_x
lowerCAmelCase_ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
lowerCAmelCase_ = cva.resize(a_ , (output_size[1] - divid_point_x, divid_point_y) )
lowerCAmelCase_ = img
for bbox in img_annos:
lowerCAmelCase_ = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase_ = bbox[2] * scale_y
lowerCAmelCase_ = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase_ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
lowerCAmelCase_ = cva.resize(a_ , (divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase_ = img
for bbox in img_annos:
lowerCAmelCase_ = bbox[1] * scale_x
lowerCAmelCase_ = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase_ = bbox[3] * scale_x
lowerCAmelCase_ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
lowerCAmelCase_ = cva.resize(
a_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase_ = img
for bbox in img_annos:
lowerCAmelCase_ = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase_ = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase_ = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase_ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
lowerCAmelCase_ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def lowerCamelCase ( a_ ) -> str:
assert number_char > 1, "The number of character should greater than 1"
lowerCAmelCase_ = ascii_lowercase + digits
return "".join(random.choice(a_ ) for _ in range(a_ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import os
import sys
import unittest
lowerCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowerCamelCase_ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
lowerCamelCase_ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = get_test_to_tester_mapping(lowercase_ )
lowerCAmelCase_ = get_test_to_tester_mapping(lowercase_ )
lowerCAmelCase_ = {'BertModelTest': 'BertModelTester'}
lowerCAmelCase_ = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = get_model_to_test_mapping(lowercase_ )
lowerCAmelCase_ = get_model_to_test_mapping(lowercase_ )
lowerCAmelCase_ = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
lowerCAmelCase_ = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = get_model_to_tester_mapping(lowercase_ )
lowerCAmelCase_ = get_model_to_tester_mapping(lowercase_ )
lowerCAmelCase_ = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
lowerCAmelCase_ = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCamelCase_ = """sshleifer/bart-tiny-random"""
lowerCamelCase_ = """patrickvonplaten/t5-tiny-random"""
@require_torch
class a_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return AutoConfig.from_pretrained(lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def _lowercase ( self ) -> int:
'''simple docstring'''
with self.assertRaises(lowercase_ ):
create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=lowercase_ , d=lowercase_ )
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = '''yolos'''
def __init__( self , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=[5_1_2, 8_6_4] , lowercase_=1_6 , lowercase_=3 , lowercase_=True , lowercase_=1_0_0 , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> int:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = image_size
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = num_detection_tokens
lowerCAmelCase_ = use_mid_position_embeddings
lowerCAmelCase_ = auxiliary_loss
# Hungarian matcher
lowerCAmelCase_ = class_cost
lowerCAmelCase_ = bbox_cost
lowerCAmelCase_ = giou_cost
# Loss coefficients
lowerCAmelCase_ = bbox_loss_coefficient
lowerCAmelCase_ = giou_loss_coefficient
lowerCAmelCase_ = eos_coefficient
class a_ ( a_ ):
'''simple docstring'''
__a: Tuple = version.parse('''1.11''' )
@property
def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _lowercase ( self ) -> float:
'''simple docstring'''
return 1e-4
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return 1_2
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import heapq
import sys
import numpy as np
lowerCamelCase_ = tuple[int, int]
class a_ :
'''simple docstring'''
def __init__( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = []
lowerCAmelCase_ = set()
def _lowercase ( self ) -> str:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('inf' )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
return len(self.elements ) == 0
def _lowercase ( self , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(lowercase_ )
else:
# update
# print("update", item)
lowerCAmelCase_ = []
((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if item in self.set:
self.set.remove(lowercase_ )
lowerCAmelCase_ = []
((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _lowercase ( self ) -> str:
'''simple docstring'''
return self.elements[0][1]
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements )
self.set.remove(lowercase_ )
return (priority, item)
def lowerCamelCase ( a_ , a_ ) -> List[str]:
# euclidean distance
lowerCAmelCase_ = np.array(a_ )
lowerCAmelCase_ = np.array(a_ )
return np.linalg.norm(a - b )
def lowerCamelCase ( a_ , a_ ) -> Optional[Any]:
# integer division by time variable
return consistent_heuristic(a_ , a_ ) // t
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]:
lowerCAmelCase_ = g_function[start] + Wa * heuristics[i](a_ , a_ )
return ans
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = np.chararray((n, n) )
for i in range(a_ ):
for j in range(a_ ):
lowerCAmelCase_ = '*'
for i in range(a_ ):
for j in range(a_ ):
if (j, (n - 1) - i) in blocks:
lowerCAmelCase_ = '#'
lowerCAmelCase_ = '-'
lowerCAmelCase_ = back_pointer[goal]
while x != start:
((lowerCAmelCase_) , (lowerCAmelCase_)) = x
# print(x)
lowerCAmelCase_ = '-'
lowerCAmelCase_ = back_pointer[x]
lowerCAmelCase_ = '-'
for i in range(a_ ):
for j in range(a_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
lowerCAmelCase_ = back_pointer[goal]
while x != start:
print(a_ , end=' ' )
lowerCAmelCase_ = back_pointer[x]
print(a_ )
sys.exit()
def lowerCamelCase ( a_ ) -> List[str]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]:
for itera in range(a_ ):
open_list[itera].remove_element(a_ )
# print("s", s)
# print("j", j)
((lowerCAmelCase_) , (lowerCAmelCase_)) = s
lowerCAmelCase_ = (x - 1, y)
lowerCAmelCase_ = (x + 1, y)
lowerCAmelCase_ = (x, y + 1)
lowerCAmelCase_ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(a_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(a_ )
lowerCAmelCase_ = -1
lowerCAmelCase_ = float('inf' )
if valid(a_ ) and g_function[neighbours] > g_function[s] + 1:
lowerCAmelCase_ = g_function[s] + 1
lowerCAmelCase_ = s
if neighbours not in close_list_anchor:
open_list[0].put(a_ , key(a_ , 0 , a_ , a_ ) )
if neighbours not in close_list_inad:
for var in range(1 , a_ ):
if key(a_ , a_ , a_ , a_ ) <= Wa * key(
a_ , 0 , a_ , a_ ):
open_list[j].put(
a_ , key(a_ , a_ , a_ , a_ ) )
def lowerCamelCase ( ) -> Union[str, Any]:
lowerCAmelCase_ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
lowerCamelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
lowerCamelCase_ = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(1_0, 1),
(1_1, 1),
(1_2, 1),
(1_3, 1),
(1_4, 1),
(1_5, 1),
(1_6, 1),
(1_7, 1),
(1_8, 1),
(1_9, 1),
]
lowerCamelCase_ = make_common_ground()
lowerCamelCase_ = blocks_blk
# hyper parameters
lowerCamelCase_ = 1
lowerCamelCase_ = 1
lowerCamelCase_ = 2_0
lowerCamelCase_ = 3 # one consistent and two other inconsistent
# start and end destination
lowerCamelCase_ = (0, 0)
lowerCamelCase_ = (n - 1, n - 1)
lowerCamelCase_ = 1
def lowerCamelCase ( a_ , a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = {start: 0, goal: float('inf' )}
lowerCAmelCase_ = {start: -1, goal: -1}
lowerCAmelCase_ = []
lowerCAmelCase_ = set()
for i in range(a_ ):
open_list.append(PriorityQueue() )
open_list[i].put(a_ , key(a_ , a_ , a_ , a_ ) )
lowerCAmelCase_ = []
lowerCAmelCase_ = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , a_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(a_ , a_ , a_ )
else:
lowerCAmelCase_ , lowerCAmelCase_ = open_list[i].top_show()
visited.add(a_ )
expand_state(
a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , )
close_list_inad.append(a_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(a_ , a_ , a_ )
else:
lowerCAmelCase_ = open_list[0].top_show()
visited.add(a_ )
expand_state(
a_ , 0 , a_ , a_ , a_ , a_ , a_ , a_ , )
close_list_anchor.append(a_ )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(a_ ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
lowerCamelCase_ = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCamelCase ( a_ , a_ ) -> int:
if "xprophetnet" in prophetnet_checkpoint_path:
lowerCAmelCase_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = XLMProphetNetForConditionalGeneration.from_pretrained(
a_ , output_loading_info=a_ )
else:
lowerCAmelCase_ = ProphetNetForConditionalGenerationOld.from_pretrained(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = ProphetNetForConditionalGeneration.from_pretrained(
a_ , output_loading_info=a_ )
lowerCAmelCase_ = ['key_proj', 'value_proj', 'query_proj']
lowerCAmelCase_ = {
'self_attn': 'ngram_self_attn',
'cross_attn': 'encoder_attn',
'cross_attn_layer_norm': 'encoder_attn_layer_norm',
'feed_forward_layer_norm': 'final_layer_norm',
'feed_forward': '',
'intermediate': 'fc1',
'output': 'fc2',
'key_proj': 'k_proj',
'query_proj': 'q_proj',
'value_proj': 'v_proj',
'word_embeddings': 'embed_tokens',
'embeddings_layer_norm': 'emb_layer_norm',
'relative_pos_embeddings': 'relative_linear',
'ngram_embeddings': 'ngram_input_embed',
'position_embeddings': 'embed_positions',
}
for key in loading_info["missing_keys"]:
lowerCAmelCase_ = key.split('.' )
if attributes[0] == "lm_head":
lowerCAmelCase_ = prophet
lowerCAmelCase_ = prophet_old
else:
lowerCAmelCase_ = prophet.prophetnet
lowerCAmelCase_ = prophet_old.model
lowerCAmelCase_ = False
for attribute in attributes:
if attribute in mapping:
lowerCAmelCase_ = mapping[attribute]
if not hasattr(a_ , a_ ) and len(a_ ) > 0:
lowerCAmelCase_ = attribute
elif hasattr(a_ , a_ ):
lowerCAmelCase_ = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
lowerCAmelCase_ = old_model.weight
logger.info(F'''{attribute} is initialized.''' )
lowerCAmelCase_ = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
lowerCAmelCase_ = old_model.bias
logger.info(F'''{attribute} is initialized''' )
lowerCAmelCase_ = True
break
elif attribute in special_keys and hasattr(a_ , 'in_proj_weight' ):
lowerCAmelCase_ = old_model.in_proj_weight.shape[0] // 3
lowerCAmelCase_ = getattr(a_ , a_ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
lowerCAmelCase_ = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
lowerCAmelCase_ = nn.Parameter(old_model.embed_positions.weight[:512, :] )
lowerCAmelCase_ = True
break
if attribute.isdigit():
lowerCAmelCase_ = model[int(a_ )]
lowerCAmelCase_ = old_model[int(a_ )]
else:
lowerCAmelCase_ = getattr(a_ , a_ )
if old_attribute == "":
lowerCAmelCase_ = old_model
else:
if not hasattr(a_ , a_ ):
raise ValueError(F'''{old_model} does not have {old_attribute}''' )
lowerCAmelCase_ = getattr(a_ , a_ )
if not is_key_init:
raise ValueError(F'''{key} was not correctly initialized!''' )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
prophet.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase_ = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase_ = TaTokenizerFast
lowerCamelCase_ = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase_ = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 14 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowerCamelCase ( ) -> int:
lowerCAmelCase_ = 9
lowerCAmelCase_ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCAmelCase_ = kruskal(a_ , a_ )
lowerCAmelCase_ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(a_ ) == sorted(a_ )
| 14 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCamelCase_ = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def lowerCamelCase ( a_ , a_ , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , ) -> int:
if attention_mask is None:
lowerCAmelCase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCAmelCase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCAmelCase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=3_2 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = initializer_range
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
lowerCAmelCase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
lowerCAmelCase_ = shift_tokens_right(lowercase_ , 1 , 2 )
lowerCAmelCase_ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , )
lowerCAmelCase_ = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = model_class_name(lowercase_ )
lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] )
lowerCAmelCase_ , lowerCAmelCase_ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
lowerCAmelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
lowerCAmelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase_ = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
lowerCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase_ = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , )
lowerCAmelCase_ = model.decode(lowercase_ , lowercase_ )
lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = model_class_name(lowercase_ )
lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] )
lowerCAmelCase_ , lowerCAmelCase_ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowerCAmelCase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
lowerCAmelCase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase_ = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
lowerCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase_ = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , )
lowerCAmelCase_ = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ )
lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: str = 9_9
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_config_and_data()
lowerCAmelCase_ = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ )
lowerCAmelCase_ = lm_model(input_ids=lowercase_ )
lowerCAmelCase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowerCAmelCase_ = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ )
lowerCAmelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
lowerCAmelCase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
lowerCAmelCase_ = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ )
lowerCAmelCase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
lowerCAmelCase_ = shift_tokens_right(lowercase_ , 1 , 2 )
lowerCAmelCase_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
lowerCAmelCase_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowercase_ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class a_ ( a_ , unittest.TestCase , a_ ):
'''simple docstring'''
__a: List[str] = True
__a: Dict = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
__a: Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = FlaxBlenderbotSmallModelTester(self )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ )
lowerCAmelCase_ = model_class(lowercase_ )
@jax.jit
def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ):
return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ )
with self.subTest('JIT Enabled' ):
lowerCAmelCase_ = encode_jitted(**lowercase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCAmelCase_ = encode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase_ = model_class(lowercase_ )
lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
lowerCAmelCase_ = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase_ , lowercase_ , lowercase_ ):
return model.decode(
decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , )
with self.subTest('JIT Enabled' ):
lowerCAmelCase_ = decode_jitted(**lowercase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCAmelCase_ = decode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCAmelCase_ = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCAmelCase_ = np.ones((1, 1) ) * model.config.eos_token_id
lowerCAmelCase_ = model(lowercase_ )
self.assertIsNotNone(lowercase_ )
| 14 |
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
lowerCAmelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 | 1 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCamelCase_ = pd.read_csv(
"""https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"""
"""position_salaries.csv"""
)
lowerCamelCase_ = dataset.iloc[:, 1:2].values
lowerCamelCase_ = dataset.iloc[:, 2].values
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCamelCase_ = PolynomialFeatures(degree=4)
lowerCamelCase_ = poly_reg.fit_transform(X)
lowerCamelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def lowerCamelCase ( ) -> List[str]:
plt.scatter(a_ , a_ , color='red' )
plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 14 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 1 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 1 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class a_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=2 , lowercase_=5_6 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=2 , lowercase_=2 , lowercase_=7 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=4 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=2 , lowercase_=3 , ) -> str:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_attention_mask
lowerCAmelCase_ = use_token_type_ids
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = type_vocab_size
lowerCAmelCase_ = type_sequence_label_size
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = num_choices
lowerCAmelCase_ = rescale_embeddings
lowerCAmelCase_ = attention_type
lowerCAmelCase_ = use_bias
lowerCAmelCase_ = block_size
lowerCAmelCase_ = num_random_blocks
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ = None
if self.use_attention_mask:
lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ = None
if self.use_token_type_ids:
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase_ = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_flax
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Union[str, Any] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
__a: Any = False
__a: Dict = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def _lowercase ( self ) -> Dict:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCAmelCase_ = model_class_name.from_pretrained('google/bigbird-roberta-base' )
self.assertIsNotNone(lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ )
lowerCAmelCase_ = model_class(lowercase_ )
@jax.jit
def model_jitted(lowercase_ , lowercase_=None , **lowercase_ ):
return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ )
with self.subTest('JIT Enabled' ):
lowerCAmelCase_ = model_jitted(**lowercase_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCAmelCase_ = model_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=1e-5 , lowercase_="outputs" , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
if name.startswith('outputs.attentions' ):
return
else:
super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
| 14 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 1 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase_ = {
"""configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""],
"""tokenization_cpmant""": ["""CpmAntTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CpmAntForCausalLM""",
"""CpmAntModel""",
"""CpmAntPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = '''detr'''
__a: Optional[Any] = ['''past_key_values''']
__a: Tuple = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Union[str, Any]:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
lowerCAmelCase_ = CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = backbone_config.get('model_type' )
lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase_ = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None, None, None
lowerCAmelCase_ = use_timm_backbone
lowerCAmelCase_ = backbone_config
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = num_queries
lowerCAmelCase_ = d_model
lowerCAmelCase_ = encoder_ffn_dim
lowerCAmelCase_ = encoder_layers
lowerCAmelCase_ = encoder_attention_heads
lowerCAmelCase_ = decoder_ffn_dim
lowerCAmelCase_ = decoder_layers
lowerCAmelCase_ = decoder_attention_heads
lowerCAmelCase_ = dropout
lowerCAmelCase_ = attention_dropout
lowerCAmelCase_ = activation_dropout
lowerCAmelCase_ = activation_function
lowerCAmelCase_ = init_std
lowerCAmelCase_ = init_xavier_std
lowerCAmelCase_ = encoder_layerdrop
lowerCAmelCase_ = decoder_layerdrop
lowerCAmelCase_ = encoder_layers
lowerCAmelCase_ = auxiliary_loss
lowerCAmelCase_ = position_embedding_type
lowerCAmelCase_ = backbone
lowerCAmelCase_ = use_pretrained_backbone
lowerCAmelCase_ = dilation
# Hungarian matcher
lowerCAmelCase_ = class_cost
lowerCAmelCase_ = bbox_cost
lowerCAmelCase_ = giou_cost
# Loss coefficients
lowerCAmelCase_ = mask_loss_coefficient
lowerCAmelCase_ = dice_loss_coefficient
lowerCAmelCase_ = bbox_loss_coefficient
lowerCAmelCase_ = giou_loss_coefficient
lowerCAmelCase_ = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return self.d_model
@classmethod
def _lowercase ( cls , lowercase_ , **lowercase_ ) -> List[str]:
'''simple docstring'''
return cls(backbone_config=lowercase_ , **lowercase_ )
def _lowercase ( self ) -> Dict[str, any]:
'''simple docstring'''
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase_ = self.backbone_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = version.parse('''1.11''' )
@property
def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
] )
@property
def _lowercase ( self ) -> float:
'''simple docstring'''
return 1e-5
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return 1_2
| 14 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 1 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def lowerCamelCase ( a_ , a_ , a_ = False ) -> list[float]:
if radian_mode:
return [magnitude * cos(a_ ), magnitude * sin(a_ )]
return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )]
def lowerCamelCase ( a_ , a_ , a_ = 10**-1 ) -> bool:
lowerCAmelCase_ = cross(a_ , a_ )
lowerCAmelCase_ = sum(a_ )
return abs(a_ ) < eps
if __name__ == "__main__":
# Test to check if it works
lowerCamelCase_ = array(
[
polar_force(718.4, 1_8_0 - 3_0),
polar_force(879.54, 4_5),
polar_force(1_0_0, -9_0),
]
)
lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
lowerCamelCase_ = array(
[
polar_force(3_0 * 9.81, 1_5),
polar_force(2_1_5, 1_8_0 - 4_5),
polar_force(2_6_4, 9_0 - 3_0),
]
)
lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
lowerCamelCase_ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]])
lowerCamelCase_ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 14 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 1 |
from collections import Counter
from timeit import timeit
def lowerCamelCase ( a_ = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2
def lowerCamelCase ( a_ = "" ) -> bool:
if len(a_ ) == 0:
return True
lowerCAmelCase_ = input_str.replace(' ' , '' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
lowerCAmelCase_ = {}
for character in lower_case_input_str:
lowerCAmelCase_ = character_freq_dict.get(a_ , 0 ) + 1
lowerCAmelCase_ = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def lowerCamelCase ( a_ = "" ) -> None:
print('\nFor string = ' , a_ , ':' )
print(
'> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(a_ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
print(
'> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(a_ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
if __name__ == "__main__":
lowerCamelCase_ = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
lowerCamelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
| 14 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
lowerCamelCase_ = {
"""configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""],
"""processing_speech_to_text""": ["""Speech2TextProcessor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""Speech2TextTokenizer"""]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""Speech2TextFeatureExtractor"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFSpeech2TextForConditionalGeneration""",
"""TFSpeech2TextModel""",
"""TFSpeech2TextPreTrainedModel""",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Speech2TextForConditionalGeneration""",
"""Speech2TextModel""",
"""Speech2TextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 1 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: TreeNode | None = None
__a: TreeNode | None = None
lowerCamelCase_ = namedtuple("""CoinsDistribResult""", """moves excess""")
def lowerCamelCase ( a_ ) -> int:
if root is None:
return 0
# Validation
def count_nodes(a_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(a_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(a_ ) != count_coins(a_ ):
raise ValueError('The nodes number should be same as the number of coins' )
# Main calculation
def get_distrib(a_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.left )
lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.right )
lowerCAmelCase_ = 1 - left_distrib_excess
lowerCAmelCase_ = 1 - right_distrib_excess
lowerCAmelCase_ = (
left_distrib_moves
+ right_distrib_moves
+ abs(a_ )
+ abs(a_ )
)
lowerCAmelCase_ = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(a_ , a_ )
return get_distrib(a_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
import operator as op
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = []
lowerCAmelCase_ = lambda a_ , a_ : int(x / y ) # noqa: E731 integer division operation
lowerCAmelCase_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(a_ )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(a_ ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' )
else:
lowerCAmelCase_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' )
lowerCAmelCase_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' )
stack.append(
str(opr[x](int(a_ ) , int(a_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase_ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """)
print("""\n\tResult = """, solve(Postfix))
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
lowerCamelCase_ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
lowerCamelCase_ = (
subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split()
)
lowerCamelCase_ = """|""".join(sys.argv[1:])
lowerCamelCase_ = re.compile(rf'''^({joined_dirs}).*?\.py$''')
lowerCamelCase_ = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase_ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = '''mask2former'''
__a: Tuple = ['''swin''']
__a: Any = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowercase_ = None , lowercase_ = 2_5_6 , lowercase_ = 2_5_6 , lowercase_ = 2_5_6 , lowercase_ = 1_0_2_4 , lowercase_ = "relu" , lowercase_ = 6 , lowercase_ = 1_0 , lowercase_ = 8 , lowercase_ = 0.0 , lowercase_ = 2_0_4_8 , lowercase_ = False , lowercase_ = False , lowercase_ = 4 , lowercase_ = 2_5_5 , lowercase_ = 1_0_0 , lowercase_ = 0.1 , lowercase_ = 2.0 , lowercase_ = 5.0 , lowercase_ = 5.0 , lowercase_ = 1_2_5_4_4 , lowercase_ = 3.0 , lowercase_ = 0.75 , lowercase_ = 0.02 , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = [4, 8, 1_6, 3_2] , lowercase_ = None , **lowercase_ , ) -> str:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
lowerCAmelCase_ = CONFIG_MAPPING['swin'](
image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = backbone_config.pop('model_type' )
lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase_ = config_class.from_dict(lowercase_ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
f'''Supported model types: {",".join(self.backbones_supported )}''' )
lowerCAmelCase_ = backbone_config
lowerCAmelCase_ = feature_size
lowerCAmelCase_ = mask_feature_size
lowerCAmelCase_ = hidden_dim
lowerCAmelCase_ = encoder_feedforward_dim
lowerCAmelCase_ = activation_function
lowerCAmelCase_ = encoder_layers
lowerCAmelCase_ = decoder_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = dropout
lowerCAmelCase_ = dim_feedforward
lowerCAmelCase_ = pre_norm
lowerCAmelCase_ = enforce_input_projection
lowerCAmelCase_ = common_stride
lowerCAmelCase_ = ignore_value
lowerCAmelCase_ = num_queries
lowerCAmelCase_ = no_object_weight
lowerCAmelCase_ = class_weight
lowerCAmelCase_ = mask_weight
lowerCAmelCase_ = dice_weight
lowerCAmelCase_ = train_num_points
lowerCAmelCase_ = oversample_ratio
lowerCAmelCase_ = importance_sample_ratio
lowerCAmelCase_ = init_std
lowerCAmelCase_ = init_xavier_std
lowerCAmelCase_ = use_auxiliary_loss
lowerCAmelCase_ = feature_strides
lowerCAmelCase_ = output_auxiliary_logits
lowerCAmelCase_ = decoder_layers
super().__init__(**lowercase_ )
@classmethod
def _lowercase ( cls , lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowercase_ , **lowercase_ , )
def _lowercase ( self ) -> Dict[str, any]:
'''simple docstring'''
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ = self.backbone_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
def lowerCamelCase ( a_ ) -> list[int]:
if num <= 0:
raise ValueError('Input must be a positive integer' )
lowerCAmelCase_ = [True] * (num + 1)
lowerCAmelCase_ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , a_ ):
lowerCAmelCase_ = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase_ = int(input("""Enter a positive integer: """).strip())
print(prime_sieve_eratosthenes(user_num))
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_ ) -> int:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
lowerCAmelCase_ = eval_examples
lowerCAmelCase_ = post_process_function
def _lowercase ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
'''simple docstring'''
lowerCAmelCase_ = gen_kwargs.copy()
lowerCAmelCase_ = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length
)
lowerCAmelCase_ = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams
)
lowerCAmelCase_ = gen_kwargs
lowerCAmelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCAmelCase_ = self.get_eval_dataloader(lowercase_ )
lowerCAmelCase_ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase_ = self.compute_metrics
lowerCAmelCase_ = None
lowerCAmelCase_ = time.time()
lowerCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase_ = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
lowerCAmelCase_ = compute_metrics
lowerCAmelCase_ = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowerCAmelCase_ = self.post_process_function(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowerCAmelCase_ = metrics.pop(lowercase_ )
metrics.update(output.metrics )
else:
lowerCAmelCase_ = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCAmelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ )
return metrics
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = gen_kwargs.copy()
lowerCAmelCase_ = self.get_test_dataloader(lowercase_ )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase_ = self.compute_metrics
lowerCAmelCase_ = None
lowerCAmelCase_ = time.time()
lowerCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase_ = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
lowerCAmelCase_ = compute_metrics
lowerCAmelCase_ = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCAmelCase_ = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict' )
lowerCAmelCase_ = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowerCAmelCase_ = metrics.pop(lowercase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import requests
from bsa import BeautifulSoup
def lowerCamelCase ( a_ , a_ ) -> str:
lowerCAmelCase_ = BeautifulSoup(requests.get(a_ , params=a_ ).content , 'html.parser' )
lowerCAmelCase_ = soup.find('div' , attrs={'class': 'gs_ri'} )
lowerCAmelCase_ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' )
return anchors[2].get_text()
if __name__ == "__main__":
lowerCamelCase_ = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 3_0,
"""pages""": """3979-3990""",
"""year""": 2_0_1_8,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowerCamelCase_ = """
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
"""
class a_ ( unittest.TestCase , a_ ):
'''simple docstring'''
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = load_tool('text-question-answering' )
self.tool.setup()
lowerCAmelCase_ = load_tool('text-question-answering' , remote=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.tool(lowercase_ , 'What did Hugging Face do in April 2021?' )
self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.remote_tool(lowercase_ , 'What did Hugging Face do in April 2021?' )
self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.tool(text=lowercase_ , question='What did Hugging Face do in April 2021?' )
self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.remote_tool(text=lowercase_ , question='What did Hugging Face do in April 2021?' )
self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' )
| 14 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 1 |
from __future__ import annotations
lowerCamelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0]
lowerCamelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1]
def lowerCamelCase ( a_ ) -> list[float]:
lowerCAmelCase_ = []
lowerCAmelCase_ = len(a_ )
for i in range(a_ ):
lowerCAmelCase_ = -1
for j in range(i + 1 , a_ ):
if arr[i] < arr[j]:
lowerCAmelCase_ = arr[j]
break
result.append(a_ )
return result
def lowerCamelCase ( a_ ) -> list[float]:
lowerCAmelCase_ = []
for i, outer in enumerate(a_ ):
lowerCAmelCase_ = -1
for inner in arr[i + 1 :]:
if outer < inner:
lowerCAmelCase_ = inner
break
result.append(a_ )
return result
def lowerCamelCase ( a_ ) -> list[float]:
lowerCAmelCase_ = len(a_ )
lowerCAmelCase_ = []
lowerCAmelCase_ = [-1] * arr_size
for index in reversed(range(a_ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
lowerCAmelCase_ = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCamelCase_ = (
"""from __main__ import arr, next_greatest_element_slow, """
"""next_greatest_element_fast, next_greatest_element"""
)
print(
"""next_greatest_element_slow():""",
timeit("""next_greatest_element_slow(arr)""", setup=setup),
)
print(
"""next_greatest_element_fast():""",
timeit("""next_greatest_element_fast(arr)""", setup=setup),
)
print(
""" next_greatest_element():""",
timeit("""next_greatest_element(arr)""", setup=setup),
)
| 14 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = """▁"""
lowerCamelCase_ = {"""vocab_file""": """spiece.model"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
lowerCamelCase_ = {
"""google/reformer-crime-and-punishment""": 5_2_4_2_8_8,
}
class a_ ( a_ ):
'''simple docstring'''
__a: List[str] = VOCAB_FILES_NAMES
__a: Tuple = PRETRAINED_VOCAB_FILES_MAP
__a: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Any = ['''input_ids''', '''attention_mask''']
def __init__( self , lowercase_ , lowercase_="</s>" , lowercase_="<unk>" , lowercase_=[] , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
lowerCAmelCase_ = vocab_file
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
return self.sp_model.get_piece_size()
def _lowercase ( self ) -> Dict[str, int]:
'''simple docstring'''
lowerCAmelCase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.__dict__.copy()
lowerCAmelCase_ = None
return state
def __setstate__( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase_ = {}
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Any:
'''simple docstring'''
return self.sp_model.piece_to_id(lowercase_ )
def _lowercase ( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
if index < self.sp_model.get_piece_size():
lowerCAmelCase_ = self.sp_model.IdToPiece(lowercase_ )
return token
def _lowercase ( self , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = []
lowerCAmelCase_ = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowercase_ ) + token
lowerCAmelCase_ = []
else:
current_sub_tokens.append(lowercase_ )
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowercase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , 'wb' ) as fi:
lowerCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 14 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 | 1 |
def lowerCamelCase ( a_ , a_ ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def lowerCamelCase ( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 14 |
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
lowerCAmelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase_ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 1 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Dict = BarthezTokenizer
__a: str = BarthezTokenizerFast
__a: List[Any] = True
__a: Any = True
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowercase_ )
lowerCAmelCase_ = tokenizer
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = '<pad>'
lowerCAmelCase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(lowercase_ ) , 1_0_1_1_2_2 )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
lowerCAmelCase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowerCAmelCase_ = self.tokenizer(
lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' )
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Any:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = self.get_rust_tokenizer()
lowerCAmelCase_ = 'I was born in 92000, and this is falsé.'
lowerCAmelCase_ = tokenizer.tokenize(lowercase_ )
lowerCAmelCase_ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.get_rust_tokenizer()
lowerCAmelCase_ = tokenizer.encode(lowercase_ )
lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
@slow
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = {'input_ids': [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCAmelCase_ = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowercase_ , )
| 14 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 1 |
from sklearn.metrics import fa_score
import datasets
lowerCamelCase_ = """
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
"""
lowerCamelCase_ = """
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{'f1': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results['f1'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results['f1'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")
>>> print(round(results['f1'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'f1': array([0.8, 0. , 0. ])}
"""
lowerCamelCase_ = """
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('int32' ) ),
'references': datasets.Sequence(datasets.Value('int32' ) ),
}
if self.config_name == 'multilabel'
else {
'predictions': datasets.Value('int32' ),
'references': datasets.Value('int32' ),
} ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = fa_score(
lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ )
return {"f1": float(lowercase_ ) if score.size == 1 else score}
| 14 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all MVP models at https://huggingface.co/models?filter=mvp
lowerCamelCase_ = {
"""vocab_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""",
},
"""added_tokens.json""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""",
},
"""merges_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""",
},
}
lowerCamelCase_ = {
"""RUCAIBox/mvp""": 1_0_2_4,
}
class a_ ( a_ ):
'''simple docstring'''
__a: Dict = VOCAB_FILES_NAMES
__a: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: List[str] = ['''input_ids''', '''attention_mask''']
__a: List[str] = MvpTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="replace" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> int:
'''simple docstring'''
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , )
lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space:
lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) )
lowerCAmelCase_ = add_prefix_space
lowerCAmelCase_ = pre_tok_class(**lowercase_ )
lowerCAmelCase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowerCAmelCase_ = 'post_processor'
lowerCAmelCase_ = getattr(self.backend_tokenizer , lowercase_ , lowercase_ )
if tokenizer_component_instance:
lowerCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase_ = tuple(state['sep'] )
if "cls" in state:
lowerCAmelCase_ = tuple(state['cls'] )
lowerCAmelCase_ = False
if state.get('add_prefix_space' , lowercase_ ) != add_prefix_space:
lowerCAmelCase_ = add_prefix_space
lowerCAmelCase_ = True
if state.get('trim_offsets' , lowercase_ ) != trim_offsets:
lowerCAmelCase_ = trim_offsets
lowerCAmelCase_ = True
if changes_to_apply:
lowerCAmelCase_ = getattr(lowercase_ , state.pop('type' ) )
lowerCAmelCase_ = component_class(**lowercase_ )
setattr(self.backend_tokenizer , lowercase_ , lowercase_ )
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowercase ( self , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value
lowerCAmelCase_ = value
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding:
'''simple docstring'''
lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_ , **lowercase_ )
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding:
'''simple docstring'''
lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_=None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 14 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 1 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( a_ ):
'''simple docstring'''
__a: Tuple = ['''image_processor''', '''tokenizer''']
__a: Union[str, Any] = '''AutoImageProcessor'''
__a: str = '''AutoTokenizer'''
def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowercase_ , )
lowerCAmelCase_ = kwargs.pop('feature_extractor' )
lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.image_processor
lowerCAmelCase_ = False
def __call__( self , *lowercase_ , **lowercase_ ) -> List[Any]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowercase_ , **lowercase_ )
lowerCAmelCase_ = kwargs.pop('images' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('text' , lowercase_ )
if len(lowercase_ ) > 0:
lowerCAmelCase_ = args[0]
lowerCAmelCase_ = args[1:]
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
lowerCAmelCase_ = self.image_processor(lowercase_ , *lowercase_ , **lowercase_ )
if text is not None:
lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase_ = encodings['input_ids']
return inputs
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]:
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@contextmanager
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your images inputs, or in a separate call.' )
lowerCAmelCase_ = True
lowerCAmelCase_ = self.tokenizer
yield
lowerCAmelCase_ = self.image_processor
lowerCAmelCase_ = False
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=None ) -> List[str]:
'''simple docstring'''
if added_vocab is None:
lowerCAmelCase_ = self.tokenizer.get_added_vocab()
lowerCAmelCase_ = {}
while tokens:
lowerCAmelCase_ = re.search(R'<s_(.*?)>' , lowercase_ , re.IGNORECASE )
if start_token is None:
break
lowerCAmelCase_ = start_token.group(1 )
lowerCAmelCase_ = re.search(Rf'''</s_{key}>''' , lowercase_ , re.IGNORECASE )
lowerCAmelCase_ = start_token.group()
if end_token is None:
lowerCAmelCase_ = tokens.replace(lowercase_ , '' )
else:
lowerCAmelCase_ = end_token.group()
lowerCAmelCase_ = re.escape(lowercase_ )
lowerCAmelCase_ = re.escape(lowercase_ )
lowerCAmelCase_ = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , lowercase_ , re.IGNORECASE )
if content is not None:
lowerCAmelCase_ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
lowerCAmelCase_ = self.tokenajson(lowercase_ , is_inner_value=lowercase_ , added_vocab=lowercase_ )
if value:
if len(lowercase_ ) == 1:
lowerCAmelCase_ = value[0]
lowerCAmelCase_ = value
else: # leaf nodes
lowerCAmelCase_ = []
for leaf in content.split(R'<sep/>' ):
lowerCAmelCase_ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
lowerCAmelCase_ = leaf[1:-2] # for categorical special tokens
output[key].append(lowercase_ )
if len(output[key] ) == 1:
lowerCAmelCase_ = output[key][0]
lowerCAmelCase_ = tokens[tokens.find(lowercase_ ) + len(lowercase_ ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase_ , added_vocab=lowercase_ )
if len(lowercase_ ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , )
return self.image_processor_class
@property
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , )
return self.image_processor
| 14 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 1 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
}
lowerCamelCase_ = {
"""vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""},
"""merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""},
}
lowerCamelCase_ = {
"""ctrl""": 2_5_6,
}
lowerCamelCase_ = {
"""Pregnancy""": 1_6_8_6_2_9,
"""Christianity""": 7_6_7_5,
"""Explain""": 1_0_6_4_2_3,
"""Fitness""": 6_3_4_4_0,
"""Saving""": 6_3_1_6_3,
"""Ask""": 2_7_1_7_1,
"""Ass""": 9_5_9_8_5,
"""Joke""": 1_6_3_5_0_9,
"""Questions""": 4_5_6_2_2,
"""Thoughts""": 4_9_6_0_5,
"""Retail""": 5_2_3_4_2,
"""Feminism""": 1_6_4_3_3_8,
"""Writing""": 1_1_9_9_2,
"""Atheism""": 1_9_2_2_6_3,
"""Netflix""": 4_8_6_1_6,
"""Computing""": 3_9_6_3_9,
"""Opinion""": 4_3_2_1_3,
"""Alone""": 4_4_9_6_7,
"""Funny""": 5_8_9_1_7,
"""Gaming""": 4_0_3_5_8,
"""Human""": 4_0_8_8,
"""India""": 1_3_3_1,
"""Joker""": 7_7_1_3_8,
"""Diet""": 3_6_2_0_6,
"""Legal""": 1_1_8_5_9,
"""Norman""": 4_9_3_9,
"""Tip""": 7_2_6_8_9,
"""Weight""": 5_2_3_4_3,
"""Movies""": 4_6_2_7_3,
"""Running""": 2_3_4_2_5,
"""Science""": 2_0_9_0,
"""Horror""": 3_7_7_9_3,
"""Confession""": 6_0_5_7_2,
"""Finance""": 1_2_2_5_0,
"""Politics""": 1_6_3_6_0,
"""Scary""": 1_9_1_9_8_5,
"""Support""": 1_2_6_5_4,
"""Technologies""": 3_2_5_1_6,
"""Teenage""": 6_6_1_6_0,
"""Event""": 3_2_7_6_9,
"""Learned""": 6_7_4_6_0,
"""Notion""": 1_8_2_7_7_0,
"""Wikipedia""": 3_7_5_8_3,
"""Books""": 6_6_6_5,
"""Extract""": 7_6_0_5_0,
"""Confessions""": 1_0_2_7_0_1,
"""Conspiracy""": 7_5_9_3_2,
"""Links""": 6_3_6_7_4,
"""Narcissus""": 1_5_0_4_2_5,
"""Relationship""": 5_4_7_6_6,
"""Relationships""": 1_3_4_7_9_6,
"""Reviews""": 4_1_6_7_1,
"""News""": 4_2_5_6,
"""Translation""": 2_6_8_2_0,
"""multilingual""": 1_2_8_4_0_6,
}
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = set()
lowerCAmelCase_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCAmelCase_ = char
lowerCAmelCase_ = set(a_ )
return pairs
class a_ ( a_ ):
'''simple docstring'''
__a: Dict = VOCAB_FILES_NAMES
__a: int = PRETRAINED_VOCAB_FILES_MAP
__a: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Tuple = CONTROL_CODES
def __init__( self , lowercase_ , lowercase_ , lowercase_="<unk>" , **lowercase_ ) -> int:
'''simple docstring'''
super().__init__(unk_token=lowercase_ , **lowercase_ )
with open(lowercase_ , encoding='utf-8' ) as vocab_handle:
lowerCAmelCase_ = json.load(lowercase_ )
lowerCAmelCase_ = {v: k for k, v in self.encoder.items()}
with open(lowercase_ , encoding='utf-8' ) as merges_handle:
lowerCAmelCase_ = merges_handle.read().split('\n' )[1:-1]
lowerCAmelCase_ = [tuple(merge.split() ) for merge in merges]
lowerCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowerCAmelCase_ = {}
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
return len(self.encoder )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCAmelCase_ = tuple(lowercase_ )
lowerCAmelCase_ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
lowerCAmelCase_ = get_pairs(lowercase_ )
if not pairs:
return token
while True:
lowerCAmelCase_ = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase_ , lowerCAmelCase_ = bigram
lowerCAmelCase_ = []
lowerCAmelCase_ = 0
while i < len(lowercase_ ):
try:
lowerCAmelCase_ = word.index(lowercase_ , lowercase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase_ = j
if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase_ = tuple(lowercase_ )
lowerCAmelCase_ = new_word
if len(lowercase_ ) == 1:
break
else:
lowerCAmelCase_ = get_pairs(lowercase_ )
lowerCAmelCase_ = '@@ '.join(lowercase_ )
lowerCAmelCase_ = word[:-4]
lowerCAmelCase_ = word
return word
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = []
lowerCAmelCase_ = re.findall(R'\S+\n?' , lowercase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) )
return split_tokens
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) )
def _lowercase ( self , lowercase_ ) -> str:
'''simple docstring'''
return self.decoder.get(lowercase_ , self.unk_token )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = ' '.join(lowercase_ ).replace('@@ ' , '' ).strip()
return out_string
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowercase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase_ = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowercase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' )
lowerCAmelCase_ = 0
with open(lowercase_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
lowerCAmelCase_ = token_index
writer.write(' '.join(lowercase_ ) + '\n' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 14 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 1 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = checkpoint
lowerCAmelCase_ = {}
lowerCAmelCase_ = vae_state_dict['encoder.conv_in.weight']
lowerCAmelCase_ = vae_state_dict['encoder.conv_in.bias']
lowerCAmelCase_ = vae_state_dict['encoder.conv_out.weight']
lowerCAmelCase_ = vae_state_dict['encoder.conv_out.bias']
lowerCAmelCase_ = vae_state_dict['encoder.norm_out.weight']
lowerCAmelCase_ = vae_state_dict['encoder.norm_out.bias']
lowerCAmelCase_ = vae_state_dict['decoder.conv_in.weight']
lowerCAmelCase_ = vae_state_dict['decoder.conv_in.bias']
lowerCAmelCase_ = vae_state_dict['decoder.conv_out.weight']
lowerCAmelCase_ = vae_state_dict['decoder.conv_out.bias']
lowerCAmelCase_ = vae_state_dict['decoder.norm_out.weight']
lowerCAmelCase_ = vae_state_dict['decoder.norm_out.bias']
lowerCAmelCase_ = vae_state_dict['quant_conv.weight']
lowerCAmelCase_ = vae_state_dict['quant_conv.bias']
lowerCAmelCase_ = vae_state_dict['post_quant_conv.weight']
lowerCAmelCase_ = vae_state_dict['post_quant_conv.bias']
# Retrieves the keys for the encoder down blocks only
lowerCAmelCase_ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} )
lowerCAmelCase_ = {
layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(a_ )
}
# Retrieves the keys for the decoder up blocks only
lowerCAmelCase_ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} )
lowerCAmelCase_ = {
layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(a_ )
}
for i in range(a_ ):
lowerCAmelCase_ = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key]
if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict:
lowerCAmelCase_ = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.weight''' )
lowerCAmelCase_ = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.bias''' )
lowerCAmelCase_ = renew_vae_resnet_paths(a_ )
lowerCAmelCase_ = {'old': F'''down.{i}.block''', 'new': F'''down_blocks.{i}.resnets'''}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
lowerCAmelCase_ = [key for key in vae_state_dict if 'encoder.mid.block' in key]
lowerCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowerCAmelCase_ = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key]
lowerCAmelCase_ = renew_vae_resnet_paths(a_ )
lowerCAmelCase_ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
lowerCAmelCase_ = [key for key in vae_state_dict if 'encoder.mid.attn' in key]
lowerCAmelCase_ = renew_vae_attention_paths(a_ )
lowerCAmelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
conv_attn_to_linear(a_ )
for i in range(a_ ):
lowerCAmelCase_ = num_up_blocks - 1 - i
lowerCAmelCase_ = [
key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key
]
if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict:
lowerCAmelCase_ = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.weight'''
]
lowerCAmelCase_ = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.bias'''
]
lowerCAmelCase_ = renew_vae_resnet_paths(a_ )
lowerCAmelCase_ = {'old': F'''up.{block_id}.block''', 'new': F'''up_blocks.{i}.resnets'''}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
lowerCAmelCase_ = [key for key in vae_state_dict if 'decoder.mid.block' in key]
lowerCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowerCAmelCase_ = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key]
lowerCAmelCase_ = renew_vae_resnet_paths(a_ )
lowerCAmelCase_ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
lowerCAmelCase_ = [key for key in vae_state_dict if 'decoder.mid.attn' in key]
lowerCAmelCase_ = renew_vae_attention_paths(a_ )
lowerCAmelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ )
conv_attn_to_linear(a_ )
return new_checkpoint
def lowerCamelCase ( a_ , a_ , ) -> List[Any]:
# Only support V1
lowerCAmelCase_ = requests.get(
' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' )
lowerCAmelCase_ = io.BytesIO(r.content )
lowerCAmelCase_ = OmegaConf.load(a_ )
lowerCAmelCase_ = 512
lowerCAmelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu'
if checkpoint_path.endswith('safetensors' ):
from safetensors import safe_open
lowerCAmelCase_ = {}
with safe_open(a_ , framework='pt' , device='cpu' ) as f:
for key in f.keys():
lowerCAmelCase_ = f.get_tensor(a_ )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=a_ )['state_dict']
# Convert the VAE model.
lowerCAmelCase_ = create_vae_diffusers_config(a_ , image_size=a_ )
lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(a_ , a_ )
lowerCAmelCase_ = AutoencoderKL(**a_ )
vae.load_state_dict(a_ )
vae.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
lowerCamelCase_ = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 14 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
def lowerCamelCase ( a_ , a_ ) -> str:
if not (isinstance(a_ , a_ ) and isinstance(a_ , a_ )):
raise ValueError('longest_common_substring() takes two strings for inputs' )
lowerCAmelCase_ = len(a_ )
lowerCAmelCase_ = len(a_ )
lowerCAmelCase_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
lowerCAmelCase_ = 0
lowerCAmelCase_ = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
lowerCAmelCase_ = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
lowerCAmelCase_ = i
lowerCAmelCase_ = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False , a_=False , a_=False ) -> List[str]:
lowerCAmelCase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
for i in range(config.num_hidden_layers ):
lowerCAmelCase_ = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ = in_proj_bias[-config.hidden_size :]
def lowerCamelCase ( a_ ) -> Dict:
lowerCAmelCase_ = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(a_ , a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Any:
lowerCAmelCase_ = dct.pop(a_ )
lowerCAmelCase_ = val
@torch.no_grad()
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=a_ )
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
if "vqa" in checkpoint_url:
lowerCAmelCase_ = True
lowerCAmelCase_ = 3_129
lowerCAmelCase_ = 'huggingface/label-files'
lowerCAmelCase_ = 'vqa2-id2label.json'
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ = ViltForQuestionAnswering(a_ )
elif "nlvr" in checkpoint_url:
lowerCAmelCase_ = True
lowerCAmelCase_ = 2
lowerCAmelCase_ = {0: 'False', 1: 'True'}
lowerCAmelCase_ = {v: k for k, v in config.idalabel.items()}
lowerCAmelCase_ = 3
lowerCAmelCase_ = ViltForImagesAndTextClassification(a_ )
elif "irtr" in checkpoint_url:
lowerCAmelCase_ = True
lowerCAmelCase_ = ViltForImageAndTextRetrieval(a_ )
elif "mlm_itm" in checkpoint_url:
lowerCAmelCase_ = True
lowerCAmelCase_ = ViltForMaskedLM(a_ )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ , map_location='cpu' )['state_dict']
lowerCAmelCase_ = create_rename_keys(a_ , a_ , a_ , a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
read_in_q_k_v(a_ , a_ )
if mlm_model or irtr_model:
lowerCAmelCase_ = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(a_ , a_ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(a_ )
# Define processor
lowerCAmelCase_ = ViltImageProcessor(size=384 )
lowerCAmelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
lowerCAmelCase_ = ViltProcessor(a_ , a_ )
# Forward pass on example inputs (image + text)
if nlvr_model:
lowerCAmelCase_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a_ ).raw )
lowerCAmelCase_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a_ ).raw )
lowerCAmelCase_ = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' )
lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' )
lowerCAmelCase_ = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
lowerCAmelCase_ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a_ ).raw )
if mlm_model:
lowerCAmelCase_ = 'a bunch of [MASK] laying on a [MASK].'
else:
lowerCAmelCase_ = 'How many cats are there?'
lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' )
lowerCAmelCase_ = model(**a_ )
# Verify outputs
if mlm_model:
lowerCAmelCase_ = torch.Size([1, 11, 30_522] )
lowerCAmelCase_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 )
# verify masked token prediction equals "cats"
lowerCAmelCase_ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
lowerCAmelCase_ = torch.Size([1, 3_129] )
lowerCAmelCase_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] )
assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 )
# verify vqa prediction equals "2"
lowerCAmelCase_ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
lowerCAmelCase_ = torch.Size([1, 2] )
lowerCAmelCase_ = torch.tensor([-2.8_721, 2.1_291] )
assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(a_ ).mkdir(exist_ok=a_ )
print(F'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase_ = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Any = StableDiffusionControlNetImgaImgPipeline
__a: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
__a: List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a: int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} )
__a: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _lowercase ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
torch.manual_seed(0 )
lowerCAmelCase_ = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
torch.manual_seed(0 )
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = 2
lowerCAmelCase_ = randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , )
lowerCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def _lowercase ( self ) -> int:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Union[str, Any] = StableDiffusionControlNetImgaImgPipeline
__a: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
__a: Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a: Optional[int] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
torch.manual_seed(0 )
def init_weights(lowercase_ ):
if isinstance(lowercase_ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
lowerCAmelCase_ = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
controlneta.controlnet_down_blocks.apply(lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = ControlNetModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , )
controlneta.controlnet_down_blocks.apply(lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = MultiControlNetModel([controlneta, controlneta] )
lowerCAmelCase_ = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Dict:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = 2
lowerCAmelCase_ = [
randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ),
randn_tensor(
(1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ),
]
lowerCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
lowerCAmelCase_ = 10.0
lowerCAmelCase_ = 4
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = steps
lowerCAmelCase_ = scale
lowerCAmelCase_ = pipe(**lowercase_ )[0]
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = steps
lowerCAmelCase_ = scale
lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = steps
lowerCAmelCase_ = scale
lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = steps
lowerCAmelCase_ = scale
lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
def _lowercase ( self ) -> str:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(lowercase_ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' )
lowerCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , safety_checker=lowercase_ , controlnet=lowercase_ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase_ = 'evil space-punk bird'
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) )
lowerCAmelCase_ = load_image(
'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) )
lowerCAmelCase_ = pipe(
lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type='np' , num_inference_steps=5_0 , strength=0.6 , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' )
assert np.abs(expected_image - image ).max() < 9e-2
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
lowerCamelCase_ = {
"""return_dict""": False,
"""output_hidden_states""": True,
"""output_attentions""": True,
"""torchscript""": True,
"""torch_dtype""": """float16""",
"""use_bfloat16""": True,
"""tf_legacy_loss""": True,
"""pruned_heads""": {"""a""": 1},
"""tie_word_embeddings""": False,
"""is_decoder""": True,
"""cross_attention_hidden_size""": 1_2_8,
"""add_cross_attention""": True,
"""tie_encoder_decoder""": True,
"""max_length""": 5_0,
"""min_length""": 3,
"""do_sample""": True,
"""early_stopping""": True,
"""num_beams""": 3,
"""num_beam_groups""": 3,
"""diversity_penalty""": 0.5,
"""temperature""": 2.0,
"""top_k""": 1_0,
"""top_p""": 0.7,
"""typical_p""": 0.2,
"""repetition_penalty""": 0.8,
"""length_penalty""": 0.8,
"""no_repeat_ngram_size""": 5,
"""encoder_no_repeat_ngram_size""": 5,
"""bad_words_ids""": [1, 2, 3],
"""num_return_sequences""": 3,
"""chunk_size_feed_forward""": 5,
"""output_scores""": True,
"""return_dict_in_generate""": True,
"""forced_bos_token_id""": 2,
"""forced_eos_token_id""": 3,
"""remove_invalid_values""": True,
"""architectures""": ["""BertModel"""],
"""finetuning_task""": """translation""",
"""id2label""": {0: """label"""},
"""label2id""": {"""label""": """0"""},
"""tokenizer_class""": """BertTokenizerFast""",
"""prefix""": """prefix""",
"""bos_token_id""": 6,
"""pad_token_id""": 7,
"""eos_token_id""": 8,
"""sep_token_id""": 9,
"""decoder_start_token_id""": 1_0,
"""exponential_decay_length_penalty""": (5, 1.01),
"""suppress_tokens""": [0, 1],
"""begin_suppress_tokens""": 2,
"""task_specific_params""": {"""translation""": """some_params"""},
"""problem_type""": """regression""",
}
@is_staging_test
class a_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _lowercase ( cls ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def _lowercase ( cls ) -> Optional[int]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='test-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-config-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-config' )
except HTTPError:
pass
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 )
config.push_to_hub('test-config' , use_auth_token=self._token )
lowerCAmelCase_ = BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , repo_id='test-config' , push_to_hub=lowercase_ , use_auth_token=self._token )
lowerCAmelCase_ = BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 )
config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token )
lowerCAmelCase_ = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id='valid_org/test-config-org' , push_to_hub=lowercase_ , use_auth_token=self._token )
lowerCAmelCase_ = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
CustomConfig.register_for_auto_class()
lowerCAmelCase_ = CustomConfig(attribute=4_2 )
config.push_to_hub('test-dynamic-config' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} )
lowerCAmelCase_ = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' )
self.assertEqual(new_config.attribute , 4_2 )
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
lowerCAmelCase_ = c.n_embd + 1 # int
lowerCAmelCase_ = c.resid_pdrop + 1.0 # float
lowerCAmelCase_ = not c.scale_attn_weights # bool
lowerCAmelCase_ = c.summary_type + 'foo' # str
c.update_from_string(
f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(lowercase_ , c.n_embd , 'mismatch for key: n_embd' )
self.assertEqual(lowercase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop' )
self.assertEqual(lowercase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' )
self.assertEqual(lowercase_ , c.summary_type , 'mismatch for key: summary_type' )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = PretrainedConfig()
lowerCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
lowercase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] )
lowerCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase_ , lowercase_ )]
if len(lowercase_ ) > 0:
raise ValueError(
'The following keys are set with the default values in'
' `test_configuration_common.config_common_kwargs` pick another value for them:'
f''' {", ".join(lowercase_ )}.''' )
def _lowercase ( self ) -> int:
'''simple docstring'''
with self.assertRaises(lowercase_ ):
# config is in subfolder, the following should not work without specifying the subfolder
lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' )
lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' )
self.assertIsNotNone(lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = mock.Mock()
lowerCAmelCase_ = 5_0_0
lowerCAmelCase_ = {}
lowerCAmelCase_ = HTTPError
lowerCAmelCase_ = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request' , return_value=lowercase_ ) as mock_head:
lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = BertConfig.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = AutoConfig.from_pretrained('bert-base-cased' )
lowerCAmelCase_ = ['config.4.0.0.json']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(lowercase_ )
lowerCAmelCase_ = 2
json.dump(configuration.to_dict() , open(os.path.join(lowercase_ , 'config.4.0.0.json' ) , 'w' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
lowerCAmelCase_ = ['config.42.0.0.json']
lowerCAmelCase_ = 7_6_8
configuration.save_pretrained(lowercase_ )
shutil.move(os.path.join(lowercase_ , 'config.4.0.0.json' ) , os.path.join(lowercase_ , 'config.42.0.0.json' ) )
lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(new_configuration.hidden_size , 7_6_8 )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = 'hf-internal-testing/test-two-configs'
import transformers as new_transformers
lowerCAmelCase_ = 'v4.0.0'
lowerCAmelCase_ , lowerCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained(
lowercase_ , return_unused_kwargs=lowercase_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(lowercase_ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
lowerCAmelCase_ = 'v3.0.0'
lowerCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(old_configuration.hidden_size , 7_6_8 )
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ = "▁" , lowercase_ = True , lowercase_ = "<unk>" , lowercase_ = "</s>" , lowercase_ = "<pad>" , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
lowerCAmelCase_ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCAmelCase_ = token_dict['token']
lowerCAmelCase_ = Tokenizer(Unigram() )
lowerCAmelCase_ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
lowerCAmelCase_ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ),
pre_tokenizers.Digits(individual_digits=lowercase_ ),
pre_tokenizers.Punctuation(),
] )
lowerCAmelCase_ = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ )
lowerCAmelCase_ = TemplateProcessing(
single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
lowerCAmelCase_ = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(lowercase_ , lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = 8_0_0_0 , lowercase_ = True , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = trainers.UnigramTrainer(
vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , )
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = [files]
self._tokenizer.train(lowercase_ , trainer=lowercase_ )
self.add_unk_id()
def _lowercase ( self , lowercase_ , lowercase_ = 8_0_0_0 , lowercase_ = True , ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = trainers.UnigramTrainer(
vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , )
self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ )
self.add_unk_id()
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = json.loads(self._tokenizer.to_str() )
lowerCAmelCase_ = self.special_tokens['unk']['id']
lowerCAmelCase_ = Tokenizer.from_str(json.dumps(lowercase_ ) )
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import os
import re
lowerCamelCase_ = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCamelCase_ = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCamelCase_ = re.compile(r"""\[([^\]]+)\]""")
def lowerCamelCase ( a_ ) -> Dict:
lowerCAmelCase_ = _re_indent.search(a_ )
return "" if search is None else search.groups()[0]
def lowerCamelCase ( a_ , a_="" , a_=None , a_=None ) -> int:
lowerCAmelCase_ = 0
lowerCAmelCase_ = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(a_ ):
index += 1
lowerCAmelCase_ = ['\n'.join(lines[:index] )]
else:
lowerCAmelCase_ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowerCAmelCase_ = [lines[index]]
index += 1
while index < len(a_ ) and (end_prompt is None or not lines[index].startswith(a_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(a_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(a_ ) )
if index < len(a_ ) - 1:
lowerCAmelCase_ = [lines[index + 1]]
index += 1
else:
lowerCAmelCase_ = []
else:
blocks.append('\n'.join(a_ ) )
lowerCAmelCase_ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(a_ ) > 0:
blocks.append('\n'.join(a_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(a_ ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowerCamelCase ( a_ ) -> Tuple:
def _inner(a_ ):
return key(a_ ).lower().replace('_' , '' )
return _inner
def lowerCamelCase ( a_ , a_=None ) -> List[str]:
# If no key is provided, we use a noop.
def noop(a_ ):
return x
if key is None:
lowerCAmelCase_ = noop
# Constants are all uppercase, they go first.
lowerCAmelCase_ = [obj for obj in objects if key(a_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowerCAmelCase_ = [obj for obj in objects if key(a_ )[0].isupper() and not key(a_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowerCAmelCase_ = [obj for obj in objects if not key(a_ )[0].isupper()]
lowerCAmelCase_ = ignore_underscore(a_ )
return sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) + sorted(a_ , key=a_ )
def lowerCamelCase ( a_ ) -> int:
# This inner function sort imports between [ ].
def _replace(a_ ):
lowerCAmelCase_ = match.groups()[0]
if "," not in imports:
return F'''[{imports}]'''
lowerCAmelCase_ = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase_ = keys[:-1]
return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(a_ )] ) + "]"
lowerCAmelCase_ = import_statement.split('\n' )
if len(a_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowerCAmelCase_ = 2 if lines[1].strip() == '[' else 1
lowerCAmelCase_ = [(i, _re_strip_line.search(a_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowerCAmelCase_ = sort_objects(a_ , key=lambda a_ : x[1] )
lowerCAmelCase_ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(a_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowerCAmelCase_ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowerCAmelCase_ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase_ = keys[:-1]
lowerCAmelCase_ = get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(a_ )] )
return "\n".join(a_ )
else:
# Finally we have to deal with imports fitting on one line
lowerCAmelCase_ = _re_bracket_content.sub(_replace , a_ )
return import_statement
def lowerCamelCase ( a_ , a_=True ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowerCAmelCase_ = split_code_in_indented_blocks(
a_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(a_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowerCAmelCase_ = main_blocks[block_idx]
lowerCAmelCase_ = block.split('\n' )
# Get to the start of the imports.
lowerCAmelCase_ = 0
while line_idx < len(a_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowerCAmelCase_ = len(a_ )
else:
line_idx += 1
if line_idx >= len(a_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowerCAmelCase_ = '\n'.join(block_lines[line_idx:-1] )
lowerCAmelCase_ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowerCAmelCase_ = split_code_in_indented_blocks(a_ , indent_level=a_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowerCAmelCase_ = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowerCAmelCase_ = [(pattern.search(a_ ).groups()[0] if pattern.search(a_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowerCAmelCase_ = [(i, key) for i, key in enumerate(a_ ) if key is not None]
lowerCAmelCase_ = [x[0] for x in sorted(a_ , key=lambda a_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowerCAmelCase_ = 0
lowerCAmelCase_ = []
for i in range(len(a_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
lowerCAmelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(a_ )
count += 1
# And we put our main block back together with its first and last line.
lowerCAmelCase_ = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(a_ ):
if check_only:
return True
else:
print(F'''Overwriting {file}.''' )
with open(a_ , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(a_ ) )
def lowerCamelCase ( a_=True ) -> Dict:
lowerCAmelCase_ = []
for root, _, files in os.walk(a_ ):
if "__init__.py" in files:
lowerCAmelCase_ = sort_imports(os.path.join(a_ , '__init__.py' ) , check_only=a_ )
if result:
lowerCAmelCase_ = [os.path.join(a_ , '__init__.py' )]
if len(a_ ) > 0:
raise ValueError(F'''Would overwrite {len(a_ )} files, run `make style`.''' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCamelCase_ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""")
@require_sentencepiece
@require_tokenizers
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[Any] = SpeechTaTokenizer
__a: Union[str, Any] = False
__a: Any = True
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ = SpeechTaTokenizer(lowercase_ )
lowerCAmelCase_ = AddedToken('<mask>' , lstrip=lowercase_ , rstrip=lowercase_ )
lowerCAmelCase_ = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self , lowercase_ ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = 'this is a test'
lowerCAmelCase_ = 'this is a test'
return input_text, output_text
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=2_0 , lowercase_=5 ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.get_input_output_texts(lowercase_ )
lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ )
return text, ids
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = '<pad>'
lowerCAmelCase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(lowercase_ ) , 8_1 )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 7_9 )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.get_tokenizers(do_lower_case=lowercase_ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
lowerCAmelCase_ = tokenizer.vocab_size
lowerCAmelCase_ = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
lowerCAmelCase_ = ['aaaaa bbbbbb', 'cccccccccdddddddd']
lowerCAmelCase_ = tokenizer.add_tokens(lowercase_ )
lowerCAmelCase_ = tokenizer.vocab_size
lowerCAmelCase_ = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , len(lowercase_ ) )
self.assertEqual(lowercase_ , all_size + len(lowercase_ ) )
lowerCAmelCase_ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ )
self.assertGreaterEqual(len(lowercase_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
lowerCAmelCase_ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
lowerCAmelCase_ = tokenizer.add_special_tokens(lowercase_ )
lowerCAmelCase_ = tokenizer.vocab_size
lowerCAmelCase_ = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , len(lowercase_ ) )
self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) )
lowerCAmelCase_ = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ )
self.assertGreaterEqual(len(lowercase_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
pass
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
pass
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(lowercase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , )
lowerCAmelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ )
# fmt: off
self.assertListEqual(lowercase_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] )
# fmt: on
lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
lowerCAmelCase_ = {
'input_ids': [
[4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2],
[4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowercase_ , )
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a_ , )
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = RobertaConfig
__a: Any = '''roberta'''
def __init__( self , lowercase_ ) -> Tuple:
'''simple docstring'''
super().__init__(lowercase_ )
lowerCAmelCase_ = RobertaEmbeddings(lowercase_ )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , a_ , )
class a_ ( a_ ):
'''simple docstring'''
__a: Optional[int] = RobertaConfig
__a: Union[str, Any] = '''roberta'''
def __init__( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(lowercase_ )
lowerCAmelCase_ = config.num_labels
lowerCAmelCase_ = config.num_hidden_layers
lowerCAmelCase_ = DeeRobertaModel(lowercase_ )
lowerCAmelCase_ = nn.Dropout(config.hidden_dropout_prob )
lowerCAmelCase_ = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=-1 , lowercase_=False , ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.num_layers
try:
lowerCAmelCase_ = self.roberta(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , )
lowerCAmelCase_ = outputs[1]
lowerCAmelCase_ = self.dropout(lowercase_ )
lowerCAmelCase_ = self.classifier(lowercase_ )
lowerCAmelCase_ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowerCAmelCase_ = e.message
lowerCAmelCase_ = e.exit_layer
lowerCAmelCase_ = outputs[0]
if not self.training:
lowerCAmelCase_ = entropy(lowercase_ )
lowerCAmelCase_ = []
lowerCAmelCase_ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase_ = MSELoss()
lowerCAmelCase_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase_ = CrossEntropyLoss()
lowerCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
lowerCAmelCase_ = []
for highway_exit in outputs[-1]:
lowerCAmelCase_ = highway_exit[0]
if not self.training:
highway_logits_all.append(lowercase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
lowerCAmelCase_ = MSELoss()
lowerCAmelCase_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
lowerCAmelCase_ = CrossEntropyLoss()
lowerCAmelCase_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(lowercase_ )
if train_highway:
lowerCAmelCase_ = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
lowerCAmelCase_ = (loss,) + outputs
if not self.training:
lowerCAmelCase_ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowerCAmelCase_ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(4_2)
lowerCamelCase_ = """bert-base-cased"""
lowerCamelCase_ = """fp16"""
lowerCamelCase_ = """bf16"""
lowerCamelCase_ = [FPaa, BFaa]
@require_fsdp
@require_cuda
class a_ ( a_ ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = dict(
ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , )
def _lowercase ( self ) -> str:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(lowercase_ ):
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = f'''{i + 1}'''
lowerCAmelCase_ = strategy
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(lowercase_ ):
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = prefetch_policy
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _lowercase ( self ) -> int:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(lowercase_ ):
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = state_dict_type
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = AutoModel.from_pretrained(lowercase_ )
for policy in FSDP_AUTO_WRAP_POLICY:
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = policy
if policy == "TRANSFORMER_BASED_WRAP":
lowerCAmelCase_ = 'BertLayer'
elif policy == "SIZE_BASED_WRAP":
lowerCAmelCase_ = '2000'
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(lowercase_ )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = 'TRANSFORMER_BASED_WRAP'
lowerCAmelCase_ = 'T5Layer'
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
with self.assertRaises(lowercase_ ) as cm:
fsdp_plugin.set_auto_wrap_policy(lowercase_ )
self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) )
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = 'SIZE_BASED_WRAP'
lowerCAmelCase_ = '0'
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(lowercase_ )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _lowercase ( self ) -> int:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = mp_dtype
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = Accelerator()
if mp_dtype == "fp16":
lowerCAmelCase_ = torch.floataa
elif mp_dtype == "bf16":
lowerCAmelCase_ = torch.bfloataa
lowerCAmelCase_ = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
lowerCAmelCase_ = self.dist_env.copy()
lowerCAmelCase_ = str(lowercase_ ).lower()
with mockenv_context(**lowercase_ ):
lowerCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) )
@require_fsdp
@require_multi_gpu
@slow
class a_ ( a_ ):
'''simple docstring'''
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 0.82
lowerCAmelCase_ = [
'fsdp_shard_grad_op_transformer_based_wrap',
'fsdp_full_shard_transformer_based_wrap',
]
lowerCAmelCase_ = {
'multi_gpu_fp16': 3_2_0_0,
'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2_0_0_0,
'fsdp_full_shard_transformer_based_wrap_fp16': 1_9_0_0,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
lowerCAmelCase_ = 1_6_0
lowerCAmelCase_ = 1_6_0
lowerCAmelCase_ = inspect.getfile(accelerate.test_utils )
lowerCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_performance.py' )
lowerCAmelCase_ = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp']
for config in self.performance_configs:
lowerCAmelCase_ = cmd.copy()
for i, strategy in enumerate(lowercase_ ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append('--mixed_precision=no' )
else:
cmd_config.append('--mixed_precision=fp16' )
if "cpu_offload" in config:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase_ , env=os.environ.copy() )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' )
lowerCAmelCase_ = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
'--use_fsdp',
'--mixed_precision=fp16',
'--fsdp_transformer_layer_cls_to_wrap=BertLayer',
]
for i, strategy in enumerate(lowercase_ ):
lowerCAmelCase_ = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
lowerCAmelCase_ = len(lowercase_ )
for state_dict_type in FSDP_STATE_DICT_TYPE:
lowerCAmelCase_ = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
'--partial_train_epoch=1',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase_ , env=os.environ.copy() )
lowerCAmelCase_ = cmd_config[:-1]
lowerCAmelCase_ = os.path.join(self.tmpdir , 'epoch_0' )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase_ , env=os.environ.copy() )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' )
lowerCAmelCase_ = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
lowerCAmelCase_ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['--mixed_precision=fp16'] )
else:
cmd_config.extend(['--mixed_precision=no'] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['--use_fsdp'] )
for i, strategy in enumerate(lowercase_ ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase_ , env=os.environ.copy() )
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
lowerCamelCase_ = {
"""169M""": 1_2,
"""430M""": 2_4,
"""1B5""": 2_4,
"""3B""": 3_2,
"""7B""": 3_2,
"""14B""": 4_0,
}
lowerCamelCase_ = {
"""169M""": 7_6_8,
"""430M""": 1_0_2_4,
"""1B5""": 2_0_4_8,
"""3B""": 2_5_6_0,
"""7B""": 4_0_9_6,
"""14B""": 5_1_2_0,
}
def lowerCamelCase ( a_ ) -> Optional[int]:
lowerCAmelCase_ = list(state_dict.keys() )
for name in state_dict_keys:
lowerCAmelCase_ = state_dict.pop(a_ )
# emb -> embedding
if name.startswith('emb.' ):
lowerCAmelCase_ = name.replace('emb.' , 'embeddings.' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0' ):
lowerCAmelCase_ = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' )
# att -> attention
lowerCAmelCase_ = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a_ )
# ffn -> feed_forward
lowerCAmelCase_ = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a_ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k' ):
lowerCAmelCase_ = name.replace('.time_mix_k' , '.time_mix_key' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v' ):
lowerCAmelCase_ = name.replace('.time_mix_v' , '.time_mix_value' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r' ):
lowerCAmelCase_ = name.replace('.time_mix_r' , '.time_mix_receptance' )
if name != "head.weight":
lowerCAmelCase_ = 'rwkv.' + name
lowerCAmelCase_ = weight
return state_dict
def lowerCamelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=False , a_=None ) -> Any:
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.' )
lowerCAmelCase_ = 50_277
lowerCAmelCase_ = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' )
else:
lowerCAmelCase_ = PreTrainedTokenizerFast(tokenizer_file=a_ )
lowerCAmelCase_ = len(a_ )
tokenizer.save_pretrained(a_ )
# 2. Build the config
lowerCAmelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
lowerCAmelCase_ = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.' )
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' )
lowerCAmelCase_ = RwkvConfig(
vocab_size=a_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(a_ )
# 3. Download model file then convert state_dict
lowerCAmelCase_ = hf_hub_download(a_ , a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )
lowerCAmelCase_ = convert_state_dict(a_ )
# 4. Split in shards and save
lowerCAmelCase_ , lowerCAmelCase_ = shard_checkpoint(a_ )
for shard_file, shard in shards.items():
torch.save(a_ , os.path.join(a_ , a_ ) )
if index is not None:
lowerCAmelCase_ = os.path.join(a_ , a_ )
# Save the index as well
with open(a_ , 'w' , encoding='utf-8' ) as f:
lowerCAmelCase_ = json.dumps(a_ , indent=2 , sort_keys=a_ ) + '\n'
f.write(a_ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' )
lowerCAmelCase_ = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
lowerCAmelCase_ = torch.load(os.path.join(a_ , a_ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a_ , a_ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.' )
lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(a_ )
model.push_to_hub(a_ , max_shard_size='2GB' )
tokenizer.push_to_hub(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint."""
)
parser.add_argument(
"""--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo."""
)
parser.add_argument(
"""--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model."""
)
parser.add_argument(
"""--tokenizer_file""",
default=None,
type=str,
help="""Path to the tokenizer file to use (if not provided, only the model is converted).""",
)
parser.add_argument(
"""--size""",
default=None,
type=str,
help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Push to the Hub the converted model.""",
)
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""Name of the pushed model on the Hub, including the username / organization.""",
)
lowerCamelCase_ = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import functools
def lowerCamelCase ( a_ , a_ ) -> int:
# Validation
if not isinstance(a_ , a_ ) or not all(isinstance(a_ , a_ ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(a_ ) != 3 or not all(isinstance(a_ , a_ ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(a_ ) == 0:
return 0
if min(a_ ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(a_ ) >= 366:
raise ValueError('All days elements should be less than 366' )
lowerCAmelCase_ = set(a_ )
@functools.cache
def dynamic_programming(a_ ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = KandinskyVaaPriorPipeline
__a: int = ['''prompt''']
__a: str = ['''prompt''', '''negative_prompt''']
__a: int = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__a: Dict = False
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
return self.time_input_dim
@property
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def _lowercase ( self ) -> Dict:
'''simple docstring'''
return 1_0_0
@property
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModelWithProjection(lowercase_ )
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = {
'num_attention_heads': 2,
'attention_head_dim': 1_2,
'embedding_dim': self.text_embedder_hidden_size,
'num_layers': 1,
}
lowerCAmelCase_ = PriorTransformer(**lowercase_ )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowerCAmelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , )
lowerCAmelCase_ = CLIPVisionModelWithProjection(lowercase_ )
return model
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = CLIPImageProcessor(
crop_size=2_2_4 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , )
return image_processor
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.dummy_prior
lowerCAmelCase_ = self.dummy_image_encoder
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = self.dummy_tokenizer
lowerCAmelCase_ = self.dummy_image_processor
lowerCAmelCase_ = UnCLIPScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase_ , clip_sample_range=10.0 , )
lowerCAmelCase_ = {
'prior': prior,
'image_encoder': image_encoder,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'scheduler': scheduler,
'image_processor': image_processor,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'horse',
'generator': generator,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = 'cpu'
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**lowercase_ )
lowerCAmelCase_ = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = pipe(**self.get_dummy_inputs(lowercase_ ) )
lowerCAmelCase_ = output.image_embeds
lowerCAmelCase_ = pipe(
**self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0]
lowerCAmelCase_ = image[0, -1_0:]
lowerCAmelCase_ = image_from_tuple[0, -1_0:]
assert image.shape == (1, 3_2)
lowerCAmelCase_ = np.array(
[-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = torch_device == 'cpu'
lowerCAmelCase_ = True
lowerCAmelCase_ = False
self._test_inference_batch_single_identical(
test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
@skip_mps
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = torch_device == 'cpu'
lowerCAmelCase_ = False
self._test_attention_slicing_forward_pass(
test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
| 14 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 1 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )
if "model" in sd.keys():
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
# pop unnecessary weights
lowerCAmelCase_ = [
'decoder.version',
'decoder.output_projection.weight',
]
for key in keys_to_delete:
if key in sd:
sd.pop(a_ )
lowerCAmelCase_ = {
'decoder.project_in_dim.weight': 'decoder.project_in.weight',
'decoder.project_out_dim.weight': 'decoder.project_out.weight',
'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight',
'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
lowerCAmelCase_ = sd.pop(a_ )
lowerCAmelCase_ = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
lowerCAmelCase_ = sd[key]
# We split QKV in separate Q,K,V
lowerCAmelCase_ = key.replace('.qkv_proj.' , '.q_proj.' )
lowerCAmelCase_ = key.replace('.qkv_proj.' , '.k_proj.' )
lowerCAmelCase_ = key.replace('.qkv_proj.' , '.v_proj.' )
lowerCAmelCase_ = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = torch.split(a_ , depth // 3 , dim=0 )
lowerCAmelCase_ = q
lowerCAmelCase_ = k
lowerCAmelCase_ = v
del sd[key]
return sd
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_=None ) -> int:
lowerCAmelCase_ = load_checkpoint(a_ )
if config is not None:
lowerCAmelCase_ = OPTConfig.from_pretrained(a_ )
else:
lowerCAmelCase_ = OPTConfig()
lowerCAmelCase_ = OPTModel(a_ ).half().eval()
model.load_state_dict(a_ )
# Check results
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
lowerCamelCase_ = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 14 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase_ = logging.getLogger()
def lowerCamelCase ( ) -> List[Any]:
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('-f' )
lowerCAmelCase_ = parser.parse_args()
return args.f
class a_ ( a_ ):
'''simple docstring'''
def _lowercase ( self ) -> None:
'''simple docstring'''
lowerCAmelCase_ = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def _lowercase ( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , 'run_glue_deebert.py' )
with patch.object(lowercase_ , 'argv' , lowercase_ ):
lowerCAmelCase_ = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split()
self.run_and_check(lowercase_ )
lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(lowercase_ )
lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(lowercase_ )
| 14 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 | 1 |
from math import factorial
lowerCamelCase_ = {str(digit): factorial(digit) for digit in range(1_0)}
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
raise TypeError('Parameter number must be int' )
if number < 0:
raise ValueError('Parameter number must be greater than or equal to 0' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(a_ ) )
def lowerCamelCase ( a_ = 60 , a_ = 1_000_000 ) -> int:
if not isinstance(a_ , a_ ) or not isinstance(a_ , a_ ):
raise TypeError('Parameters chain_length and number_limit must be int' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'Parameters chain_length and number_limit must be greater than 0' )
# the counter for the chains with the exact desired length
lowerCAmelCase_ = 0
# the cached sizes of the previous chains
lowerCAmelCase_ = {}
for start_chain_element in range(1 , a_ ):
# The temporary set will contain the elements of the chain
lowerCAmelCase_ = set()
lowerCAmelCase_ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCAmelCase_ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(a_ )
chain_set_length += 1
lowerCAmelCase_ = digit_factorial_sum(a_ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCAmelCase_ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{solution()}''')
| 14 |
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
lowerCAmelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
'''simple docstring'''
__a: Dict = KandinskyVaaPriorPipeline
__a: List[Any] = ['''prompt''']
__a: str = ['''prompt''', '''negative_prompt''']
__a: str = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
__a: List[Any] = False
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> str:
'''simple docstring'''
return 3_2
@property
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return self.time_input_dim * 4
@property
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
return 1_0_0
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModelWithProjection(__a )
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = {
'num_attention_heads': 2,
'attention_head_dim': 1_2,
'embedding_dim': self.text_embedder_hidden_size,
'num_layers': 1,
}
lowerCAmelCase_ = PriorTransformer(**__a )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowerCAmelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , )
lowerCAmelCase_ = CLIPVisionModelWithProjection(__a )
return model
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = CLIPImageProcessor(
crop_size=2_2_4 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , )
return image_processor
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.dummy_prior
lowerCAmelCase_ = self.dummy_image_encoder
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = self.dummy_tokenizer
lowerCAmelCase_ = self.dummy_image_processor
lowerCAmelCase_ = UnCLIPScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=__a , clip_sample_range=1_0.0 , )
lowerCAmelCase_ = {
'prior': prior,
'image_encoder': image_encoder,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'scheduler': scheduler,
'image_processor': image_processor,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Any:
'''simple docstring'''
if str(__a ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(__a )
else:
lowerCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a )
lowerCAmelCase_ = {
'prompt': 'horse',
'generator': generator,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'cpu'
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**__a )
lowerCAmelCase_ = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
lowerCAmelCase_ = pipe(**self.get_dummy_inputs(__a ) )
lowerCAmelCase_ = output.image_embeds
lowerCAmelCase_ = pipe(
**self.get_dummy_inputs(__a ) , return_dict=__a , )[0]
lowerCAmelCase_ = image[0, -1_0:]
lowerCAmelCase_ = image_from_tuple[0, -1_0:]
assert image.shape == (1, 3_2)
lowerCAmelCase_ = np.array(
[-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = torch_device == 'cpu'
lowerCAmelCase_ = True
lowerCAmelCase_ = False
self._test_inference_batch_single_identical(
test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , )
@skip_mps
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = torch_device == 'cpu'
lowerCAmelCase_ = False
self._test_attention_slicing_forward_pass(
test_max_difference=__a , test_mean_pixel_difference=__a , )
| 350 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 0 |
import math
import sys
def lowerCamelCase ( a_ ) -> int:
if number != int(lowercase__ ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
lowerCAmelCase_ = [-1] * (number + 1)
lowerCAmelCase_ = 0
for i in range(1 , number + 1 ):
lowerCAmelCase_ = sys.maxsize
lowerCAmelCase_ = int(math.sqrt(lowercase__ ) )
for j in range(1 , root + 1 ):
lowerCAmelCase_ = 1 + answers[i - (j**2)]
lowerCAmelCase_ = min(lowercase__ , lowercase__ )
lowerCAmelCase_ = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 0 |
lowerCamelCase_ = 9.80665
def lowerCamelCase ( a_ , a_ , a_ = g ) -> float:
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 352 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 0 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = [
["""attention""", """attn"""],
["""encoder_attention""", """encoder_attn"""],
["""q_lin""", """q_proj"""],
["""k_lin""", """k_proj"""],
["""v_lin""", """v_proj"""],
["""out_lin""", """out_proj"""],
["""norm_embeddings""", """layernorm_embedding"""],
["""position_embeddings""", """embed_positions"""],
["""embeddings""", """embed_tokens"""],
["""ffn.lin""", """fc"""],
]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowerCAmelCase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
if k.startswith('encoder' ):
lowerCAmelCase_ = k.replace('.attn' , '.self_attn' )
lowerCAmelCase_ = k.replace('norm1' , 'self_attn_layer_norm' )
lowerCAmelCase_ = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
lowerCAmelCase_ = k.replace('norm1' , 'self_attn_layer_norm' )
lowerCAmelCase_ = k.replace('norm2' , 'encoder_attn_layer_norm' )
lowerCAmelCase_ = k.replace('norm3' , 'final_layer_norm' )
return k
def lowerCamelCase ( a_ ) -> Tuple:
lowerCAmelCase_ = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
lowerCAmelCase_ = sd.pop(__lowerCAmelCase )
lowerCAmelCase_ = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
lowerCAmelCase_ = v
lowerCamelCase_ = ["""START"""]
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location='cpu' )
lowerCAmelCase_ = model['model']
lowerCAmelCase_ = BlenderbotConfig.from_json_file(__lowerCAmelCase )
lowerCAmelCase_ = BlenderbotForConditionalGeneration(__lowerCAmelCase )
lowerCAmelCase_ = m.model.state_dict().keys()
lowerCAmelCase_ = []
lowerCAmelCase_ = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowerCAmelCase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowerCAmelCase_ = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__lowerCAmelCase )
m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
m.half()
m.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""")
parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""")
parser.add_argument(
"""--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use"""
)
lowerCamelCase_ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 353 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 0 |
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
lowerCamelCase_ = datasets.utils.logging.get_logger(__name__)
@dataclass
class a_ ( datasets.BuilderConfig ):
'''simple docstring'''
__a: List[Any] = 1_0_0_0_0
__a: Optional[Any] = None
__a: Union[str, Any] = None
class a_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__a: Dict = ParquetConfig
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self , lowercase_ ) -> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
lowerCAmelCase_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
lowerCAmelCase_ = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCAmelCase_ = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(_lowerCamelCase ):
with open(_lowerCamelCase , 'rb' ) as f:
lowerCAmelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) )
break
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _lowercase ( self , lowercase_ ) -> str:
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase_ = table_cast(_lowerCamelCase , self.info.features.arrow_schema )
return pa_table
def _lowercase ( self , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' )
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
with open(_lowerCamelCase , 'rb' ) as f:
lowerCAmelCase_ = pq.ParquetFile(_lowerCamelCase )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
lowerCAmelCase_ = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise
| 354 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 0 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( lowercase__ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , _a , )
super().__init__(*_a , **_a )
| 355 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 0 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase ( a_ , a_ , a_ ) -> Dict:
# Construct model
if gpta_config_file == "":
lowerCAmelCase_ = GPTaConfig()
else:
lowerCAmelCase_ = GPTaConfig.from_json_file(__snake_case )
lowerCAmelCase_ = GPTaModel(__snake_case )
# Load weights from numpy
load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
lowerCAmelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
lowerCAmelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , __snake_case )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(__snake_case , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
lowerCamelCase_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 356 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowerCamelCase_ = False
@skip_mps
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Any = StableDiffusionAttendAndExcitePipeline
__a: int = False
__a: Tuple = TEXT_TO_IMAGE_PARAMS
__a: Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} )
__a: str = TEXT_TO_IMAGE_IMAGE_PARAMS
__a: Any = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def _lowercase ( cls ) -> Any:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(_snake_case )
@classmethod
def _lowercase ( cls ) -> str:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(_snake_case )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , )
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(_snake_case )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Tuple:
'''simple docstring'''
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(_snake_case )
else:
lowerCAmelCase_ = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase_ = lowerCAmelCase_ = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu'
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ = pipe(**_snake_case ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 6_4, 6_4, 3) )
lowerCAmelCase_ = np.array(
[0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] )
lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1e-3 )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 )
def _lowercase ( self ) -> str:
'''simple docstring'''
super().test_save_load_local(expected_max_difference=5e-4 )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=4e-4 )
@require_torch_gpu
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _lowercase ( cls ) -> Union[str, Any]:
'''simple docstring'''
super().setUpClass()
torch.use_deterministic_algorithms(_snake_case )
@classmethod
def _lowercase ( cls ) -> Union[str, Any]:
'''simple docstring'''
super().tearDownClass()
torch.use_deterministic_algorithms(_snake_case )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = torch.manual_seed(5_1 )
lowerCAmelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , safety_checker=_snake_case , torch_dtype=torch.floataa )
pipe.to('cuda' )
lowerCAmelCase_ = 'a painting of an elephant with glasses'
lowerCAmelCase_ = [5, 7]
lowerCAmelCase_ = pipe(
prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0]
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5e-1
| 357 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 0 |
from collections import Counter
from timeit import timeit
def lowerCamelCase ( a_ = "" , ) -> List[Any]:
return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2
def lowerCamelCase ( a_ = "" ) -> Optional[Any]:
if len(lowerCamelCase_ ) == 0:
return True
lowerCAmelCase_ = input_str.replace(' ' , '' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
lowerCAmelCase_ = {}
for character in lower_case_input_str:
lowerCAmelCase_ = character_freq_dict.get(lowerCamelCase_ , 0 ) + 1
lowerCAmelCase_ = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def lowerCamelCase ( a_ = "" ) -> Any:
print('\nFor string = ' , lowerCamelCase_ , ':' )
print(
'> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase_ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
print(
'> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(lowerCamelCase_ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
if __name__ == "__main__":
lowerCamelCase_ = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
lowerCamelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
| 358 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase_ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
lowerCAmelCase_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
lowerCAmelCase_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
lowerCAmelCase_ = {'unk_token': '<unk>'}
lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__lowercase ) )
lowerCAmelCase_ = {
'do_resize': True,
'size': 2_0,
'do_center_crop': True,
'crop_size': 1_8,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowerCAmelCase_ = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(__lowercase , __lowercase )
def _lowercase ( self , **lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **__lowercase )
def _lowercase ( self , **lowercase_ ) -> str:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **__lowercase )
def _lowercase ( self , **lowercase_ ) -> List[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCAmelCase_ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = self.get_rust_tokenizer()
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCAmelCase_ = self.get_image_processor(do_normalize=__lowercase )
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
lowerCAmelCase_ = self.prepare_image_inputs()
lowerCAmelCase_ = image_processor(__lowercase , return_tensors='np' )
lowerCAmelCase_ = processor(images=__lowercase , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
lowerCAmelCase_ = 'lower newer'
lowerCAmelCase_ = processor(text=__lowercase , return_tensors='np' )
lowerCAmelCase_ = tokenizer(__lowercase , return_tensors='np' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
lowerCAmelCase_ = 'lower newer'
lowerCAmelCase_ = self.prepare_image_inputs()
lowerCAmelCase_ = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = 'google/owlvit-base-patch32'
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase )
lowerCAmelCase_ = ['cat', 'nasa badge']
lowerCAmelCase_ = processor(text=__lowercase )
lowerCAmelCase_ = 1_6
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = 'google/owlvit-base-patch32'
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase )
lowerCAmelCase_ = [['cat', 'nasa badge'], ['person']]
lowerCAmelCase_ = processor(text=__lowercase )
lowerCAmelCase_ = 1_6
lowerCAmelCase_ = len(__lowercase )
lowerCAmelCase_ = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = 'google/owlvit-base-patch32'
lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase )
lowerCAmelCase_ = ['cat', 'nasa badge']
lowerCAmelCase_ = processor(text=__lowercase )
lowerCAmelCase_ = 1_6
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
lowerCAmelCase_ = self.prepare_image_inputs()
lowerCAmelCase_ = self.prepare_image_inputs()
lowerCAmelCase_ = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.get_image_processor()
lowerCAmelCase_ = self.get_tokenizer()
lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase_ = processor.batch_decode(__lowercase )
lowerCAmelCase_ = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 359 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 0 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=2_4 , lowercase_=2 , lowercase_=6 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=1_0_0_0 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_input_mask
lowerCAmelCase_ = use_token_type_ids
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = type_vocab_size
lowerCAmelCase_ = type_sequence_label_size
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = num_labels
lowerCAmelCase_ = scope
lowerCAmelCase_ = range_bbox
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase_ = bbox[i, j, 3]
lowerCAmelCase_ = bbox[i, j, 1]
lowerCAmelCase_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase_ = bbox[i, j, 2]
lowerCAmelCase_ = bbox[i, j, 0]
lowerCAmelCase_ = t
lowerCAmelCase_ = None
if self.use_input_mask:
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
lowerCAmelCase_ = None
if self.use_token_type_ids:
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase_ = None
lowerCAmelCase_ = None
if self.use_labels:
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def _lowercase ( self ) -> Dict:
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = LiltModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ , token_type_ids=snake_case__ )
lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.num_labels
lowerCAmelCase_ = LiltForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase_ = model(
snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int:
'''simple docstring'''
lowerCAmelCase_ = LiltForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase_ = model(
snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_config_and_inputs()
(
lowerCAmelCase_
) = config_and_inputs
lowerCAmelCase_ = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class a_ ( A_ , A_ , A_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[Any] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a: List[Any] = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a: Tuple = False
__a: Optional[Any] = False
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
return True
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = LiltModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase_ = type
self.model_tester.create_and_check_model(*snake_case__ )
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case__ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
@slow
def _lowercase ( self ) -> str:
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ = LiltModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(snake_case__ )
lowerCAmelCase_ = torch.tensor([[1, 2]] , device=snake_case__ )
lowerCAmelCase_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case__ )
# forward pass
with torch.no_grad():
lowerCAmelCase_ = model(input_ids=snake_case__ , bbox=snake_case__ )
lowerCAmelCase_ = torch.Size([1, 2, 7_6_8] )
lowerCAmelCase_ = torch.tensor(
[[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=snake_case__ , )
self.assertTrue(outputs.last_hidden_state.shape , snake_case__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case__ , atol=1e-3 ) )
| 360 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """spiece.model"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
lowerCamelCase_ = {
"""albert-base-v1""": 5_1_2,
"""albert-large-v1""": 5_1_2,
"""albert-xlarge-v1""": 5_1_2,
"""albert-xxlarge-v1""": 5_1_2,
"""albert-base-v2""": 5_1_2,
"""albert-large-v2""": 5_1_2,
"""albert-xlarge-v2""": 5_1_2,
"""albert-xxlarge-v2""": 5_1_2,
}
lowerCamelCase_ = """▁"""
class a_ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__a: Optional[int] = VOCAB_FILES_NAMES
__a: Tuple = PRETRAINED_VOCAB_FILES_MAP
__a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_ , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
lowerCAmelCase_ = do_lower_case
lowerCAmelCase_ = remove_space
lowerCAmelCase_ = keep_accents
lowerCAmelCase_ = vocab_file
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_a )
@property
def _lowercase ( self ) -> int:
'''simple docstring'''
return len(self.sp_model )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.__dict__.copy()
lowerCAmelCase_ = None
return state
def __setstate__( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase_ = {}
lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self , lowercase_ ) -> str:
'''simple docstring'''
if self.remove_space:
lowerCAmelCase_ = ' '.join(inputs.strip().split() )
else:
lowerCAmelCase_ = inputs
lowerCAmelCase_ = outputs.replace('``' , '"' ).replace('\'\'' , '"' )
if not self.keep_accents:
lowerCAmelCase_ = unicodedata.normalize('NFKD' , _a )
lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(_a )] )
if self.do_lower_case:
lowerCAmelCase_ = outputs.lower()
return outputs
def _lowercase ( self , lowercase_ ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.preprocess_text(_a )
lowerCAmelCase_ = self.sp_model.encode(_a , out_type=_a )
lowerCAmelCase_ = []
for piece in pieces:
if len(_a ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase_ = cur_pieces[1:]
else:
lowerCAmelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_a )
else:
new_pieces.append(_a )
return new_pieces
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
return self.sp_model.PieceToId(_a )
def _lowercase ( self , lowercase_ ) -> int:
'''simple docstring'''
return self.sp_model.IdToPiece(_a )
def _lowercase ( self , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = []
lowerCAmelCase_ = ''
lowerCAmelCase_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_a ) + token
lowerCAmelCase_ = True
lowerCAmelCase_ = []
else:
current_sub_tokens.append(_a )
lowerCAmelCase_ = False
out_string += self.sp_model.decode(_a )
return out_string.strip()
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> Dict:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is not None:
return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1]
return [1] + ([0] * len(_a )) + [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Union[str, Any]:
'''simple docstring'''
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ = os.path.join(
_a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , 'wb' ) as fi:
lowerCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_a )
return (out_vocab_file,)
| 361 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 0 |
from ...configuration_utils import PretrainedConfig
class a_ ( a_ ):
'''simple docstring'''
__a: int = '''bert-generation'''
def __init__( self , lowercase_=5_0_3_5_8 , lowercase_=1_0_2_4 , lowercase_=2_4 , lowercase_=1_6 , lowercase_=4_0_9_6 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_=2 , lowercase_=1 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase_ : int = vocab_size
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : Tuple = num_hidden_layers
lowerCAmelCase_ : List[str] = num_attention_heads
lowerCAmelCase_ : str = hidden_act
lowerCAmelCase_ : int = intermediate_size
lowerCAmelCase_ : List[Any] = hidden_dropout_prob
lowerCAmelCase_ : List[str] = attention_probs_dropout_prob
lowerCAmelCase_ : int = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : Optional[Any] = layer_norm_eps
lowerCAmelCase_ : Union[str, Any] = position_embedding_type
lowerCAmelCase_ : Optional[Any] = use_cache
| 362 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 0 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=1_4 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=4 , lowercase_=4 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_input_mask
lowerCAmelCase_ = use_token_type_ids
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = rotary_dim
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = None
lowerCAmelCase_ = vocab_size - 1
lowerCAmelCase_ = vocab_size - 1
lowerCAmelCase_ = vocab_size - 1
def _lowercase ( self ) -> int:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ = None
if self.use_input_mask:
lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = model_class_name(lowercase_ )
lowerCAmelCase_ = model.init_cache(input_ids.shape[0] , lowercase_ )
lowerCAmelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
lowerCAmelCase_ = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
lowerCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase_ = model(
input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , )
lowerCAmelCase_ = model(lowercase_ )
lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = model_class_name(lowercase_ )
lowerCAmelCase_ = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ = model.init_cache(input_ids.shape[0] , lowercase_ )
lowerCAmelCase_ = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
lowerCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
lowerCAmelCase_ = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )
lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class a_ ( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__a: str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__a: Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = FlaxGPTJModelTester(self )
def _lowercase ( self ) -> Any:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowercase_ , lowercase_ , lowercase_ , lowercase_ )
@tooslow
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
lowerCAmelCase_ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
lowerCAmelCase_ = False
lowerCAmelCase_ = model.config.eos_token_id
lowerCAmelCase_ = jax.jit(model.generate )
lowerCAmelCase_ = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowercase_ , lowercase_ )
@is_pt_flax_cross_test
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ )
lowerCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ = getattr(lowercase_ , lowercase_ )
lowerCAmelCase_ = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
lowerCAmelCase_ = pt_model_class(lowercase_ ).eval()
lowerCAmelCase_ = model_class(lowercase_ , dtype=jnp.floataa )
lowerCAmelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowerCAmelCase_ = fx_state
with torch.no_grad():
lowerCAmelCase_ = pt_model(**lowercase_ ).to_tuple()
lowerCAmelCase_ = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowerCAmelCase_ = model_class.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowerCAmelCase_ = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ )
lowerCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ = getattr(lowercase_ , lowercase_ )
lowerCAmelCase_ = pt_model_class(lowercase_ ).eval()
lowerCAmelCase_ = model_class(lowercase_ , dtype=jnp.floataa )
lowerCAmelCase_ = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
lowerCAmelCase_ = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
lowerCAmelCase_ = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ = pt_model(**lowercase_ ).to_tuple()
lowerCAmelCase_ = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowerCAmelCase_ = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_ )
with torch.no_grad():
lowerCAmelCase_ = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCAmelCase_ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
lowerCAmelCase_ = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase_ )
| 363 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 0 |
def lowerCamelCase ( a_ ) -> Tuple:
lowerCAmelCase_ = []
lowerCAmelCase_ = set({'(', '[', '{'} )
lowerCAmelCase_ = set({')', ']', '}'} )
lowerCAmelCase_ = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''}
for i in range(len(__a ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(__a ) == 0 or (len(__a ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(__a ) == 0
def lowerCamelCase ( ) -> Union[str, Any]:
lowerCAmelCase_ = input('Enter sequence of brackets: ' )
if is_balanced(__a ):
print(__a , 'is balanced' )
else:
print(__a , 'is not balanced' )
if __name__ == "__main__":
main()
| 364 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 0 |
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = 1
lowerCAmelCase_ = 3
lowerCAmelCase_ = (3_2, 3_2)
lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
return model
@property
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(__UpperCAmelCase )
@property
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
def extract(*lowercase_ , **lowercase_ ):
class a_ :
'''simple docstring'''
def __init__( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = torch.ones([0] )
def _lowercase ( self , lowercase_ ) -> Optional[int]:
'''simple docstring'''
self.pixel_values.to(__UpperCAmelCase )
return self
return Out()
return extract
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = """A painting of a squirrel eating a burger"""
lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=__UpperCAmelCase , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = """A painting of a squirrel eating a burger"""
lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=__UpperCAmelCase , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=__UpperCAmelCase )
assert isinstance(__UpperCAmelCase , __UpperCAmelCase )
assert isinstance(pipe.scheduler , __UpperCAmelCase )
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__UpperCAmelCase )
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# put models in fp16
lowerCAmelCase_ = unet.half()
lowerCAmelCase_ = vae.half()
lowerCAmelCase_ = bert.half()
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = """A painting of a squirrel eating a burger"""
lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=__UpperCAmelCase )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowerCAmelCase_ = 4_0_0_3_6_6_0_3_4_6
lowerCAmelCase_ = 7
# without safety guidance (sld_guidance_scale = 0)
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=__UpperCAmelCase )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowerCAmelCase_ = 2_7_3_4_9_7_1_7_5_5
lowerCAmelCase_ = 7
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' )
lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase_ = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowerCAmelCase_ = 1_0_4_4_3_5_5_2_3_4
lowerCAmelCase_ = 1_2
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 365 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 0 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class a_ :
'''simple docstring'''
@property
def _lowercase ( self ) -> Dict:
'''simple docstring'''
return self.get_dummy_input()
@property
def _lowercase ( self ) -> Any:
'''simple docstring'''
if self.block_type == "down":
return (4, 3_2, 1_6, 1_6)
elif self.block_type == "mid":
return (4, 3_2, 3_2, 3_2)
elif self.block_type == "up":
return (4, 3_2, 6_4, 6_4)
raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' )
def _lowercase ( self , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = 4
lowerCAmelCase_ = 3_2
lowerCAmelCase_ = (3_2, 3_2)
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = torch.device(lowerCAmelCase__ )
lowerCAmelCase_ = (batch_size, num_channels) + sizes
lowerCAmelCase_ = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
lowerCAmelCase_ = {"hidden_states": hidden_states}
if include_temb:
lowerCAmelCase_ = 1_2_8
lowerCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
if include_res_hidden_states_tuple:
lowerCAmelCase_ = torch.manual_seed(1 )
lowerCAmelCase_ = (randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ),)
if include_encoder_hidden_states:
lowerCAmelCase_ = floats_tensor((batch_size, 3_2, 3_2) ).to(lowerCAmelCase__ )
if include_skip_sample:
lowerCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
return dummy_input
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = {
"in_channels": 3_2,
"out_channels": 3_2,
"temb_channels": 1_2_8,
}
if self.block_type == "up":
lowerCAmelCase_ = 3_2
if self.block_type == "mid":
init_dict.pop('out_channels' )
lowerCAmelCase_ = self.dummy_input
return init_dict, inputs_dict
def _lowercase ( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common()
lowerCAmelCase_ = self.block_class(**lowerCAmelCase__ )
unet_block.to(lowerCAmelCase__ )
unet_block.eval()
with torch.no_grad():
lowerCAmelCase_ = unet_block(**lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase_ = output[0]
self.assertEqual(output.shape , self.output_shape )
lowerCAmelCase_ = output[0, -1, -3:, -3:]
lowerCAmelCase_ = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ )
assert torch_all_close(output_slice.flatten() , lowerCAmelCase__ , atol=5e-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common()
lowerCAmelCase_ = self.block_class(**lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.train()
lowerCAmelCase_ = model(**lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase_ = output[0]
lowerCAmelCase_ = torch.device(lowerCAmelCase__ )
lowerCAmelCase_ = randn_tensor(output.shape , device=lowerCAmelCase__ )
lowerCAmelCase_ = torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ )
loss.backward()
| 366 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 0 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class a_ ( _UpperCamelCase ):
'''simple docstring'''
__a: Union[List[PIL.Image.Image], np.ndarray]
__a: Optional[List[bool]]
__a: Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 367 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 0 |
import math
def lowerCamelCase ( a_ ) -> Tuple:
lowerCAmelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(a__ )
def lowerCamelCase ( a_ = 1 / 12_345 ) -> str:
lowerCAmelCase_ = 0
lowerCAmelCase_ = 0
lowerCAmelCase_ = 3
while True:
lowerCAmelCase_ = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(a__ ):
lowerCAmelCase_ = int(a__ )
total_partitions += 1
if check_partition_perfect(a__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(a__ )
integer += 1
if __name__ == "__main__":
print(f'''{solution() = }''')
| 368 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 0 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( enum.Enum ):
'''simple docstring'''
__a: str = 0
__a: Dict = 1
@add_end_docstrings(__UpperCamelCase )
class a_ ( __UpperCamelCase ):
'''simple docstring'''
__a: List[str] = "generated"
def __init__( self , *lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = {}
if truncation is not None:
lowerCAmelCase_ = truncation
lowerCAmelCase_ = generate_kwargs
lowerCAmelCase_ = {}
if return_tensors is not None and return_type is None:
lowerCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowerCAmelCase_ = return_type
if clean_up_tokenization_spaces is not None:
lowerCAmelCase_ = clean_up_tokenization_spaces
if stop_sequence is not None:
lowerCAmelCase_ = self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
if len(_lowerCAmelCase ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
lowerCAmelCase_ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
return True
def _lowercase ( self , *lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , _lowerCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
lowerCAmelCase_ = ([prefix + arg for arg in args[0]],)
lowerCAmelCase_ = True
elif isinstance(args[0] , _lowerCAmelCase ):
lowerCAmelCase_ = (prefix + args[0],)
lowerCAmelCase_ = False
else:
raise ValueError(
f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
lowerCAmelCase_ = self.tokenizer(*_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *lowercase_ , **lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
if (
isinstance(args[0] , _lowerCAmelCase )
and all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for el in args[0] )
and all(len(_lowerCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _lowercase ( self , lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self._parse_and_tokenize(_lowerCAmelCase , truncation=_lowerCAmelCase , **_lowerCAmelCase )
return inputs
def _lowercase ( self , lowercase_ , **lowercase_ ) -> Optional[int]:
'''simple docstring'''
if self.framework == "pt":
lowerCAmelCase_ = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
lowerCAmelCase_ = tf.shape(model_inputs['input_ids'] ).numpy()
lowerCAmelCase_ = generate_kwargs.get('min_length' , self.model.config.min_length )
lowerCAmelCase_ = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(_lowerCAmelCase , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
lowerCAmelCase_ = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase )
lowerCAmelCase_ = output_ids.shape[0]
if self.framework == "pt":
lowerCAmelCase_ = output_ids.reshape(_lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
lowerCAmelCase_ = tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _lowercase ( self , lowercase_ , lowercase_=ReturnType.TEXT , lowercase_=False ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowerCAmelCase_ = {f'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
lowerCAmelCase_ = {
f'''{self.return_name}_text''': self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
@add_end_docstrings(__UpperCamelCase )
class a_ ( __UpperCamelCase ):
'''simple docstring'''
__a: int = "summary"
def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]:
'''simple docstring'''
return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if max_length < min_length:
logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(__UpperCamelCase )
class a_ ( __UpperCamelCase ):
'''simple docstring'''
__a: Tuple = "translation"
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def _lowercase ( self , *lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_=None , lowercase_=None ) -> Any:
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , _lowerCAmelCase ):
return self.tokenizer._build_translation_inputs(
*_lowerCAmelCase , return_tensors=self.framework , truncation=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase )
else:
return super()._parse_and_tokenize(*_lowerCAmelCase , truncation=_lowerCAmelCase )
def _lowercase ( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = super()._sanitize_parameters(**_lowerCAmelCase )
if src_lang is not None:
lowerCAmelCase_ = src_lang
if tgt_lang is not None:
lowerCAmelCase_ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowerCAmelCase_ = kwargs.get('task' , self.task )
lowerCAmelCase_ = task.split('_' )
if task and len(_lowerCAmelCase ) == 4:
# translation, XX, to YY
lowerCAmelCase_ = items[1]
lowerCAmelCase_ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) | 369 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.