code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = name lowerCAmelCase_ = val def __str__( self ) -> List[str]: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , lowercase_ ) -> int: '''simple docstring''' return self.val < other.val class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = {} lowerCAmelCase_ = {} lowerCAmelCase_ = self.build_heap(lowercase_ ) def __getitem__( self , lowercase_ ) -> Dict: '''simple docstring''' return self.get_value(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Tuple: '''simple docstring''' return (idx - 1) // 2 def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _lowercase ( self , lowercase_ ) -> List[Any]: '''simple docstring''' return idx * 2 + 2 def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' return self.heap_dict[key] def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = len(lowercase_ ) - 1 lowerCAmelCase_ = self.get_parent_idx(lowercase_ ) for idx, i in enumerate(lowercase_ ): lowerCAmelCase_ = idx lowerCAmelCase_ = i.val for i in range(lowercase_ , -1 , -1 ): self.sift_down(lowercase_ , lowercase_ ) return array def _lowercase ( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' while True: lowerCAmelCase_ = self.get_left_child_idx(lowercase_ ) # noqa: E741 lowerCAmelCase_ = self.get_right_child_idx(lowercase_ ) lowerCAmelCase_ = idx if l < len(lowercase_ ) and array[l] < array[idx]: lowerCAmelCase_ = l if r < len(lowercase_ ) and array[r] < array[smallest]: lowerCAmelCase_ = r if smallest != idx: lowerCAmelCase_ , lowerCAmelCase_ = array[smallest], array[idx] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase_ = smallest else: break def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.get_parent_idx(lowercase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase_ , lowerCAmelCase_ = self.heap[idx], self.heap[p] lowerCAmelCase_ , lowerCAmelCase_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase_ = p lowerCAmelCase_ = self.get_parent_idx(lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' return self.heap[0] def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.heap[-1], self.heap[0] lowerCAmelCase_ , lowerCAmelCase_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' self.heap.append(lowercase_ ) lowerCAmelCase_ = len(self.heap ) - 1 lowerCAmelCase_ = node.val self.sift_up(len(self.heap ) - 1 ) def _lowercase ( self ) -> int: '''simple docstring''' return len(self.heap ) == 0 def _lowercase ( self , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase_ = new_value lowerCAmelCase_ = new_value self.sift_up(self.idx_of_element[node] ) lowerCamelCase_ = Node("""R""", -1) lowerCamelCase_ = Node("""B""", 6) lowerCamelCase_ = Node("""A""", 3) lowerCamelCase_ = Node("""X""", 1) lowerCamelCase_ = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCamelCase_ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCamelCase_ = ["""gpt2"""] lowerCamelCase_ = """gpt2""" if is_tf_available(): class a_ ( tf.Module ): '''simple docstring''' def __init__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ = tokenizer lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFGPTaLMHeadModel.from_config(lowercase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.tokenizer(lowercase_ ) lowerCAmelCase_ = tokenized['input_ids'].to_tensor() lowerCAmelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCAmelCase_ = self.model(input_ids=lowercase_ , attention_mask=lowercase_ )['logits'] return outputs @require_tf @require_keras_nlp class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> int: '''simple docstring''' super().setUp() lowerCAmelCase_ = [GPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCAmelCase_ = [TFGPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCAmelCase_ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCAmelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCAmelCase_ = tokenizer([test_inputs] , return_tensors='tf' ) lowerCAmelCase_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCAmelCase_ = python_outputs[key].numpy() lowerCAmelCase_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = tf.function(lowercase_ ) for test_inputs in self.test_sentences: lowerCAmelCase_ = tf.constant(lowercase_ ) lowerCAmelCase_ = compiled_tokenizer(lowercase_ ) lowerCAmelCase_ = tf_tokenizer(lowercase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = ModelToSave(tokenizer=lowercase_ ) lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = model.serving(lowercase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase_ = Path(lowercase_ ) / 'saved.model' tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': model.serving} ) lowerCAmelCase_ = tf.saved_model.load(lowercase_ ) lowerCAmelCase_ = loaded_model.signatures['serving_default'](lowercase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = tf_tokenizer(lowercase_ ) # Build model with some sample inputs lowerCAmelCase_ = tf_tokenizer.get_config() lowerCAmelCase_ = TFGPTaTokenizer.from_config(lowercase_ ) lowerCAmelCase_ = model_from_config(lowercase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCAmelCase_ = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = tf_tokenizer(lowercase_ , max_length=lowercase_ ) lowerCAmelCase_ = out['input_ids'].numpy().shape[1] assert out_length == max_length
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
from __future__ import annotations from typing import Any def lowerCamelCase ( a_ ) -> None: create_state_space_tree(a_ , [] , 0 ) def lowerCamelCase ( a_ , a_ , a_ ) -> None: if index == len(a_ ): print(a_ ) return create_state_space_tree(a_ , a_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(a_ , a_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = XGLMTokenizer __a: Any = XGLMTokenizerFast __a: int = True __a: Union[str, Any] = True def _lowercase ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = XGLMTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = '<pad>' lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(lowercase_ ) , 1_0_0_8 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = XGLMTokenizer(lowercase_ , keep_accents=lowercase_ ) lowerCAmelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _lowercase ( self ) -> Any: '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) lowerCAmelCase_ = XGLMTokenizer(f.name , keep_accents=lowercase_ ) lowerCAmelCase_ = pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ = tokenizer.tokenize(lowercase_ ) lowerCAmelCase_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(lowercase_ ) lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'Hello World!' lowerCAmelCase_ = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase_ = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='facebook/xglm-564M' , padding=lowercase_ , )
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase_ = """\ """ lowerCamelCase_ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase_ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = 1_6 , lowercase_ = True , lowercase_=None ) -> Optional[int]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCAmelCase_ = 'cuda' else: lowerCAmelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = model.to(lowercase_ ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(lowercase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCAmelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCAmelCase_ = model.config.max_length - 1 else: lowerCAmelCase_ = model.config.max_length lowerCAmelCase_ = tokenizer( lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors='pt' , return_attention_mask=lowercase_ , ).to(lowercase_ ) lowerCAmelCase_ = encodings['input_ids'] lowerCAmelCase_ = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCAmelCase_ = [] lowerCAmelCase_ = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(lowercase_ ) , lowercase_ ) ): lowerCAmelCase_ = min(start_index + batch_size , len(lowercase_ ) ) lowerCAmelCase_ = encoded_texts[start_index:end_index] lowerCAmelCase_ = attn_masks[start_index:end_index] if add_start_token: lowerCAmelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase_ ) lowerCAmelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCAmelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase_ ), attn_mask] , dim=1 ) lowerCAmelCase_ = encoded_batch with torch.no_grad(): lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ).logits lowerCAmelCase_ = out_logits[..., :-1, :].contiguous() lowerCAmelCase_ = labels[..., 1:].contiguous() lowerCAmelCase_ = attn_mask[..., 1:].contiguous() lowerCAmelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase_ )}
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
from __future__ import annotations def lowerCamelCase ( a_ , a_ ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) lowerCAmelCase_ = number_of_bytes // partitions lowerCAmelCase_ = [] for i in range(a_ ): lowerCAmelCase_ = i * bytes_per_partition + 1 lowerCAmelCase_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = DistilBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , lowercase_ ) lowerCAmelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = DistilBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = DistilBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = DistilBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = DistilBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.num_choices lowerCAmelCase_ = DistilBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = config_and_inputs lowerCAmelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: List[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __a: Tuple = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __a: str = True __a: Optional[int] = True __a: Optional[int] = True __a: Tuple = True def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = DistilBertModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , dim=3_7 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase_ ) @slow def _lowercase ( self ) -> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = DistilBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCAmelCase_ = True lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowerCAmelCase_ = torch.jit.trace( lowercase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_ , os.path.join(lowercase_ , 'traced_model.pt' ) ) lowerCAmelCase_ = torch.jit.load(os.path.join(lowercase_ , 'traced_model.pt' ) , map_location=lowercase_ ) loaded(inputs_dict['input_ids'].to(lowercase_ ) , inputs_dict['attention_mask'].to(lowercase_ ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase_ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4 ) )
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } lowerCamelCase_ = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } lowerCamelCase_ = """▁""" class a_ ( a_ ): '''simple docstring''' __a: Optional[Any] = VOCAB_FILES_NAMES __a: Tuple = PRETRAINED_VOCAB_FILES_MAP __a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' lowerCAmelCase_ = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' if self.remove_space: lowerCAmelCase_ = ' '.join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize('NFKD' , lowercase_ ) lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.preprocess_text(lowercase_ ) lowerCAmelCase_ = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) lowerCAmelCase_ = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.sp_model.PieceToId(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(lowercase_ ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = '' lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(lowercase_ ) lowerCAmelCase_ = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Dict = KandinskyVaaControlnetImgaImgPipeline __a: List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __a: List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __a: Optional[int] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __a: List[str] = False @property def _lowercase ( self ) -> Dict: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> str: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return 1_0_0 @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase_ = UNetaDConditionModel(**lowercase_ ) return model @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.dummy_unet lowerCAmelCase_ = self.dummy_movq lowerCAmelCase_ = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase_ = DDIMScheduler(**lowercase_ ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> str: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) # create init_image lowerCAmelCase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCAmelCase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = 'cpu' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**lowercase_ ) lowerCAmelCase_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowerCAmelCase_ = output.images lowerCAmelCase_ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase_ = init_image.resize((5_1_2, 5_1_2) ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase_ = torch.from_numpy(np.array(lowercase_ ) ).float() / 2_55.0 lowerCAmelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase_ = 'A robot, 4k photo' lowerCAmelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) lowerCAmelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ = pipe_prior( lowercase_ , image=lowercase_ , strength=0.85 , generator=lowercase_ , negative_prompt='' , ).to_tuple() lowerCAmelCase_ = pipeline( image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , hint=lowercase_ , generator=lowercase_ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } lowerCamelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class a_ ( a_ ): '''simple docstring''' __a: int = VOCAB_FILES_NAMES __a: List[Any] = PRETRAINED_VOCAB_FILES_MAP __a: str = PRETRAINED_INIT_CONFIGURATION __a: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Optional[Any] = RealmTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Any: '''simple docstring''' super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase_ ) != tokenize_chinese_chars ): lowerCAmelCase_ = getattr(lowercase_ , normalizer_state.pop('type' ) ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = strip_accents lowerCAmelCase_ = tokenize_chinese_chars lowerCAmelCase_ = normalizer_class(**lowercase_ ) lowerCAmelCase_ = do_lower_case def _lowercase ( self , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ = text lowerCAmelCase_ = kwargs.pop('text_pair' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('return_tensors' , lowercase_ ) lowerCAmelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(lowercase_ ): if batch_text_pair is not None: lowerCAmelCase_ = batch_text_pair[idx] else: lowerCAmelCase_ = None lowerCAmelCase_ = super().__call__(lowercase_ , lowercase_ , return_tensors=lowercase_ , **lowercase_ ) lowerCAmelCase_ = encoded_candidates.get('input_ids' ) lowerCAmelCase_ = encoded_candidates.get('attention_mask' ) lowerCAmelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(lowercase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowercase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowercase_ ) lowerCAmelCase_ = {key: item for key, item in output_data.items() if len(lowercase_ ) != 0} return BatchEncoding(lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCamelCase_ = None lowerCamelCase_ = { """7B""": 1_1_0_0_8, """13B""": 1_3_8_2_4, """30B""": 1_7_9_2_0, """65B""": 2_2_0_1_6, """70B""": 2_8_6_7_2, } lowerCamelCase_ = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowerCamelCase ( a_ , a_=1 , a_=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase ( a_ ) -> int: with open(a_ , 'r' ) as f: return json.load(a_ ) def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: with open(a_ , 'w' ) as f: json.dump(a_ , a_ ) def lowerCamelCase ( a_ , a_ , a_ , a_=True ) -> Dict: os.makedirs(a_ , exist_ok=a_ ) lowerCAmelCase_ = os.path.join(a_ , 'tmp' ) os.makedirs(a_ , exist_ok=a_ ) lowerCAmelCase_ = read_json(os.path.join(a_ , 'params.json' ) ) lowerCAmelCase_ = NUM_SHARDS[model_size] lowerCAmelCase_ = params['n_layers'] lowerCAmelCase_ = params['n_heads'] lowerCAmelCase_ = n_heads // num_shards lowerCAmelCase_ = params['dim'] lowerCAmelCase_ = dim // n_heads lowerCAmelCase_ = 10_000.0 lowerCAmelCase_ = 1.0 / (base ** (torch.arange(0 , a_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase_ = params['n_kv_heads'] # for GQA / MQA lowerCAmelCase_ = n_heads_per_shard // num_key_value_heads lowerCAmelCase_ = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase_ = n_heads lowerCAmelCase_ = n_heads_per_shard lowerCAmelCase_ = dim # permute for sliced rotary def permute(a_ , a_=n_heads , a_=dim , a_=dim ): return w.view(a_ , dima // n_heads // 2 , 2 , a_ ).transpose(1 , 2 ).reshape(a_ , a_ ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase_ = torch.load(os.path.join(a_ , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded lowerCAmelCase_ = [ torch.load(os.path.join(a_ , F'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(a_ ) ] lowerCAmelCase_ = 0 lowerCAmelCase_ = {'weight_map': {}} for layer_i in range(a_ ): lowerCAmelCase_ = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded lowerCAmelCase_ = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase_ = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } lowerCAmelCase_ = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) ) lowerCAmelCase_ = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) , a_ , a_ , a_ , ) lowerCAmelCase_ = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( a_ , a_ , a_ ) for i in range(a_ ) ] , dim=0 , ).reshape(a_ , a_ ) lowerCAmelCase_ = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(a_ )] , dim=1 ) lowerCAmelCase_ = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(a_ )] , dim=0 ) lowerCAmelCase_ = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(a_ )] , dim=1 ) lowerCAmelCase_ = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(a_ )] , dim=0 ) lowerCAmelCase_ = inv_freq for k, v in state_dict.items(): lowerCAmelCase_ = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_ ) ) lowerCAmelCase_ = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded lowerCAmelCase_ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: lowerCAmelCase_ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(a_ )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(a_ )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase_ = filename param_count += v.numel() torch.save(a_ , os.path.join(a_ , a_ ) ) # Write configs lowerCAmelCase_ = {'total_size': param_count * 2} write_json(a_ , os.path.join(a_ , 'pytorch_model.bin.index.json' ) ) lowerCAmelCase_ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 lowerCAmelCase_ = params['multiple_of'] if 'multiple_of' in params else 256 lowerCAmelCase_ = LlamaConfig( hidden_size=a_ , intermediate_size=compute_intermediate_size(a_ , a_ , a_ ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=a_ , ) config.save_pretrained(a_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) lowerCAmelCase_ = LlamaForCausalLM.from_pretrained(a_ , torch_dtype=torch.floataa , low_cpu_mem_usage=a_ ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(a_ , safe_serialization=a_ ) shutil.rmtree(a_ ) def lowerCamelCase ( a_ , a_ ) -> Any: # Initialize the tokenizer based on the `spm` model lowerCAmelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) lowerCAmelCase_ = tokenizer_class(a_ ) tokenizer.save_pretrained(a_ ) def lowerCamelCase ( ) -> Tuple: lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=a_ , help='Whether or not to save using `safetensors`.' ) lowerCAmelCase_ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase_ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , a_ ) if __name__ == "__main__": main()
14
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # TODO Update this lowerCamelCase_ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class a_ ( a_ ): '''simple docstring''' __a: int = '''esm''' def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_6 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_="absolute" , lowercase_=True , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = emb_layer_norm_before lowerCAmelCase_ = token_dropout lowerCAmelCase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) lowerCAmelCase_ = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = EsmFoldConfig(**lowercase_ ) lowerCAmelCase_ = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) lowerCAmelCase_ = get_default_vocab_list() else: lowerCAmelCase_ = vocab_list else: lowerCAmelCase_ = None lowerCAmelCase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowercase_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = super().to_dict() if isinstance(self.esmfold_config , lowercase_ ): lowerCAmelCase_ = self.esmfold_config.to_dict() return output @dataclass class a_ : '''simple docstring''' __a: str = None __a: bool = True __a: bool = False __a: bool = False __a: bool = False __a: float = 0 __a: bool = True __a: bool = False __a: int = 1_2_8 __a: "TrunkConfig" = None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' if self.trunk is None: lowerCAmelCase_ = TrunkConfig() elif isinstance(self.trunk , lowercase_ ): lowerCAmelCase_ = TrunkConfig(**self.trunk ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = asdict(self ) lowerCAmelCase_ = self.trunk.to_dict() return output @dataclass class a_ : '''simple docstring''' __a: int = 4_8 __a: int = 1_0_2_4 __a: int = 1_2_8 __a: int = 3_2 __a: int = 3_2 __a: int = 3_2 __a: float = 0 __a: float = 0 __a: bool = False __a: int = 4 __a: Optional[int] = 1_2_8 __a: "StructureModuleConfig" = None def _lowercase ( self ) -> Optional[int]: '''simple docstring''' if self.structure_module is None: lowerCAmelCase_ = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_ ): lowerCAmelCase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowerCAmelCase_ = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = asdict(self ) lowerCAmelCase_ = self.structure_module.to_dict() return output @dataclass class a_ : '''simple docstring''' __a: int = 3_8_4 __a: int = 1_2_8 __a: int = 1_6 __a: int = 1_2_8 __a: int = 1_2 __a: int = 4 __a: int = 8 __a: float = 0.1 __a: int = 8 __a: int = 1 __a: int = 2 __a: int = 7 __a: int = 1_0 __a: float = 1E-8 __a: float = 1E5 def _lowercase ( self ) -> List[Any]: '''simple docstring''' return asdict(self ) def lowerCamelCase ( ) -> Any: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
14
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
1
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 1_6 lowerCamelCase_ = 3_2 def lowerCamelCase ( a_ , a_ = 16 ) -> List[Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ = load_dataset('glue' , 'mrpc' ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( a_ , padding='longest' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) lowerCAmelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase_ = mocked_dataloaders # noqa: F811 def lowerCamelCase ( a_ , a_ ) -> List[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , a_ ) == "1": lowerCAmelCase_ = 2 # Initialize accelerator lowerCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['lr'] lowerCAmelCase_ = int(config['num_epochs'] ) lowerCAmelCase_ = int(config['seed'] ) lowerCAmelCase_ = int(config['batch_size'] ) lowerCAmelCase_ = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=a_ ) def inner_training_loop(a_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=a_ ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(a_ , a_ ) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.loss accelerator.backward(a_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a_ , references=a_ , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCamelCase ( ) -> List[str]: lowerCAmelCase_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a_ , default=a_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """roberta-base""": 5_1_2, """roberta-large""": 5_1_2, """roberta-large-mnli""": 5_1_2, """distilroberta-base""": 5_1_2, """roberta-base-openai-detector""": 5_1_2, """roberta-large-openai-detector""": 5_1_2, } class a_ ( a_ ): '''simple docstring''' __a: Optional[Any] = VOCAB_FILES_NAMES __a: str = PRETRAINED_VOCAB_FILES_MAP __a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Optional[Any] = ['''input_ids''', '''attention_mask'''] __a: Optional[Any] = RobertaTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="replace" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Any: '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = pre_tok_class(**lowercase_ ) lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = 'post_processor' lowerCAmelCase_ = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: lowerCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase_ = tuple(state['cls'] ) lowerCAmelCase_ = False if state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = True if state.get('trim_offsets' , lowercase_ ) != trim_offsets: lowerCAmelCase_ = trim_offsets lowerCAmelCase_ = True if changes_to_apply: lowerCAmelCase_ = getattr(lowercase_ , state.pop('type' ) ) lowerCAmelCase_ = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def _lowercase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value lowerCAmelCase_ = value def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_=None ) -> Any: '''simple docstring''' lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowerCAmelCase_ = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCAmelCase_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids lowerCAmelCase_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ ).loss lowerCAmelCase_ = -tf.math.reduce_mean(lowercase_ ).numpy() lowerCAmelCase_ = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
14
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase_ = logging.getLogger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_=-1 ) -> int: '''simple docstring''' lowerCAmelCase_ = label_idx def _lowercase ( self , lowercase_ , lowercase_ ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = mode.value lowerCAmelCase_ = os.path.join(lowercase_ , f'''{mode}.txt''' ) lowerCAmelCase_ = 1 lowerCAmelCase_ = [] with open(lowercase_ , encoding='utf-8' ) as f: lowerCAmelCase_ = [] lowerCAmelCase_ = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) ) guid_index += 1 lowerCAmelCase_ = [] lowerCAmelCase_ = [] else: lowerCAmelCase_ = line.split(' ' ) words.append(splits[0] ) if len(lowercase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) ) return examples def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowercase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase_ = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowercase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' if path: with open(lowercase_ , 'r' ) as f: lowerCAmelCase_ = f.read().splitlines() if "O" not in labels: lowerCAmelCase_ = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a_ ( a_ ): '''simple docstring''' def __init__( self ) -> int: '''simple docstring''' super().__init__(label_idx=-2 ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' if path: with open(lowercase_ , 'r' ) as f: lowerCAmelCase_ = f.read().splitlines() if "O" not in labels: lowerCAmelCase_ = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a_ ( a_ ): '''simple docstring''' def _lowercase ( self , lowercase_ , lowercase_ ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = mode.value lowerCAmelCase_ = os.path.join(lowercase_ , f'''{mode}.txt''' ) lowerCAmelCase_ = 1 lowerCAmelCase_ = [] with open(lowercase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowercase_ ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowercase_ ) == len(lowercase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase_ , labels=lowercase_ ) ) guid_index += 1 return examples def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 0 for sentence in parse_incr(lowercase_ ): lowerCAmelCase_ = preds_list[example_id] lowerCAmelCase_ = '' for token in sentence: out += f'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowercase_ ) example_id += 1 def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' if path: with open(lowercase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class a_ ( a_ ): '''simple docstring''' __a: str = '''facebook/bart-large-mnli''' __a: Optional[int] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __a: List[Any] = '''text_classifier''' __a: Optional[int] = AutoTokenizer __a: Optional[Any] = AutoModelForSequenceClassification __a: Tuple = ['''text''', ['''text''']] __a: int = ['''text'''] def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setup() lowerCAmelCase_ = self.model.config lowerCAmelCase_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): lowerCAmelCase_ = int(lowercase_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = labels return self.pre_processor( [text] * len(lowercase_ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def _lowercase ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
def lowerCamelCase ( a_ , a_ ) -> int: return int(input_a == input_a == 0 ) def lowerCamelCase ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 1_0_0 , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: lowerCAmelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate lowerCAmelCase_ = audio_length_in_s * self.unet.config.sample_rate lowerCAmelCase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCAmelCase_ = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowerCAmelCase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCAmelCase_ = int(lowercase_ ) lowerCAmelCase_ = next(iter(self.unet.parameters() ) ).dtype lowerCAmelCase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowerCAmelCase_ = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCAmelCase_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCAmelCase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
def lowerCamelCase ( a_ = 50 ) -> int: lowerCAmelCase_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
14
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase ( a_ , a_ , a_ ) -> Any: lowerCAmelCase_ = state_dict.pop(a_ ) lowerCAmelCase_ = val def lowerCamelCase ( a_ ) -> Optional[int]: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase_ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) lowerCAmelCase_ = value else: lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_=False ) -> Dict: lowerCAmelCase_ = '' if is_panoptic: lowerCAmelCase_ = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:256, :] lowerCAmelCase_ = in_proj_bias[:256] lowerCAmelCase_ = in_proj_weight[256:512, :] lowerCAmelCase_ = in_proj_bias[256:512] lowerCAmelCase_ = in_proj_weight[-256:, :] lowerCAmelCase_ = in_proj_bias[-256:] def lowerCamelCase ( ) -> Tuple: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCAmelCase_ = 'resnet101' if "dc5" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = 'panoptic' in model_name if is_panoptic: lowerCAmelCase_ = 250 else: lowerCAmelCase_ = 91 lowerCAmelCase_ = 'huggingface/label-files' lowerCAmelCase_ = 'coco-detection-id2label.json' lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor lowerCAmelCase_ = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase_ = ConditionalDetrImageProcessor(format=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ) lowerCAmelCase_ = encoding['pixel_values'] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub lowerCAmelCase_ = torch.hub.load('DeppMeng/ConditionalDETR' , a_ , pretrained=a_ ).eval() lowerCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCAmelCase_ = 'conditional_detr.' + src rename_key(a_ , a_ , a_ ) lowerCAmelCase_ = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase_ = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase_ = state_dict.pop(a_ ) lowerCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase_ = state_dict.pop(a_ ) lowerCAmelCase_ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase_ = state_dict.pop(a_ ) lowerCAmelCase_ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase_ = state_dict.pop(a_ ) lowerCAmelCase_ = val # finally, create HuggingFace model and load state dict lowerCAmelCase_ = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion lowerCAmelCase_ = conditional_detr(a_ ) lowerCAmelCase_ = model(a_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a_ ( a_ ): '''simple docstring''' __a: torch.FloatTensor class a_ ( a_ , a_ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (6_4,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 2_5_6 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = 0.1_82_15 , lowercase_ = "group" , ) -> Any: '''simple docstring''' super().__init__() # pass init params to Encoder lowerCAmelCase_ = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) lowerCAmelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 ) lowerCAmelCase_ = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_ ) lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 ) # pass init params to Decoder lowerCAmelCase_ = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , ) @apply_forward_hook def _lowercase ( self , lowercase_ , lowercase_ = True ) -> VQEncoderOutput: '''simple docstring''' lowerCAmelCase_ = self.encoder(lowercase_ ) lowerCAmelCase_ = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowercase ( self , lowercase_ , lowercase_ = False , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.quantize(lowercase_ ) else: lowerCAmelCase_ = h lowerCAmelCase_ = self.post_quant_conv(lowercase_ ) lowerCAmelCase_ = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' lowerCAmelCase_ = sample lowerCAmelCase_ = self.encode(lowercase_ ).latents lowerCAmelCase_ = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=6_4 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_=[1, 1_6, 4, 4] , lowercase_=None , ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = scope lowerCAmelCase_ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ = (self.image_size // 3_2) ** 2 lowerCAmelCase_ = num_patches + 1 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 1_6, 3_2], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase_ , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = ViTHybridModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = ViTHybridForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __a: List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __a: Optional[Any] = False __a: Optional[int] = False __a: str = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = ViTHybridModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = _config_zero_init(lowercase_ ) for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(config=lowercase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = ViTHybridModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> int: lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase_ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**lowercase_ ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow @require_accelerate def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) lowerCAmelCase_ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=lowercase_ , return_tensors='pt' ) lowerCAmelCase_ = model(**lowercase_ ) lowerCAmelCase_ = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCamelCase_ = (7_2_0, 1_2_8_0) # Height, Width lowerCamelCase_ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCamelCase_ = 1 / 1_0_0 lowerCamelCase_ = """""" lowerCamelCase_ = """""" lowerCamelCase_ = """""" lowerCamelCase_ = 2_5_0 def lowerCamelCase ( ) -> None: lowerCAmelCase_ , lowerCAmelCase_ = get_dataset(a_ , a_ ) for index in range(a_ ): lowerCAmelCase_ = random.sample(range(len(a_ ) ) , 4 ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = update_image_and_anno( a_ , a_ , a_ , a_ , a_ , filter_scale=a_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase_ = random_chars(32 ) lowerCAmelCase_ = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCAmelCase_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , a_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowerCAmelCase_ = [] for anno in new_annos: lowerCAmelCase_ = anno[3] - anno[1] lowerCAmelCase_ = anno[4] - anno[2] lowerCAmelCase_ = anno[1] + width / 2 lowerCAmelCase_ = anno[2] + height / 2 lowerCAmelCase_ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(a_ ) with open(F'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase ( a_ , a_ ) -> tuple[list, list]: lowerCAmelCase_ = [] lowerCAmelCase_ = [] for label_file in glob.glob(os.path.join(a_ , '*.txt' ) ): lowerCAmelCase_ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(a_ ) as in_file: lowerCAmelCase_ = in_file.readlines() lowerCAmelCase_ = os.path.join(a_ , F'''{label_name}.jpg''' ) lowerCAmelCase_ = [] for obj_list in obj_lists: lowerCAmelCase_ = obj_list.rstrip('\n' ).split(' ' ) lowerCAmelCase_ = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase_ = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase_ = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(a_ ) labels.append(a_ ) return img_paths, labels def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ , a_ = 0.0 , ) -> tuple[list, list, str]: lowerCAmelCase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ = int(scale_x * output_size[1] ) lowerCAmelCase_ = int(scale_y * output_size[0] ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for i, index in enumerate(a_ ): lowerCAmelCase_ = all_img_list[index] path_list.append(a_ ) lowerCAmelCase_ = all_annos[index] lowerCAmelCase_ = cva.imread(a_ ) if i == 0: # top-left lowerCAmelCase_ = cva.resize(a_ , (divid_point_x, divid_point_y) ) lowerCAmelCase_ = img for bbox in img_annos: lowerCAmelCase_ = bbox[1] * scale_x lowerCAmelCase_ = bbox[2] * scale_y lowerCAmelCase_ = bbox[3] * scale_x lowerCAmelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase_ = cva.resize(a_ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase_ = img for bbox in img_annos: lowerCAmelCase_ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ = bbox[2] * scale_y lowerCAmelCase_ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase_ = cva.resize(a_ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ = img for bbox in img_annos: lowerCAmelCase_ = bbox[1] * scale_x lowerCAmelCase_ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ = bbox[3] * scale_x lowerCAmelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase_ = cva.resize( a_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ = img for bbox in img_annos: lowerCAmelCase_ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( a_ ) -> str: assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase_ = ascii_lowercase + digits return "".join(random.choice(a_ ) for _ in range(a_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import os import sys import unittest lowerCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase_ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowerCamelCase_ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = get_test_to_tester_mapping(lowercase_ ) lowerCAmelCase_ = get_test_to_tester_mapping(lowercase_ ) lowerCAmelCase_ = {'BertModelTest': 'BertModelTester'} lowerCAmelCase_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = get_model_to_test_mapping(lowercase_ ) lowerCAmelCase_ = get_model_to_test_mapping(lowercase_ ) lowerCAmelCase_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowerCAmelCase_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = get_model_to_tester_mapping(lowercase_ ) lowerCAmelCase_ = get_model_to_tester_mapping(lowercase_ ) lowerCAmelCase_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowerCAmelCase_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ) , lowercase_ )
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCamelCase_ = """sshleifer/bart-tiny-random""" lowerCamelCase_ = """patrickvonplaten/t5-tiny-random""" @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Tuple: '''simple docstring''' return AutoConfig.from_pretrained(lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , *lowerCAmelCase_ = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self ) -> int: '''simple docstring''' with self.assertRaises(lowercase_ ): create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=lowercase_ , d=lowercase_ )
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a_ ( a_ ): '''simple docstring''' __a: List[Any] = '''yolos''' def __init__( self , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=[5_1_2, 8_6_4] , lowercase_=1_6 , lowercase_=3 , lowercase_=True , lowercase_=1_0_0 , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> int: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = num_detection_tokens lowerCAmelCase_ = use_mid_position_embeddings lowerCAmelCase_ = auxiliary_loss # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient class a_ ( a_ ): '''simple docstring''' __a: Tuple = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-4 @property def _lowercase ( self ) -> int: '''simple docstring''' return 1_2
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import heapq import sys import numpy as np lowerCamelCase_ = tuple[int, int] class a_ : '''simple docstring''' def __init__( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = set() def _lowercase ( self ) -> str: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('inf' ) def _lowercase ( self ) -> Dict: '''simple docstring''' return len(self.elements ) == 0 def _lowercase ( self , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowercase_ ) else: # update # print("update", item) lowerCAmelCase_ = [] ((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if item in self.set: self.set.remove(lowercase_ ) lowerCAmelCase_ = [] ((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowercase ( self ) -> str: '''simple docstring''' return self.elements[0][1] def _lowercase ( self ) -> Tuple: '''simple docstring''' ((lowerCAmelCase_) , (lowerCAmelCase_)) = heapq.heappop(self.elements ) self.set.remove(lowercase_ ) return (priority, item) def lowerCamelCase ( a_ , a_ ) -> List[str]: # euclidean distance lowerCAmelCase_ = np.array(a_ ) lowerCAmelCase_ = np.array(a_ ) return np.linalg.norm(a - b ) def lowerCamelCase ( a_ , a_ ) -> Optional[Any]: # integer division by time variable return consistent_heuristic(a_ , a_ ) // t def lowerCamelCase ( a_ , a_ ) -> List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]: lowerCAmelCase_ = g_function[start] + Wa * heuristics[i](a_ , a_ ) return ans def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = np.chararray((n, n) ) for i in range(a_ ): for j in range(a_ ): lowerCAmelCase_ = '*' for i in range(a_ ): for j in range(a_ ): if (j, (n - 1) - i) in blocks: lowerCAmelCase_ = '#' lowerCAmelCase_ = '-' lowerCAmelCase_ = back_pointer[goal] while x != start: ((lowerCAmelCase_) , (lowerCAmelCase_)) = x # print(x) lowerCAmelCase_ = '-' lowerCAmelCase_ = back_pointer[x] lowerCAmelCase_ = '-' for i in range(a_ ): for j in range(a_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase_ = back_pointer[goal] while x != start: print(a_ , end=' ' ) lowerCAmelCase_ = back_pointer[x] print(a_ ) sys.exit() def lowerCamelCase ( a_ ) -> List[str]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]: for itera in range(a_ ): open_list[itera].remove_element(a_ ) # print("s", s) # print("j", j) ((lowerCAmelCase_) , (lowerCAmelCase_)) = s lowerCAmelCase_ = (x - 1, y) lowerCAmelCase_ = (x + 1, y) lowerCAmelCase_ = (x, y + 1) lowerCAmelCase_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(a_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(a_ ) lowerCAmelCase_ = -1 lowerCAmelCase_ = float('inf' ) if valid(a_ ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase_ = g_function[s] + 1 lowerCAmelCase_ = s if neighbours not in close_list_anchor: open_list[0].put(a_ , key(a_ , 0 , a_ , a_ ) ) if neighbours not in close_list_inad: for var in range(1 , a_ ): if key(a_ , a_ , a_ , a_ ) <= Wa * key( a_ , 0 , a_ , a_ ): open_list[j].put( a_ , key(a_ , a_ , a_ , a_ ) ) def lowerCamelCase ( ) -> Union[str, Any]: lowerCAmelCase_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCamelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCamelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] lowerCamelCase_ = make_common_ground() lowerCamelCase_ = blocks_blk # hyper parameters lowerCamelCase_ = 1 lowerCamelCase_ = 1 lowerCamelCase_ = 2_0 lowerCamelCase_ = 3 # one consistent and two other inconsistent # start and end destination lowerCamelCase_ = (0, 0) lowerCamelCase_ = (n - 1, n - 1) lowerCamelCase_ = 1 def lowerCamelCase ( a_ , a_ , a_ ) -> List[Any]: lowerCAmelCase_ = {start: 0, goal: float('inf' )} lowerCAmelCase_ = {start: -1, goal: -1} lowerCAmelCase_ = [] lowerCAmelCase_ = set() for i in range(a_ ): open_list.append(PriorityQueue() ) open_list[i].put(a_ , key(a_ , a_ , a_ , a_ ) ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , a_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(a_ , a_ , a_ ) else: lowerCAmelCase_ , lowerCAmelCase_ = open_list[i].top_show() visited.add(a_ ) expand_state( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) close_list_inad.append(a_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(a_ , a_ , a_ ) else: lowerCAmelCase_ = open_list[0].top_show() visited.add(a_ ) expand_state( a_ , 0 , a_ , a_ , a_ , a_ , a_ , a_ , ) close_list_anchor.append(a_ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(a_ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase ( a_ , a_ ) -> int: if "xprophetnet" in prophetnet_checkpoint_path: lowerCAmelCase_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = XLMProphetNetForConditionalGeneration.from_pretrained( a_ , output_loading_info=a_ ) else: lowerCAmelCase_ = ProphetNetForConditionalGenerationOld.from_pretrained(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = ProphetNetForConditionalGeneration.from_pretrained( a_ , output_loading_info=a_ ) lowerCAmelCase_ = ['key_proj', 'value_proj', 'query_proj'] lowerCAmelCase_ = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: lowerCAmelCase_ = key.split('.' ) if attributes[0] == "lm_head": lowerCAmelCase_ = prophet lowerCAmelCase_ = prophet_old else: lowerCAmelCase_ = prophet.prophetnet lowerCAmelCase_ = prophet_old.model lowerCAmelCase_ = False for attribute in attributes: if attribute in mapping: lowerCAmelCase_ = mapping[attribute] if not hasattr(a_ , a_ ) and len(a_ ) > 0: lowerCAmelCase_ = attribute elif hasattr(a_ , a_ ): lowerCAmelCase_ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCAmelCase_ = old_model.weight logger.info(F'''{attribute} is initialized.''' ) lowerCAmelCase_ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCAmelCase_ = old_model.bias logger.info(F'''{attribute} is initialized''' ) lowerCAmelCase_ = True break elif attribute in special_keys and hasattr(a_ , 'in_proj_weight' ): lowerCAmelCase_ = old_model.in_proj_weight.shape[0] // 3 lowerCAmelCase_ = getattr(a_ , a_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCAmelCase_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCAmelCase_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCAmelCase_ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCAmelCase_ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCAmelCase_ = True break if attribute.isdigit(): lowerCAmelCase_ = model[int(a_ )] lowerCAmelCase_ = old_model[int(a_ )] else: lowerCAmelCase_ = getattr(a_ , a_ ) if old_attribute == "": lowerCAmelCase_ = old_model else: if not hasattr(a_ , a_ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) lowerCAmelCase_ = getattr(a_ , a_ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase_ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase_ = TaTokenizerFast lowerCamelCase_ = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase_ = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
14
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase ( ) -> int: lowerCAmelCase_ = 9 lowerCAmelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase_ = kruskal(a_ , a_ ) lowerCAmelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(a_ ) == sorted(a_ )
14
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase_ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowerCamelCase ( a_ , a_ , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , ) -> int: if attention_mask is None: lowerCAmelCase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=3_2 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ) -> Dict: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = initializer_range def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase_ = shift_tokens_right(lowercase_ , 1 , 2 ) lowerCAmelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) lowerCAmelCase_ = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = 2_0 lowerCAmelCase_ = model_class_name(lowercase_ ) lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase_ , lowerCAmelCase_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowerCAmelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) lowerCAmelCase_ = model.decode(lowercase_ , lowercase_ ) lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = 2_0 lowerCAmelCase_ = model_class_name(lowercase_ ) lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] ) lowerCAmelCase_ , lowerCAmelCase_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCAmelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowerCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCAmelCase_ = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' __a: str = 9_9 def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_config_and_data() lowerCAmelCase_ = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) lowerCAmelCase_ = lm_model(input_ids=lowercase_ ) lowerCAmelCase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCAmelCase_ = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) lowerCAmelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCAmelCase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase_ = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) lowerCAmelCase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCAmelCase_ = shift_tokens_right(lowercase_ , 1 , 2 ) lowerCAmelCase_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class a_ ( a_ , unittest.TestCase , a_ ): '''simple docstring''' __a: List[str] = True __a: Dict = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __a: Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = FlaxBlenderbotSmallModelTester(self ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowerCAmelCase_ = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest('JIT Enabled' ): lowerCAmelCase_ = encode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase_ = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ = model_class(lowercase_ ) lowerCAmelCase_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCAmelCase_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('JIT Enabled' ): lowerCAmelCase_ = decode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase_ = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase_ = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase_ = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCamelCase_ = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) lowerCamelCase_ = dataset.iloc[:, 1:2].values lowerCamelCase_ = dataset.iloc[:, 2].values lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCamelCase_ = PolynomialFeatures(degree=4) lowerCamelCase_ = poly_reg.fit_transform(X) lowerCamelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase ( ) -> List[str]: plt.scatter(a_ , a_ , color='red' ) plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=2 , lowercase_=5_6 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=2 , lowercase_=2 , lowercase_=7 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=4 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=2 , lowercase_=3 , ) -> str: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_attention_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_choices lowerCAmelCase_ = rescale_embeddings lowerCAmelCase_ = attention_type lowerCAmelCase_ = use_bias lowerCAmelCase_ = block_size lowerCAmelCase_ = num_random_blocks def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_attention_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Union[str, Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __a: Any = False __a: Dict = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self ) -> Dict: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().test_hidden_states_output() @slow def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowerCAmelCase_ = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest('JIT Enabled' ): lowerCAmelCase_ = model_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase_ = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=1e-5 , lowercase_="outputs" , lowercase_=None ) -> Optional[int]: '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
14
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class a_ ( a_ ): '''simple docstring''' __a: List[Any] = '''detr''' __a: Optional[Any] = ['''past_key_values'''] __a: Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Union[str, Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase_ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = backbone_config.get('model_type' ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None, None, None lowerCAmelCase_ = use_timm_backbone lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_queries lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = backbone lowerCAmelCase_ = use_pretrained_backbone lowerCAmelCase_ = dilation # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _lowercase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _lowercase ( self ) -> int: '''simple docstring''' return self.d_model @classmethod def _lowercase ( cls , lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return cls(backbone_config=lowercase_ , **lowercase_ ) def _lowercase ( self ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output class a_ ( a_ ): '''simple docstring''' __a: List[Any] = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-5 @property def _lowercase ( self ) -> int: '''simple docstring''' return 1_2
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase ( a_ , a_ , a_ = False ) -> list[float]: if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def lowerCamelCase ( a_ , a_ , a_ = 10**-1 ) -> bool: lowerCAmelCase_ = cross(a_ , a_ ) lowerCAmelCase_ = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase_ = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase_ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase_ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) lowerCamelCase_ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
from collections import Counter from timeit import timeit def lowerCamelCase ( a_ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowerCamelCase ( a_ = "" ) -> bool: if len(a_ ) == 0: return True lowerCAmelCase_ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase_ = {} for character in lower_case_input_str: lowerCAmelCase_ = character_freq_dict.get(a_ , 0 ) + 1 lowerCAmelCase_ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase ( a_ = "" ) -> None: print('\nFor string = ' , a_ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(a_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(a_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowerCamelCase_ = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCamelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase_ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: TreeNode | None = None __a: TreeNode | None = None lowerCamelCase_ = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase ( a_ ) -> int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.left ) lowerCAmelCase_ , lowerCAmelCase_ = get_distrib(node.right ) lowerCAmelCase_ = 1 - left_distrib_excess lowerCAmelCase_ = 1 - right_distrib_excess lowerCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) lowerCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
import operator as op def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = lambda a_ , a_ : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(a_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' ) else: lowerCAmelCase_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' ) lowerCAmelCase_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' ) stack.append( str(opr[x](int(a_ ) , int(a_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(a_ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase_ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") lowerCamelCase_ = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) lowerCamelCase_ = """|""".join(sys.argv[1:]) lowerCamelCase_ = re.compile(rf'''^({joined_dirs}).*?\.py$''') lowerCamelCase_ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = '''mask2former''' __a: Tuple = ['''swin'''] __a: Any = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowercase_ = None , lowercase_ = 2_5_6 , lowercase_ = 2_5_6 , lowercase_ = 2_5_6 , lowercase_ = 1_0_2_4 , lowercase_ = "relu" , lowercase_ = 6 , lowercase_ = 1_0 , lowercase_ = 8 , lowercase_ = 0.0 , lowercase_ = 2_0_4_8 , lowercase_ = False , lowercase_ = False , lowercase_ = 4 , lowercase_ = 2_5_5 , lowercase_ = 1_0_0 , lowercase_ = 0.1 , lowercase_ = 2.0 , lowercase_ = 5.0 , lowercase_ = 5.0 , lowercase_ = 1_2_5_4_4 , lowercase_ = 3.0 , lowercase_ = 0.75 , lowercase_ = 0.02 , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = [4, 8, 1_6, 3_2] , lowercase_ = None , **lowercase_ , ) -> str: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) lowerCAmelCase_ = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = backbone_config.pop('model_type' ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) lowerCAmelCase_ = backbone_config lowerCAmelCase_ = feature_size lowerCAmelCase_ = mask_feature_size lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = encoder_feedforward_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = dim_feedforward lowerCAmelCase_ = pre_norm lowerCAmelCase_ = enforce_input_projection lowerCAmelCase_ = common_stride lowerCAmelCase_ = ignore_value lowerCAmelCase_ = num_queries lowerCAmelCase_ = no_object_weight lowerCAmelCase_ = class_weight lowerCAmelCase_ = mask_weight lowerCAmelCase_ = dice_weight lowerCAmelCase_ = train_num_points lowerCAmelCase_ = oversample_ratio lowerCAmelCase_ = importance_sample_ratio lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = use_auxiliary_loss lowerCAmelCase_ = feature_strides lowerCAmelCase_ = output_auxiliary_logits lowerCAmelCase_ = decoder_layers super().__init__(**lowercase_ ) @classmethod def _lowercase ( cls , lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' return cls( backbone_config=lowercase_ , **lowercase_ , ) def _lowercase ( self ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
def lowerCamelCase ( a_ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): lowerCAmelCase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_ ) -> int: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) lowerCAmelCase_ = eval_examples lowerCAmelCase_ = post_process_function def _lowercase ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: '''simple docstring''' lowerCAmelCase_ = gen_kwargs.copy() lowerCAmelCase_ = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) lowerCAmelCase_ = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) lowerCAmelCase_ = gen_kwargs lowerCAmelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase_ = self.get_eval_dataloader(lowercase_ ) lowerCAmelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase_ = self.compute_metrics lowerCAmelCase_ = None lowerCAmelCase_ = time.time() lowerCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase_ = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowerCAmelCase_ = compute_metrics lowerCAmelCase_ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase_ = self.post_process_function(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCAmelCase_ = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: lowerCAmelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = gen_kwargs.copy() lowerCAmelCase_ = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase_ = self.compute_metrics lowerCAmelCase_ = None lowerCAmelCase_ = time.time() lowerCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase_ = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowerCAmelCase_ = compute_metrics lowerCAmelCase_ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase_ = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict' ) lowerCAmelCase_ = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowerCAmelCase_ = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
import requests from bsa import BeautifulSoup def lowerCamelCase ( a_ , a_ ) -> str: lowerCAmelCase_ = BeautifulSoup(requests.get(a_ , params=a_ ).content , 'html.parser' ) lowerCAmelCase_ = soup.find('div' , attrs={'class': 'gs_ri'} ) lowerCAmelCase_ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCamelCase_ = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase_ = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class a_ ( unittest.TestCase , a_ ): '''simple docstring''' def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = load_tool('text-question-answering' ) self.tool.setup() lowerCAmelCase_ = load_tool('text-question-answering' , remote=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = self.tool(lowercase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.remote_tool(lowercase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = self.tool(text=lowercase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.remote_tool(text=lowercase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowercase_ , 'launched the BigScience Research Workshop' )
14
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
1
from __future__ import annotations lowerCamelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCamelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def lowerCamelCase ( a_ ) -> list[float]: lowerCAmelCase_ = [] lowerCAmelCase_ = len(a_ ) for i in range(a_ ): lowerCAmelCase_ = -1 for j in range(i + 1 , a_ ): if arr[i] < arr[j]: lowerCAmelCase_ = arr[j] break result.append(a_ ) return result def lowerCamelCase ( a_ ) -> list[float]: lowerCAmelCase_ = [] for i, outer in enumerate(a_ ): lowerCAmelCase_ = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase_ = inner break result.append(a_ ) return result def lowerCamelCase ( a_ ) -> list[float]: lowerCAmelCase_ = len(a_ ) lowerCAmelCase_ = [] lowerCAmelCase_ = [-1] * arr_size for index in reversed(range(a_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase_ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = """▁""" lowerCamelCase_ = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowerCamelCase_ = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class a_ ( a_ ): '''simple docstring''' __a: List[str] = VOCAB_FILES_NAMES __a: Tuple = PRETRAINED_VOCAB_FILES_MAP __a: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Any = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase_ , lowercase_="</s>" , lowercase_="<unk>" , lowercase_=[] , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def _lowercase ( self ) -> Any: '''simple docstring''' return self.sp_model.get_piece_size() def _lowercase ( self ) -> Dict[str, int]: '''simple docstring''' lowerCAmelCase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' return self.sp_model.piece_to_id(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCAmelCase_ = self.sp_model.IdToPiece(lowercase_ ) return token def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
14
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
1
def lowerCamelCase ( a_ , a_ ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def lowerCamelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Dict = BarthezTokenizer __a: str = BarthezTokenizerFast __a: List[Any] = True __a: Any = True def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() lowerCAmelCase_ = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowercase_ ) lowerCAmelCase_ = tokenizer def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = '<pad>' lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1_0_1_1_2_2 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowerCAmelCase_ = self.tokenizer( lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ = tokenizer.tokenize(lowercase_ ) lowerCAmelCase_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(lowercase_ ) lowerCAmelCase_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = {'input_ids': [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase_ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowercase_ , )
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
from sklearn.metrics import fa_score import datasets lowerCamelCase_ = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ lowerCamelCase_ = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ lowerCamelCase_ = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None ) -> Any: '''simple docstring''' lowerCAmelCase_ = fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
14
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase_ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowerCamelCase_ = { """RUCAIBox/mvp""": 1_0_2_4, } class a_ ( a_ ): '''simple docstring''' __a: Dict = VOCAB_FILES_NAMES __a: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: List[str] = ['''input_ids''', '''attention_mask'''] __a: List[str] = MvpTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="replace" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> int: '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = pre_tok_class(**lowercase_ ) lowerCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ = 'post_processor' lowerCAmelCase_ = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: lowerCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase_ = tuple(state['cls'] ) lowerCAmelCase_ = False if state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = True if state.get('trim_offsets' , lowercase_ ) != trim_offsets: lowerCAmelCase_ = trim_offsets lowerCAmelCase_ = True if changes_to_apply: lowerCAmelCase_ = getattr(lowercase_ , state.pop('type' ) ) lowerCAmelCase_ = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def _lowercase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value lowerCAmelCase_ = value def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ = kwargs.get('is_split_into_words' , lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( a_ ): '''simple docstring''' __a: Tuple = ['''image_processor''', '''tokenizer'''] __a: Union[str, Any] = '''AutoImageProcessor''' __a: str = '''AutoTokenizer''' def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) lowerCAmelCase_ = kwargs.pop('feature_extractor' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.image_processor lowerCAmelCase_ = False def __call__( self , *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) lowerCAmelCase_ = kwargs.pop('images' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: lowerCAmelCase_ = args[0] lowerCAmelCase_ = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowerCAmelCase_ = self.image_processor(lowercase_ , *lowercase_ , **lowercase_ ) if text is not None: lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase_ = encodings['input_ids'] return inputs def _lowercase ( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def _lowercase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer yield lowerCAmelCase_ = self.image_processor lowerCAmelCase_ = False def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=None ) -> List[str]: '''simple docstring''' if added_vocab is None: lowerCAmelCase_ = self.tokenizer.get_added_vocab() lowerCAmelCase_ = {} while tokens: lowerCAmelCase_ = re.search(R'<s_(.*?)>' , lowercase_ , re.IGNORECASE ) if start_token is None: break lowerCAmelCase_ = start_token.group(1 ) lowerCAmelCase_ = re.search(Rf'''</s_{key}>''' , lowercase_ , re.IGNORECASE ) lowerCAmelCase_ = start_token.group() if end_token is None: lowerCAmelCase_ = tokens.replace(lowercase_ , '' ) else: lowerCAmelCase_ = end_token.group() lowerCAmelCase_ = re.escape(lowercase_ ) lowerCAmelCase_ = re.escape(lowercase_ ) lowerCAmelCase_ = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , lowercase_ , re.IGNORECASE ) if content is not None: lowerCAmelCase_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase_ = self.tokenajson(lowercase_ , is_inner_value=lowercase_ , added_vocab=lowercase_ ) if value: if len(lowercase_ ) == 1: lowerCAmelCase_ = value[0] lowerCAmelCase_ = value else: # leaf nodes lowerCAmelCase_ = [] for leaf in content.split(R'<sep/>' ): lowerCAmelCase_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase_ = leaf[1:-2] # for categorical special tokens output[key].append(lowercase_ ) if len(output[key] ) == 1: lowerCAmelCase_ = output[key][0] lowerCAmelCase_ = tokens[tokens.find(lowercase_ ) + len(lowercase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase_ , added_vocab=lowercase_ ) if len(lowercase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _lowercase ( self ) -> int: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } lowerCamelCase_ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } lowerCamelCase_ = { """ctrl""": 2_5_6, } lowerCamelCase_ = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = set() lowerCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase_ = char lowerCAmelCase_ = set(a_ ) return pairs class a_ ( a_ ): '''simple docstring''' __a: Dict = VOCAB_FILES_NAMES __a: int = PRETRAINED_VOCAB_FILES_MAP __a: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Tuple = CONTROL_CODES def __init__( self , lowercase_ , lowercase_ , lowercase_="<unk>" , **lowercase_ ) -> int: '''simple docstring''' super().__init__(unk_token=lowercase_ , **lowercase_ ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase_ = json.load(lowercase_ ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: lowerCAmelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase_ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase_ = {} @property def _lowercase ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def _lowercase ( self ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ = tuple(lowercase_ ) lowerCAmelCase_ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCAmelCase_ = get_pairs(lowercase_ ) if not pairs: return token while True: lowerCAmelCase_ = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ = bigram lowerCAmelCase_ = [] lowerCAmelCase_ = 0 while i < len(lowercase_ ): try: lowerCAmelCase_ = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ = tuple(lowercase_ ) lowerCAmelCase_ = new_word if len(lowercase_ ) == 1: break else: lowerCAmelCase_ = get_pairs(lowercase_ ) lowerCAmelCase_ = '@@ '.join(lowercase_ ) lowerCAmelCase_ = word[:-4] lowerCAmelCase_ = word return word def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = re.findall(R'\S+\n?' , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) ) return split_tokens def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' return self.decoder.get(lowercase_ , self.unk_token ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = ' '.join(lowercase_ ).replace('@@ ' , '' ).strip() return out_string def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase_ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) lowerCAmelCase_ = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase_ = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict['encoder.conv_in.weight'] lowerCAmelCase_ = vae_state_dict['encoder.conv_in.bias'] lowerCAmelCase_ = vae_state_dict['encoder.conv_out.weight'] lowerCAmelCase_ = vae_state_dict['encoder.conv_out.bias'] lowerCAmelCase_ = vae_state_dict['encoder.norm_out.weight'] lowerCAmelCase_ = vae_state_dict['encoder.norm_out.bias'] lowerCAmelCase_ = vae_state_dict['decoder.conv_in.weight'] lowerCAmelCase_ = vae_state_dict['decoder.conv_in.bias'] lowerCAmelCase_ = vae_state_dict['decoder.conv_out.weight'] lowerCAmelCase_ = vae_state_dict['decoder.conv_out.bias'] lowerCAmelCase_ = vae_state_dict['decoder.norm_out.weight'] lowerCAmelCase_ = vae_state_dict['decoder.norm_out.bias'] lowerCAmelCase_ = vae_state_dict['quant_conv.weight'] lowerCAmelCase_ = vae_state_dict['quant_conv.bias'] lowerCAmelCase_ = vae_state_dict['post_quant_conv.weight'] lowerCAmelCase_ = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(a_ ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(a_ ) } for i in range(a_ ): lowerCAmelCase_ = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) lowerCAmelCase_ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) lowerCAmelCase_ = renew_vae_resnet_paths(a_ ) lowerCAmelCase_ = {'old': F'''down.{i}.block''', 'new': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) lowerCAmelCase_ = [key for key in vae_state_dict if 'encoder.mid.block' in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] lowerCAmelCase_ = renew_vae_resnet_paths(a_ ) lowerCAmelCase_ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) lowerCAmelCase_ = [key for key in vae_state_dict if 'encoder.mid.attn' in key] lowerCAmelCase_ = renew_vae_attention_paths(a_ ) lowerCAmelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) for i in range(a_ ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] lowerCAmelCase_ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] lowerCAmelCase_ = renew_vae_resnet_paths(a_ ) lowerCAmelCase_ = {'old': F'''up.{block_id}.block''', 'new': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) lowerCAmelCase_ = [key for key in vae_state_dict if 'decoder.mid.block' in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] lowerCAmelCase_ = renew_vae_resnet_paths(a_ ) lowerCAmelCase_ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) lowerCAmelCase_ = [key for key in vae_state_dict if 'decoder.mid.attn' in key] lowerCAmelCase_ = renew_vae_attention_paths(a_ ) lowerCAmelCase_ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) return new_checkpoint def lowerCamelCase ( a_ , a_ , ) -> List[Any]: # Only support V1 lowerCAmelCase_ = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(a_ ) lowerCAmelCase_ = 512 lowerCAmelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(a_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(a_ ) else: lowerCAmelCase_ = torch.load(a_ , map_location=a_ )['state_dict'] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(a_ , image_size=a_ ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(a_ , a_ ) lowerCAmelCase_ = AutoencoderKL(**a_ ) vae.load_state_dict(a_ ) vae.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
def lowerCamelCase ( a_ , a_ ) -> str: if not (isinstance(a_ , a_ ) and isinstance(a_ , a_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) lowerCAmelCase_ = len(a_ ) lowerCAmelCase_ = len(a_ ) lowerCAmelCase_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowerCAmelCase_ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowerCAmelCase_ = i lowerCAmelCase_ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False , a_=False , a_=False ) -> List[str]: lowerCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase ( a_ , a_ ) -> List[Any]: for i in range(config.num_hidden_layers ): lowerCAmelCase_ = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( a_ ) -> Dict: lowerCAmelCase_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a_ , a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Any: lowerCAmelCase_ = dct.pop(a_ ) lowerCAmelCase_ = val @torch.no_grad() def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=a_ ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False if "vqa" in checkpoint_url: lowerCAmelCase_ = True lowerCAmelCase_ = 3_129 lowerCAmelCase_ = 'huggingface/label-files' lowerCAmelCase_ = 'vqa2-id2label.json' lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = ViltForQuestionAnswering(a_ ) elif "nlvr" in checkpoint_url: lowerCAmelCase_ = True lowerCAmelCase_ = 2 lowerCAmelCase_ = {0: 'False', 1: 'True'} lowerCAmelCase_ = {v: k for k, v in config.idalabel.items()} lowerCAmelCase_ = 3 lowerCAmelCase_ = ViltForImagesAndTextClassification(a_ ) elif "irtr" in checkpoint_url: lowerCAmelCase_ = True lowerCAmelCase_ = ViltForImageAndTextRetrieval(a_ ) elif "mlm_itm" in checkpoint_url: lowerCAmelCase_ = True lowerCAmelCase_ = ViltForMaskedLM(a_ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ , map_location='cpu' )['state_dict'] lowerCAmelCase_ = create_rename_keys(a_ , a_ , a_ , a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ ) if mlm_model or irtr_model: lowerCAmelCase_ = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a_ , a_ ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a_ ) # Define processor lowerCAmelCase_ = ViltImageProcessor(size=384 ) lowerCAmelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase_ = ViltProcessor(a_ , a_ ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCAmelCase_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a_ ).raw ) lowerCAmelCase_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a_ ).raw ) lowerCAmelCase_ = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' ) lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' ) lowerCAmelCase_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCAmelCase_ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a_ ).raw ) if mlm_model: lowerCAmelCase_ = 'a bunch of [MASK] laying on a [MASK].' else: lowerCAmelCase_ = 'How many cats are there?' lowerCAmelCase_ = processor(a_ , a_ , return_tensors='pt' ) lowerCAmelCase_ = model(**a_ ) # Verify outputs if mlm_model: lowerCAmelCase_ = torch.Size([1, 11, 30_522] ) lowerCAmelCase_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCAmelCase_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCAmelCase_ = torch.Size([1, 3_129] ) lowerCAmelCase_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 ) # verify vqa prediction equals "2" lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCAmelCase_ = torch.Size([1, 2] ) lowerCAmelCase_ = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a_ ).mkdir(exist_ok=a_ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase_ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Any = StableDiffusionControlNetImgaImgPipeline __a: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __a: List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a: int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) __a: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) lowerCAmelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = 2 lowerCAmelCase_ = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ) lowerCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self ) -> int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Union[str, Any] = StableDiffusionControlNetImgaImgPipeline __a: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __a: Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a: Optional[int] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(lowercase_ ): if isinstance(lowercase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Dict: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = 2 lowerCAmelCase_ = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), ] lowerCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) lowerCAmelCase_ = 10.0 lowerCAmelCase_ = 4 lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = steps lowerCAmelCase_ = scale lowerCAmelCase_ = pipe(**lowercase_ )[0] lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = steps lowerCAmelCase_ = scale lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = steps lowerCAmelCase_ = scale lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = steps lowerCAmelCase_ = scale lowerCAmelCase_ = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowercase ( self ) -> str: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase_ ) except NotImplementedError: pass @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=lowercase_ , controlnet=lowercase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase_ = 'evil space-punk bird' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) ) lowerCAmelCase_ = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) ) lowerCAmelCase_ = pipe( lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type='np' , num_inference_steps=5_0 , strength=0.6 , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase_ = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _lowercase ( cls ) -> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowerCAmelCase_ = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , repo_id='test-config' , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase_ = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowerCAmelCase_ = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='valid_org/test-config-org' , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase_ = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' CustomConfig.register_for_auto_class() lowerCAmelCase_ = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCAmelCase_ = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCAmelCase_ = c.n_embd + 1 # int lowerCAmelCase_ = c.resid_pdrop + 1.0 # float lowerCAmelCase_ = not c.scale_attn_weights # bool lowerCAmelCase_ = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowercase_ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowercase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowercase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowercase_ , c.summary_type , 'mismatch for key: summary_type' ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = PretrainedConfig() lowerCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase_ , lowercase_ )] if len(lowercase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {", ".join(lowercase_ )}.''' ) def _lowercase ( self ) -> int: '''simple docstring''' with self.assertRaises(lowercase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 5_0_0 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase_ ) as mock_head: lowerCAmelCase_ = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = AutoConfig.from_pretrained('bert-base-cased' ) lowerCAmelCase_ = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase_ ) lowerCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase_ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCAmelCase_ = ['config.42.0.0.json'] lowerCAmelCase_ = 7_6_8 configuration.save_pretrained(lowercase_ ) shutil.move(os.path.join(lowercase_ , 'config.4.0.0.json' ) , os.path.join(lowercase_ , 'config.42.0.0.json' ) ) lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCAmelCase_ = 'v4.0.0' lowerCAmelCase_ , lowerCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase_ , return_unused_kwargs=lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCAmelCase_ = 'v3.0.0' lowerCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ = "▁" , lowercase_ = True , lowercase_ = "<unk>" , lowercase_ = "</s>" , lowercase_ = "<pad>" , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCAmelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase_ = token_dict['token'] lowerCAmelCase_ = Tokenizer(Unigram() ) lowerCAmelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCAmelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase_ = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) lowerCAmelCase_ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCAmelCase_ = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = 8_0_0_0 , lowercase_ = True , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def _lowercase ( self , lowercase_ , lowercase_ = 8_0_0_0 , lowercase_ = True , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = json.loads(self._tokenizer.to_str() ) lowerCAmelCase_ = self.special_tokens['unk']['id'] lowerCAmelCase_ = Tokenizer.from_str(json.dumps(lowercase_ ) )
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import argparse import os import re lowerCamelCase_ = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCamelCase_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase_ = re.compile(r"""\[([^\]]+)\]""") def lowerCamelCase ( a_ ) -> Dict: lowerCAmelCase_ = _re_indent.search(a_ ) return "" if search is None else search.groups()[0] def lowerCamelCase ( a_ , a_="" , a_=None , a_=None ) -> int: lowerCAmelCase_ = 0 lowerCAmelCase_ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(a_ ): index += 1 lowerCAmelCase_ = ['\n'.join(lines[:index] )] else: lowerCAmelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ = [lines[index]] index += 1 while index < len(a_ ) and (end_prompt is None or not lines[index].startswith(a_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(a_ ) ) if index < len(a_ ) - 1: lowerCAmelCase_ = [lines[index + 1]] index += 1 else: lowerCAmelCase_ = [] else: blocks.append('\n'.join(a_ ) ) lowerCAmelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a_ ) > 0: blocks.append('\n'.join(a_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowerCamelCase ( a_ ) -> Tuple: def _inner(a_ ): return key(a_ ).lower().replace('_' , '' ) return _inner def lowerCamelCase ( a_ , a_=None ) -> List[str]: # If no key is provided, we use a noop. def noop(a_ ): return x if key is None: lowerCAmelCase_ = noop # Constants are all uppercase, they go first. lowerCAmelCase_ = [obj for obj in objects if key(a_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ = [obj for obj in objects if key(a_ )[0].isupper() and not key(a_ ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ = [obj for obj in objects if not key(a_ )[0].isupper()] lowerCAmelCase_ = ignore_underscore(a_ ) return sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) + sorted(a_ , key=a_ ) def lowerCamelCase ( a_ ) -> int: # This inner function sort imports between [ ]. def _replace(a_ ): lowerCAmelCase_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowerCAmelCase_ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(a_ )] ) + "]" lowerCAmelCase_ = import_statement.split('\n' ) if len(a_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase_ = [(i, _re_strip_line.search(a_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ = sort_objects(a_ , key=lambda a_ : x[1] ) lowerCAmelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ = keys[:-1] lowerCAmelCase_ = get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(a_ )] ) return "\n".join(a_ ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ = _re_bracket_content.sub(_replace , a_ ) return import_statement def lowerCamelCase ( a_ , a_=True ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ = split_code_in_indented_blocks( a_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ = main_blocks[block_idx] lowerCAmelCase_ = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase_ = 0 while line_idx < len(a_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ = len(a_ ) else: line_idx += 1 if line_idx >= len(a_ ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ = split_code_in_indented_blocks(a_ , indent_level=a_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ = [(pattern.search(a_ ).groups()[0] if pattern.search(a_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ = [(i, key) for i, key in enumerate(a_ ) if key is not None] lowerCAmelCase_ = [x[0] for x in sorted(a_ , key=lambda a_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ = 0 lowerCAmelCase_ = [] for i in range(len(a_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a_ ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a_ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(a_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(a_ ) ) def lowerCamelCase ( a_=True ) -> Dict: lowerCAmelCase_ = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: lowerCAmelCase_ = sort_imports(os.path.join(a_ , '__init__.py' ) , check_only=a_ ) if result: lowerCAmelCase_ = [os.path.join(a_ , '__init__.py' )] if len(a_ ) > 0: raise ValueError(F'''Would overwrite {len(a_ )} files, run `make style`.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[Any] = SpeechTaTokenizer __a: Union[str, Any] = False __a: Any = True def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = SpeechTaTokenizer(lowercase_ ) lowerCAmelCase_ = AddedToken('<mask>' , lstrip=lowercase_ , rstrip=lowercase_ ) lowerCAmelCase_ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = 'this is a test' lowerCAmelCase_ = 'this is a test' return input_text, output_text def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=2_0 , lowercase_=5 ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.get_input_output_texts(lowercase_ ) lowerCAmelCase_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return text, ids def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = '<pad>' lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(lowercase_ ) , 8_1 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase_ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase_ = tokenizer.add_tokens(lowercase_ ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) lowerCAmelCase_ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase_ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase_ = tokenizer.add_special_tokens(lowercase_ ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) lowerCAmelCase_ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' pass def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(lowercase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) lowerCAmelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ ) # fmt: off self.assertListEqual(lowercase_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off lowerCAmelCase_ = { 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowercase_ , )
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a_ , ) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = RobertaConfig __a: Any = '''roberta''' def __init__( self , lowercase_ ) -> Tuple: '''simple docstring''' super().__init__(lowercase_ ) lowerCAmelCase_ = RobertaEmbeddings(lowercase_ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , a_ , ) class a_ ( a_ ): '''simple docstring''' __a: Optional[int] = RobertaConfig __a: Union[str, Any] = '''roberta''' def __init__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowercase_ ) lowerCAmelCase_ = config.num_labels lowerCAmelCase_ = config.num_hidden_layers lowerCAmelCase_ = DeeRobertaModel(lowercase_ ) lowerCAmelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=-1 , lowercase_=False , ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.num_layers try: lowerCAmelCase_ = self.roberta( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , ) lowerCAmelCase_ = outputs[1] lowerCAmelCase_ = self.dropout(lowercase_ ) lowerCAmelCase_ = self.classifier(lowercase_ ) lowerCAmelCase_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase_ = e.message lowerCAmelCase_ = e.exit_layer lowerCAmelCase_ = outputs[0] if not self.training: lowerCAmelCase_ = entropy(lowercase_ ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase_ = MSELoss() lowerCAmelCase_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ = CrossEntropyLoss() lowerCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase_ = [] for highway_exit in outputs[-1]: lowerCAmelCase_ = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase_ = MSELoss() lowerCAmelCase_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ = CrossEntropyLoss() lowerCAmelCase_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase_ ) if train_highway: lowerCAmelCase_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase_ = (loss,) + outputs if not self.training: lowerCAmelCase_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) lowerCamelCase_ = """bert-base-cased""" lowerCamelCase_ = """fp16""" lowerCamelCase_ = """bf16""" lowerCamelCase_ = [FPaa, BFaa] @require_fsdp @require_cuda class a_ ( a_ ): '''simple docstring''' def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() lowerCAmelCase_ = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def _lowercase ( self ) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase_ ): lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = f'''{i + 1}''' lowerCAmelCase_ = strategy with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase_ ): lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = prefetch_policy with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _lowercase ( self ) -> int: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase_ ): lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = state_dict_type with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = AutoModel.from_pretrained(lowercase_ ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCAmelCase_ = 'BertLayer' elif policy == "SIZE_BASED_WRAP": lowerCAmelCase_ = '2000' with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = 'TRANSFORMER_BASED_WRAP' lowerCAmelCase_ = 'T5Layer' with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = 'SIZE_BASED_WRAP' lowerCAmelCase_ = '0' with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowercase ( self ) -> int: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = mp_dtype with mockenv_context(**lowercase_ ): lowerCAmelCase_ = Accelerator() if mp_dtype == "fp16": lowerCAmelCase_ = torch.floataa elif mp_dtype == "bf16": lowerCAmelCase_ = torch.bfloataa lowerCAmelCase_ = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCAmelCase_ = self.dist_env.copy() lowerCAmelCase_ = str(lowercase_ ).lower() with mockenv_context(**lowercase_ ): lowerCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) ) @require_fsdp @require_multi_gpu @slow class a_ ( a_ ): '''simple docstring''' def _lowercase ( self ) -> List[str]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 0.82 lowerCAmelCase_ = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] lowerCAmelCase_ = { 'multi_gpu_fp16': 3_2_0_0, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2_0_0_0, 'fsdp_full_shard_transformer_based_wrap_fp16': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCAmelCase_ = 1_6_0 lowerCAmelCase_ = 1_6_0 lowerCAmelCase_ = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_performance.py' ) lowerCAmelCase_ = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: lowerCAmelCase_ = cmd.copy() for i, strategy in enumerate(lowercase_ ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) lowerCAmelCase_ = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(lowercase_ ): lowerCAmelCase_ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue lowerCAmelCase_ = len(lowercase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCAmelCase_ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) lowerCAmelCase_ = cmd_config[:-1] lowerCAmelCase_ = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) lowerCAmelCase_ = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCAmelCase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(lowercase_ ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCamelCase_ = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } lowerCamelCase_ = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def lowerCamelCase ( a_ ) -> Optional[int]: lowerCAmelCase_ = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase_ = state_dict.pop(a_ ) # emb -> embedding if name.startswith('emb.' ): lowerCAmelCase_ = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowerCAmelCase_ = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowerCAmelCase_ = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a_ ) # ffn -> feed_forward lowerCAmelCase_ = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowerCAmelCase_ = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowerCAmelCase_ = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowerCAmelCase_ = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowerCAmelCase_ = 'rwkv.' + name lowerCAmelCase_ = weight return state_dict def lowerCamelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=False , a_=None ) -> Any: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowerCAmelCase_ = 50_277 lowerCAmelCase_ = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowerCAmelCase_ = PreTrainedTokenizerFast(tokenizer_file=a_ ) lowerCAmelCase_ = len(a_ ) tokenizer.save_pretrained(a_ ) # 2. Build the config lowerCAmelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase_ = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) lowerCAmelCase_ = RwkvConfig( vocab_size=a_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a_ ) # 3. Download model file then convert state_dict lowerCAmelCase_ = hf_hub_download(a_ , a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' ) lowerCAmelCase_ = convert_state_dict(a_ ) # 4. Split in shards and save lowerCAmelCase_ , lowerCAmelCase_ = shard_checkpoint(a_ ) for shard_file, shard in shards.items(): torch.save(a_ , os.path.join(a_ , a_ ) ) if index is not None: lowerCAmelCase_ = os.path.join(a_ , a_ ) # Save the index as well with open(a_ , 'w' , encoding='utf-8' ) as f: lowerCAmelCase_ = json.dumps(a_ , indent=2 , sort_keys=a_ ) + '\n' f.write(a_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowerCAmelCase_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase_ = torch.load(os.path.join(a_ , a_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a_ , a_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(a_ ) model.push_to_hub(a_ , max_shard_size='2GB' ) tokenizer.push_to_hub(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) lowerCamelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
import functools def lowerCamelCase ( a_ , a_ ) -> int: # Validation if not isinstance(a_ , a_ ) or not all(isinstance(a_ , a_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(a_ ) != 3 or not all(isinstance(a_ , a_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(a_ ) == 0: return 0 if min(a_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(a_ ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCAmelCase_ = set(a_ ) @functools.cache def dynamic_programming(a_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = KandinskyVaaPriorPipeline __a: int = ['''prompt'''] __a: str = ['''prompt''', '''negative_prompt'''] __a: int = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __a: Dict = False @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> Any: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> str: '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ) -> Dict: '''simple docstring''' return 1_0_0 @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowercase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def _lowercase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } lowerCAmelCase_ = PriorTransformer(**lowercase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCAmelCase_ = CLIPVisionModelWithProjection(lowercase_ ) return model @property def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.dummy_prior lowerCAmelCase_ = self.dummy_image_encoder lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = self.dummy_tokenizer lowerCAmelCase_ = self.dummy_image_processor lowerCAmelCase_ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) lowerCAmelCase_ = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = 'cpu' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**lowercase_ ) lowerCAmelCase_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowerCAmelCase_ = output.image_embeds lowerCAmelCase_ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] lowerCAmelCase_ = image[0, -1_0:] lowerCAmelCase_ = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCAmelCase_ = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = torch_device == 'cpu' lowerCAmelCase_ = True lowerCAmelCase_ = False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = torch_device == 'cpu' lowerCAmelCase_ = False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
14
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = torch.load(a_ , map_location='cpu' ) if "model" in sd.keys(): lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] # pop unnecessary weights lowerCAmelCase_ = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(a_ ) lowerCAmelCase_ = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase_ = sd.pop(a_ ) lowerCAmelCase_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCAmelCase_ = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase_ = key.replace('.qkv_proj.' , '.q_proj.' ) lowerCAmelCase_ = key.replace('.qkv_proj.' , '.k_proj.' ) lowerCAmelCase_ = key.replace('.qkv_proj.' , '.v_proj.' ) lowerCAmelCase_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = torch.split(a_ , depth // 3 , dim=0 ) lowerCAmelCase_ = q lowerCAmelCase_ = k lowerCAmelCase_ = v del sd[key] return sd @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_=None ) -> int: lowerCAmelCase_ = load_checkpoint(a_ ) if config is not None: lowerCAmelCase_ = OPTConfig.from_pretrained(a_ ) else: lowerCAmelCase_ = OPTConfig() lowerCAmelCase_ = OPTModel(a_ ).half().eval() model.load_state_dict(a_ ) # Check results Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowerCamelCase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def lowerCamelCase ( ) -> List[Any]: lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase_ = parser.parse_args() return args.f class a_ ( a_ ): '''simple docstring''' def _lowercase ( self ) -> None: '''simple docstring''' lowerCAmelCase_ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(lowercase_ , 'argv' , lowercase_ ): lowerCAmelCase_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowercase_ ) lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowercase_ ) lowerCAmelCase_ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowercase_ )
14
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
1
from math import factorial lowerCamelCase_ = {str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a_ ) ) def lowerCamelCase ( a_ = 60 , a_ = 1_000_000 ) -> int: if not isinstance(a_ , a_ ) or not isinstance(a_ , a_ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length lowerCAmelCase_ = 0 # the cached sizes of the previous chains lowerCAmelCase_ = {} for start_chain_element in range(1 , a_ ): # The temporary set will contain the elements of the chain lowerCAmelCase_ = set() lowerCAmelCase_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a_ ) chain_set_length += 1 lowerCAmelCase_ = digit_factorial_sum(a_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __a: Dict = KandinskyVaaPriorPipeline __a: List[Any] = ['''prompt'''] __a: str = ['''prompt''', '''negative_prompt'''] __a: str = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __a: List[Any] = False @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> str: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return 1_0_0 @property def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__a ) @property def _lowercase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } lowerCAmelCase_ = PriorTransformer(**__a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCAmelCase_ = CLIPVisionModelWithProjection(__a ) return model @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.dummy_prior lowerCAmelCase_ = self.dummy_image_encoder lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = self.dummy_tokenizer lowerCAmelCase_ = self.dummy_image_processor lowerCAmelCase_ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=__a , clip_sample_range=1_0.0 , ) lowerCAmelCase_ = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Any: '''simple docstring''' if str(__a ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(__a ) else: lowerCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) lowerCAmelCase_ = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'cpu' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**__a ) lowerCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(__a ) ) lowerCAmelCase_ = output.image_embeds lowerCAmelCase_ = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] lowerCAmelCase_ = image[0, -1_0:] lowerCAmelCase_ = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCAmelCase_ = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = torch_device == 'cpu' lowerCAmelCase_ = True lowerCAmelCase_ = False self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , ) @skip_mps def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = torch_device == 'cpu' lowerCAmelCase_ = False self._test_attention_slicing_forward_pass( test_max_difference=__a , test_mean_pixel_difference=__a , )
350
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
0
import math import sys def lowerCamelCase ( a_ ) -> int: if number != int(lowercase__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowerCAmelCase_ = [-1] * (number + 1) lowerCAmelCase_ = 0 for i in range(1 , number + 1 ): lowerCAmelCase_ = sys.maxsize lowerCAmelCase_ = int(math.sqrt(lowercase__ ) ) for j in range(1 , root + 1 ): lowerCAmelCase_ = 1 + answers[i - (j**2)] lowerCAmelCase_ = min(lowercase__ , lowercase__ ) lowerCAmelCase_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
351
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
0
lowerCamelCase_ = 9.80665 def lowerCamelCase ( a_ , a_ , a_ = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
352
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase ( a_ ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCAmelCase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) if k.startswith('encoder' ): lowerCAmelCase_ = k.replace('.attn' , '.self_attn' ) lowerCAmelCase_ = k.replace('norm1' , 'self_attn_layer_norm' ) lowerCAmelCase_ = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): lowerCAmelCase_ = k.replace('norm1' , 'self_attn_layer_norm' ) lowerCAmelCase_ = k.replace('norm2' , 'encoder_attn_layer_norm' ) lowerCAmelCase_ = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase ( a_ ) -> Tuple: lowerCAmelCase_ = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: lowerCAmelCase_ = sd.pop(__lowerCAmelCase ) lowerCAmelCase_ = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd lowerCAmelCase_ = v lowerCamelCase_ = ["""START"""] @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> List[Any]: lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location='cpu' ) lowerCAmelCase_ = model['model'] lowerCAmelCase_ = BlenderbotConfig.from_json_file(__lowerCAmelCase ) lowerCAmelCase_ = BlenderbotForConditionalGeneration(__lowerCAmelCase ) lowerCAmelCase_ = m.model.state_dict().keys() lowerCAmelCase_ = [] lowerCAmelCase_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCAmelCase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCAmelCase_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCAmelCase ) m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) m.half() m.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCamelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
353
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' __a: List[Any] = 1_0_0_0_0 __a: Optional[Any] = None __a: Union[str, Any] = None class a_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __a: Dict = ParquetConfig def _lowercase ( self ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): lowerCAmelCase_ = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase_ = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , 'rb' ) as f: lowerCAmelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase_ = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , 'rb' ) as f: lowerCAmelCase_ = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
354
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( lowercase__ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> int: '''simple docstring''' warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
355
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase ( a_ , a_ , a_ ) -> Dict: # Construct model if gpta_config_file == "": lowerCAmelCase_ = GPTaConfig() else: lowerCAmelCase_ = GPTaConfig.from_json_file(__snake_case ) lowerCAmelCase_ = GPTaModel(__snake_case ) # Load weights from numpy load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case ) # Save pytorch-model lowerCAmelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowerCamelCase_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
356
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase_ = False @skip_mps class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Any = StableDiffusionAttendAndExcitePipeline __a: int = False __a: Tuple = TEXT_TO_IMAGE_PARAMS __a: Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __a: str = TEXT_TO_IMAGE_IMAGE_PARAMS __a: Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowercase ( cls ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _lowercase ( cls ) -> str: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(_snake_case ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> Tuple: '''simple docstring''' if str(_snake_case ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(_snake_case ) else: lowerCAmelCase_ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase_ = lowerCAmelCase_ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ = pipe(**_snake_case ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) lowerCAmelCase_ = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def _lowercase ( self ) -> Dict: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _lowercase ( self ) -> str: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _lowercase ( cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = torch.manual_seed(5_1 ) lowerCAmelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=_snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase_ = 'a painting of an elephant with glasses' lowerCAmelCase_ = [5, 7] lowerCAmelCase_ = pipe( prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
357
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
0
from collections import Counter from timeit import timeit def lowerCamelCase ( a_ = "" , ) -> List[Any]: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowerCamelCase ( a_ = "" ) -> Optional[Any]: if len(lowerCamelCase_ ) == 0: return True lowerCAmelCase_ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase_ = {} for character in lower_case_input_str: lowerCAmelCase_ = character_freq_dict.get(lowerCamelCase_ , 0 ) + 1 lowerCAmelCase_ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase ( a_ = "" ) -> Any: print('\nFor string = ' , lowerCamelCase_ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(lowerCamelCase_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowerCamelCase_ = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCamelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
358
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) lowerCAmelCase_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase_ = {'unk_token': '<unk>'} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowercase ) ) lowerCAmelCase_ = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase_ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__lowercase , __lowercase ) def _lowercase ( self , **lowercase_ ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **__lowercase ) def _lowercase ( self , **lowercase_ ) -> str: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **__lowercase ) def _lowercase ( self , **lowercase_ ) -> List[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=__lowercase ) lowerCAmelCase_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(__lowercase , return_tensors='np' ) lowerCAmelCase_ = processor(images=__lowercase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) lowerCAmelCase_ = 'lower newer' lowerCAmelCase_ = processor(text=__lowercase , return_tensors='np' ) lowerCAmelCase_ = tokenizer(__lowercase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) lowerCAmelCase_ = 'lower newer' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = 'google/owlvit-base-patch32' lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase ) lowerCAmelCase_ = ['cat', 'nasa badge'] lowerCAmelCase_ = processor(text=__lowercase ) lowerCAmelCase_ = 1_6 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = 'google/owlvit-base-patch32' lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase ) lowerCAmelCase_ = [['cat', 'nasa badge'], ['person']] lowerCAmelCase_ = processor(text=__lowercase ) lowerCAmelCase_ = 1_6 lowerCAmelCase_ = len(__lowercase ) lowerCAmelCase_ = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = 'google/owlvit-base-patch32' lowerCAmelCase_ = OwlViTProcessor.from_pretrained(__lowercase ) lowerCAmelCase_ = ['cat', 'nasa badge'] lowerCAmelCase_ = processor(text=__lowercase ) lowerCAmelCase_ = 1_6 lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(__lowercase ) lowerCAmelCase_ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
359
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=2_4 , lowercase_=2 , lowercase_=6 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=1_0_0_0 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = scope lowerCAmelCase_ = range_bbox def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ = bbox[i, j, 3] lowerCAmelCase_ = bbox[i, j, 1] lowerCAmelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ = bbox[i, j, 2] lowerCAmelCase_ = bbox[i, j, 0] lowerCAmelCase_ = t lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self ) -> Dict: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = LiltModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase_ = model(snake_case__ , bbox=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LiltForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase_ = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int: '''simple docstring''' lowerCAmelCase_ = LiltForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase_ = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) = config_and_inputs lowerCAmelCase_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class a_ ( A_ , A_ , A_ , unittest.TestCase ): '''simple docstring''' __a: Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a: List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a: Tuple = False __a: Optional[Any] = False def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' return True def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = LiltModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*snake_case__ ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _lowercase ( self ) -> str: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = LiltModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(snake_case__ ) lowerCAmelCase_ = torch.tensor([[1, 2]] , device=snake_case__ ) lowerCAmelCase_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(input_ids=snake_case__ , bbox=snake_case__ ) lowerCAmelCase_ = torch.Size([1, 2, 7_6_8] ) lowerCAmelCase_ = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=snake_case__ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case__ , atol=1e-3 ) )
360
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } lowerCamelCase_ = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } lowerCamelCase_ = """▁""" class a_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __a: Optional[int] = VOCAB_FILES_NAMES __a: Tuple = PRETRAINED_VOCAB_FILES_MAP __a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_ = None , **lowercase_ , ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = remove_space lowerCAmelCase_ = keep_accents lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' if self.remove_space: lowerCAmelCase_ = ' '.join(inputs.strip().split() ) else: lowerCAmelCase_ = inputs lowerCAmelCase_ = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase_ = unicodedata.normalize('NFKD' , _a ) lowerCAmelCase_ = ''.join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: lowerCAmelCase_ = outputs.lower() return outputs def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.preprocess_text(_a ) lowerCAmelCase_ = self.sp_model.encode(_a , out_type=_a ) lowerCAmelCase_ = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ = cur_pieces[1:] else: lowerCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.sp_model.PieceToId(_a ) def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' return self.sp_model.IdToPiece(_a ) def _lowercase ( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = [] lowerCAmelCase_ = '' lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(_a ) lowerCAmelCase_ = False out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Union[str, Any]: '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , 'wb' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
361
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
from ...configuration_utils import PretrainedConfig class a_ ( a_ ): '''simple docstring''' __a: int = '''bert-generation''' def __init__( self , lowercase_=5_0_3_5_8 , lowercase_=1_0_2_4 , lowercase_=2_4 , lowercase_=1_6 , lowercase_=4_0_9_6 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_=2 , lowercase_=1 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache
362
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_4 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=4 , lowercase_=4 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = rotary_dim lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = initializer_range lowerCAmelCase_ = None lowerCAmelCase_ = vocab_size - 1 lowerCAmelCase_ = vocab_size - 1 lowerCAmelCase_ = vocab_size - 1 def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 2_0 lowerCAmelCase_ = model_class_name(lowercase_ ) lowerCAmelCase_ = model.init_cache(input_ids.shape[0] , lowercase_ ) lowerCAmelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) lowerCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase_ = model( input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , ) lowerCAmelCase_ = model(lowercase_ ) lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = 2_0 lowerCAmelCase_ = model_class_name(lowercase_ ) lowerCAmelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ = model.init_cache(input_ids.shape[0] , lowercase_ ) lowerCAmelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) lowerCAmelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class a_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __a: str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __a: Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = FlaxGPTJModelTester(self ) def _lowercase ( self ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @tooslow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) lowerCAmelCase_ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase_ = False lowerCAmelCase_ = model.config.eos_token_id lowerCAmelCase_ = jax.jit(model.generate ) lowerCAmelCase_ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowercase_ , lowercase_ ) @is_pt_flax_cross_test def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowerCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ = getattr(lowercase_ , lowercase_ ) lowerCAmelCase_ = pt_inputs["""input_ids"""].shape lowerCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = pt_model_class(lowercase_ ).eval() lowerCAmelCase_ = model_class(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowerCAmelCase_ = fx_state with torch.no_grad(): lowerCAmelCase_ = pt_model(**lowercase_ ).to_tuple() lowerCAmelCase_ = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowerCAmelCase_ = model_class.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowerCAmelCase_ = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ = self._prepare_for_class(lowercase_ , lowercase_ ) lowerCAmelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ = getattr(lowercase_ , lowercase_ ) lowerCAmelCase_ = pt_model_class(lowercase_ ).eval() lowerCAmelCase_ = model_class(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) lowerCAmelCase_ = pt_inputs["""input_ids"""].shape lowerCAmelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ = pt_model(**lowercase_ ).to_tuple() lowerCAmelCase_ = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowerCAmelCase_ = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_ ) with torch.no_grad(): lowerCAmelCase_ = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def _lowercase ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
363
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
0
def lowerCamelCase ( a_ ) -> Tuple: lowerCAmelCase_ = [] lowerCAmelCase_ = set({'(', '[', '{'} ) lowerCAmelCase_ = set({')', ']', '}'} ) lowerCAmelCase_ = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(__a ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__a ) == 0 or (len(__a ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__a ) == 0 def lowerCamelCase ( ) -> Union[str, Any]: lowerCAmelCase_ = input('Enter sequence of brackets: ' ) if is_balanced(__a ): print(__a , 'is balanced' ) else: print(__a , 'is not balanced' ) if __name__ == "__main__": main()
364
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (3_2, 3_2) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowercase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__UpperCAmelCase ) @property def _lowercase ( self ) -> Tuple: '''simple docstring''' def extract(*lowercase_ , **lowercase_ ): class a_ : '''simple docstring''' def __init__( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = torch.ones([0] ) def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = """A painting of a squirrel eating a burger""" lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=__UpperCAmelCase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = """A painting of a squirrel eating a burger""" lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=__UpperCAmelCase , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(pipe.scheduler , __UpperCAmelCase ) assert pipe.safety_checker is None lowerCAmelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = vae.half() lowerCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = """A painting of a squirrel eating a burger""" lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=__UpperCAmelCase ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowerCAmelCase_ = 4_0_0_3_6_6_0_3_4_6 lowerCAmelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=__UpperCAmelCase ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = """padme amidala taking a bath artwork, safe for work, no nudity""" lowerCAmelCase_ = 2_7_3_4_9_7_1_7_5_5 lowerCAmelCase_ = 7 lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) lowerCAmelCase_ = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowerCAmelCase_ = 1_0_4_4_3_5_5_2_3_4 lowerCAmelCase_ = 1_2 lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase_ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
365
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class a_ : '''simple docstring''' @property def _lowercase ( self ) -> Dict: '''simple docstring''' return self.get_dummy_input() @property def _lowercase ( self ) -> Any: '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowercase ( self , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = 4 lowerCAmelCase_ = 3_2 lowerCAmelCase_ = (3_2, 3_2) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = torch.device(lowerCAmelCase__ ) lowerCAmelCase_ = (batch_size, num_channels) + sizes lowerCAmelCase_ = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) lowerCAmelCase_ = {"hidden_states": hidden_states} if include_temb: lowerCAmelCase_ = 1_2_8 lowerCAmelCase_ = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) if include_res_hidden_states_tuple: lowerCAmelCase_ = torch.manual_seed(1 ) lowerCAmelCase_ = (randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ),) if include_encoder_hidden_states: lowerCAmelCase_ = floats_tensor((batch_size, 3_2, 3_2) ).to(lowerCAmelCase__ ) if include_skip_sample: lowerCAmelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) return dummy_input def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": lowerCAmelCase_ = 3_2 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCAmelCase_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = self.block_class(**lowerCAmelCase__ ) unet_block.to(lowerCAmelCase__ ) unet_block.eval() with torch.no_grad(): lowerCAmelCase_ = unet_block(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase_ = output[0, -1, -3:, -3:] lowerCAmelCase_ = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase__ , atol=5e-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase_ = self.block_class(**lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() lowerCAmelCase_ = model(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase_ = output[0] lowerCAmelCase_ = torch.device(lowerCAmelCase__ ) lowerCAmelCase_ = randn_tensor(output.shape , device=lowerCAmelCase__ ) lowerCAmelCase_ = torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ ) loss.backward()
366
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a_ ( _UpperCamelCase ): '''simple docstring''' __a: Union[List[PIL.Image.Image], np.ndarray] __a: Optional[List[bool]] __a: Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
367
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
import math def lowerCamelCase ( a_ ) -> Tuple: lowerCAmelCase_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def lowerCamelCase ( a_ = 1 / 12_345 ) -> str: lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 3 while True: lowerCAmelCase_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): lowerCAmelCase_ = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
368
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase_ = logging.get_logger(__name__) class a_ ( enum.Enum ): '''simple docstring''' __a: str = 0 __a: Dict = 1 @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: List[str] = "generated" def __init__( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = {} if truncation is not None: lowerCAmelCase_ = truncation lowerCAmelCase_ = generate_kwargs lowerCAmelCase_ = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ = self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowerCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' return True def _lowercase ( self , *lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , _lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowerCAmelCase_ = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ = True elif isinstance(args[0] , _lowerCAmelCase ): lowerCAmelCase_ = (prefix + args[0],) lowerCAmelCase_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowerCAmelCase_ = self.tokenizer(*_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *lowercase_ , **lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) if ( isinstance(args[0] , _lowerCAmelCase ) and all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for el in args[0] ) and all(len(_lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _lowercase ( self , lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self._parse_and_tokenize(_lowerCAmelCase , truncation=_lowerCAmelCase , **_lowerCAmelCase ) return inputs def _lowercase ( self , lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowerCAmelCase_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowerCAmelCase_ = tf.shape(model_inputs['input_ids'] ).numpy() lowerCAmelCase_ = generate_kwargs.get('min_length' , self.model.config.min_length ) lowerCAmelCase_ = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(_lowerCAmelCase , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) lowerCAmelCase_ = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase_ = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ = output_ids.reshape(_lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ = tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _lowercase ( self , lowercase_ , lowercase_=ReturnType.TEXT , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ = { f'''{self.return_name}_text''': self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: int = "summary" def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: Tuple = "translation" def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _lowercase ( self , *lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_=None , lowercase_=None ) -> Any: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , _lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *_lowerCAmelCase , return_tensors=self.framework , truncation=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase ) else: return super()._parse_and_tokenize(*_lowerCAmelCase , truncation=_lowerCAmelCase ) def _lowercase ( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = super()._sanitize_parameters(**_lowerCAmelCase ) if src_lang is not None: lowerCAmelCase_ = src_lang if tgt_lang is not None: lowerCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ = kwargs.get('task' , self.task ) lowerCAmelCase_ = task.split('_' ) if task and len(_lowerCAmelCase ) == 4: # translation, XX, to YY lowerCAmelCase_ = items[1] lowerCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
369
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
0