code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import numpy as np
def _a ( _lowerCamelCase , _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , _lowerCamelCase , (alpha * (np.exp(_lowerCamelCase ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
"""simple docstring"""
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
"""simple docstring"""
if curr_ind == len(_lowerCamelCase ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(_lowerCamelCase ) ):
if valid_connection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
# Insert current vertex into path as next transition
__snake_case : Optional[int] = next_ver
# Validate created path
if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , curr_ind + 1 ):
return True
# Backtrack
__snake_case : Optional[int] = -1
return False
def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> list[int]:
"""simple docstring"""
__snake_case : List[str] = [-1] * (len(_lowerCamelCase ) + 1)
# initialize start and end of path with starting index
__snake_case : Tuple = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , 1 ) else []
| 357 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase : List[str] ) -> list:
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return []
__snake_case : Tuple = min(_lowerCamelCase ), max(_lowerCamelCase )
__snake_case : List[Any] = int(max_value - min_value ) + 1
__snake_case : list[list] = [[] for _ in range(_lowerCamelCase )]
for i in my_list:
buckets[int(i - min_value )].append(_lowerCamelCase )
return [v for bucket in buckets for v in sorted(_lowerCamelCase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 358 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 359 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__UpperCamelCase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _A ( __lowercase ):
lowercase__: Optional[int] = ['''pixel_values''']
def __init__( self : Tuple , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = True , **__magic_name__ : int , ) -> None:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 2_24}
__snake_case : int = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
__snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
__snake_case : Dict = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name="""crop_size""" )
__snake_case : Dict = do_resize
__snake_case : Tuple = size
__snake_case : Union[str, Any] = resample
__snake_case : Optional[Any] = do_center_crop
__snake_case : List[str] = crop_size
__snake_case : Dict = do_rescale
__snake_case : Optional[Any] = rescale_factor
__snake_case : int = do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__snake_case : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
__snake_case : List[str] = do_convert_rgb
def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
__snake_case : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__snake_case : Dict = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ )
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray:
"""simple docstring"""
__snake_case : Any = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> Union[str, Any]:
"""simple docstring"""
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray:
"""simple docstring"""
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image:
"""simple docstring"""
__snake_case : Tuple = do_resize if do_resize is not None else self.do_resize
__snake_case : Union[str, Any] = size if size is not None else self.size
__snake_case : Tuple = get_size_dict(__magic_name__ , param_name="""size""" , default_to_square=__magic_name__ )
__snake_case : Optional[Any] = resample if resample is not None else self.resample
__snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : List[str] = crop_size if crop_size is not None else self.crop_size
__snake_case : Union[str, Any] = get_size_dict(__magic_name__ , param_name="""crop_size""" , default_to_square=__magic_name__ )
__snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean
__snake_case : Any = image_std if image_std is not None else self.image_std
__snake_case : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__snake_case : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__snake_case : int = [convert_to_rgb(__magic_name__ ) for image in images]
# All transformations expect numpy arrays.
__snake_case : List[str] = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
__snake_case : Optional[int] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_center_crop:
__snake_case : Optional[Any] = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images]
if do_rescale:
__snake_case : Optional[int] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images]
if do_normalize:
__snake_case : Tuple = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images]
__snake_case : Tuple = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
__snake_case : int = {"""pixel_values""": images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 360 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: Tuple = '''timm_backbone'''
def __init__( self : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Dict=3 , __magic_name__ : List[str]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=None , **__magic_name__ : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Any = backbone
__snake_case : Tuple = num_channels
__snake_case : int = features_only
__snake_case : int = use_pretrained_backbone
__snake_case : List[str] = True
__snake_case : Dict = out_indices if out_indices is not None else (-1,)
| 361 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 0 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
__UpperCamelCase = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
__UpperCamelCase = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = create_model(
"""HTSAT-tiny""" , """roberta""" , _lowerCamelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_lowerCamelCase , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : List[str] = {}
__snake_case : Any = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : List[str] = key.replace(_lowerCamelCase , _lowerCamelCase )
if re.match(_lowerCamelCase , _lowerCamelCase ):
# replace sequential layers with list
__snake_case : Optional[int] = re.match(_lowerCamelCase , _lowerCamelCase ).group(1 )
__snake_case : List[str] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_lowerCamelCase )//3}.linear.''' )
elif re.match(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Dict = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : Tuple = 1 if projecton_layer == 0 else 2
__snake_case : List[Any] = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Any = value
__snake_case : Tuple = mixed_qkv.size(0 ) // 3
__snake_case : Dict = mixed_qkv[:qkv_dim]
__snake_case : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : Union[str, Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Union[str, Any] = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[int] = value_layer
else:
__snake_case : Dict = value
return model_state_dict
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase )
clap_model.eval()
__snake_case : int = clap_model.state_dict()
__snake_case : Dict = rename_state_dict(_lowerCamelCase )
__snake_case : Any = ClapConfig()
__snake_case : Any = enable_fusion
__snake_case : Optional[Any] = ClapModel(_lowerCamelCase )
# ignore the spectrogram embedding layer
model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
transformers_config.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
__UpperCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 362 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
def __init__( self : Tuple , *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> None:
"""simple docstring"""
warnings.warn(
"""The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use CLIPImageProcessor instead.""" , __magic_name__ , )
super().__init__(*__magic_name__ , **__magic_name__ )
| 363 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: Optional[Any] = TransfoXLTokenizer
lowercase__: str = False
lowercase__: List[str] = False
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
super().setUp()
__snake_case : Any = [
"""<unk>""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""unwanted""",
"""wa""",
"""un""",
"""running""",
""",""",
"""low""",
"""l""",
]
__snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowercase__ ( self : List[str] , **__magic_name__ : str ) -> List[Any]:
"""simple docstring"""
__snake_case : str = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> int:
"""simple docstring"""
__snake_case : List[str] = """<unk> UNwanted , running"""
__snake_case : Optional[Any] = """<unk> unwanted, running"""
return input_text, output_text
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__magic_name__ )
__snake_case : Optional[int] = tokenizer.tokenize("""<unk> UNwanted , running""" )
self.assertListEqual(__magic_name__ , ["""<unk>""", """unwanted""", """,""", """running"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [0, 4, 8, 7] )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Union[str, Any] = TransfoXLTokenizer(lower_case=__magic_name__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
__snake_case : Tuple = TransfoXLTokenizer(lower_case=__magic_name__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = TransfoXLTokenizer(lower_case=__magic_name__ )
__snake_case : int = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?"""
__snake_case : Tuple = [
"""Hello""",
"""(""",
"""bracket""",
""")""",
"""and""",
"""side""",
"""@-@""",
"""scrolled""",
"""[""",
"""and""",
"""]""",
"""Henry""",
"""'s""",
"""$""",
"""5""",
"""@,@""",
"""000""",
"""with""",
"""3""",
"""@.@""",
"""34""",
"""m""",
""".""",
"""What""",
"""'s""",
"""up""",
"""!""",
"""?""",
]
self.assertListEqual(tokenizer.tokenize(__magic_name__ ) , __magic_name__ )
self.assertEqual(tokenizer.convert_tokens_to_string(__magic_name__ ) , __magic_name__ )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : int = self.get_tokenizer()
__snake_case : List[Any] = len(__magic_name__ )
tokenizer.add_tokens(["""new1""", """new2"""] )
tokenizer.move_added_token("""new1""" , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(__magic_name__ ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode("""new1""" ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , """new1""" )
| 364 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 0 |
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: # noqa: E741
"""simple docstring"""
while r - l > 1:
__snake_case : List[str] = (l + r) // 2
if v[m] >= key:
__snake_case : Any = m
else:
__snake_case : Tuple = m # noqa: E741
return r
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return 0
__snake_case : int = [0] * len(_lowerCamelCase )
__snake_case : Dict = 1
__snake_case : Optional[Any] = v[0]
for i in range(1 , len(_lowerCamelCase ) ):
if v[i] < tail[0]:
__snake_case : Optional[Any] = v[i]
elif v[i] > tail[length - 1]:
__snake_case : Tuple = v[i]
length += 1
else:
__snake_case : int = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 365 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
if isinstance(_lowerCamelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class _A :
def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : str , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any]=None , **__magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ )
__snake_case : List[str] = TFVisionTextDualEncoderModel(__magic_name__ )
__snake_case : int = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None , **__magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str=None , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : List[str] = {"""vision_model""": vision_model, """text_model""": text_model}
__snake_case : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ )
__snake_case : Union[str, Any] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int=None , **__magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : Tuple = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Any = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
__snake_case : str = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__magic_name__ )
__snake_case : str = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ )
__snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
__snake_case : int = after_output[0].numpy()
__snake_case : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1E-5 )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None , **__magic_name__ : Dict ) -> str:
"""simple docstring"""
__snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Dict = model(
input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ )
__snake_case : Optional[Any] = output.vision_model_output.attentions
self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__snake_case : Any = to_atuple(vision_model.config.image_size )
__snake_case : Tuple = to_atuple(vision_model.config.patch_size )
__snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__snake_case : Union[str, Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__snake_case : Any = output.text_model_output.attentions
self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : float ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(__magic_name__ , __magic_name__ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case : Dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**__magic_name__ )
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = self.prepare_config_and_inputs()
self.check_save_load(**__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = self.get_pretrained_model_and_inputs()
__snake_case : Any = model_a(**__magic_name__ )
__snake_case : Any = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__magic_name__ )
__snake_case : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ )
__snake_case : Optional[int] = model_a(**__magic_name__ )
__snake_case : Union[str, Any] = after_outputs[0].numpy()
__snake_case : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1E-5 )
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" )
__snake_case : Tuple = 13
__snake_case : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Optional[Any] = random_attention_mask([batch_size, 4] )
__snake_case : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = TFViTModel(__magic_name__ , name="""vision_model""" )
__snake_case : int = TFBertModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = TFViTModelTester(self )
__snake_case : Optional[Any] = TFBertModelTester(self )
__snake_case : List[str] = vit_model_tester.prepare_config_and_inputs()
__snake_case : Tuple = bert_model_tester.prepare_config_and_inputs()
__snake_case : Optional[Any] = vision_config_and_inputs
(
__snake_case
) : List[str] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" )
__snake_case : int = 13
__snake_case : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Tuple = random_attention_mask([batch_size, 4] )
__snake_case : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Tuple=None , **__magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : int = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Any = model(
input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ )
__snake_case : List[str] = output.vision_model_output.attentions
self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__snake_case : Optional[int] = to_atuple(vision_model.config.image_size )
__snake_case : Optional[int] = to_atuple(vision_model.config.patch_size )
__snake_case : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__snake_case : List[str] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__snake_case : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TFDeiTModel(__magic_name__ , name="""vision_model""" )
__snake_case : Optional[Any] = TFRobertaModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : Dict = TFDeiTModelTester(self )
__snake_case : Optional[int] = TFRobertaModelTester(self )
__snake_case : Dict = vit_model_tester.prepare_config_and_inputs()
__snake_case : Optional[int] = bert_model_tester.prepare_config_and_inputs()
__snake_case : int = vision_config_and_inputs
(
__snake_case
) : Optional[int] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" )
__snake_case : Optional[int] = 13
__snake_case : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Optional[int] = random_attention_mask([batch_size, 4] )
__snake_case : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
__snake_case : Tuple = TFCLIPVisionModel(__magic_name__ , name="""vision_model""" )
__snake_case : str = TFBertModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = TFCLIPVisionModelTester(self )
__snake_case : Dict = TFBertModelTester(self )
__snake_case : str = clip_model_tester.prepare_config_and_inputs()
__snake_case : Tuple = bert_model_tester.prepare_config_and_inputs()
__snake_case : Optional[int] = vision_config_and_inputs
(
__snake_case
) : List[Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : int = TFVisionTextDualEncoderModel.from_pretrained(
"""clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__magic_name__ )
__snake_case : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
__snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=__magic_name__ , padding=__magic_name__ , return_tensors="""np""" )
__snake_case : str = model(**__magic_name__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__snake_case : Optional[Any] = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __magic_name__ , atol=1E-3 ) )
| 366 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"}
class _A ( __lowercase ):
lowercase__: int = '''ctrl'''
lowercase__: Optional[Any] = ['''past_key_values''']
lowercase__: Any = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : str , __magic_name__ : Optional[int]=24_65_34 , __magic_name__ : List[Any]=2_56 , __magic_name__ : List[Any]=12_80 , __magic_name__ : str=81_92 , __magic_name__ : Optional[int]=48 , __magic_name__ : int=16 , __magic_name__ : Tuple=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=1E-6 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Any=True , **__magic_name__ : Optional[int] , ) -> Tuple:
"""simple docstring"""
__snake_case : Any = vocab_size
__snake_case : Any = n_positions
__snake_case : Optional[int] = n_embd
__snake_case : List[str] = n_layer
__snake_case : int = n_head
__snake_case : Dict = dff
__snake_case : Optional[int] = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : List[Any] = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Any = use_cache
super().__init__(**__magic_name__ )
| 367 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 0 |
from __future__ import annotations
from math import pi
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if inductance < 0:
raise ValueError("""Inductance cannot be negative""" )
if frequency < 0:
raise ValueError("""Frequency cannot be negative""" )
if reactance < 0:
raise ValueError("""Inductive reactance cannot be negative""" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 368 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 0 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
"""simple docstring"""
__snake_case : List[str] = x
__snake_case : Optional[Any] = y
for step in range(_lowerCamelCase ): # noqa: B007
__snake_case : Tuple = a * a - b * b + x
__snake_case : List[Any] = 2 * a * b + y
__snake_case : Dict = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _a ( _lowerCamelCase ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _a ( _lowerCamelCase ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCamelCase , 1 , 1 ) )
def _a ( _lowerCamelCase = 800 , _lowerCamelCase = 600 , _lowerCamelCase = -0.6 , _lowerCamelCase = 0 , _lowerCamelCase = 3.2 , _lowerCamelCase = 50 , _lowerCamelCase = True , ) -> Image.Image:
"""simple docstring"""
__snake_case : List[Any] = Image.new("""RGB""" , (image_width, image_height) )
__snake_case : Optional[int] = img.load()
# loop through the image-coordinates
for image_x in range(_lowerCamelCase ):
for image_y in range(_lowerCamelCase ):
# determine the figure-coordinates based on the image-coordinates
__snake_case : Tuple = figure_width / image_width * image_height
__snake_case : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
__snake_case : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
__snake_case : Any = get_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__snake_case : Union[str, Any] = get_color_coded_rgb(_lowerCamelCase )
else:
__snake_case : str = get_black_and_white_rgb(_lowerCamelCase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
__UpperCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 369 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 0 |
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class _A ( unittest.TestCase ):
def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = jnp.ones((batch_size, length) ) / length
return scores
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = None
__snake_case : str = 20
__snake_case : List[str] = self._get_uniform_logits(batch_size=2 , length=__magic_name__ )
# tweak scores to not be uniform anymore
__snake_case : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
__snake_case : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
__snake_case : str = jax.nn.softmax(__magic_name__ , axis=-1 )
__snake_case : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 )
__snake_case : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 )
__snake_case : str = jax.nn.softmax(temp_dist_warper_smoother(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = None
__snake_case : Optional[int] = 10
__snake_case : int = 2
# create ramp distribution
__snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy()
__snake_case : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size
__snake_case : Union[str, Any] = FlaxTopKLogitsWarper(3 )
__snake_case : Optional[int] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
__snake_case : Dict = 5
__snake_case : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
__snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, length) ).copy()
__snake_case : Tuple = top_k_warp_safety_check(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = None
__snake_case : Optional[int] = 10
__snake_case : List[str] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__snake_case : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
__snake_case : Any = FlaxTopPLogitsWarper(0.8 )
__snake_case : List[str] = np.exp(top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__snake_case : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# check edge cases with negative and extreme logits
__snake_case : Optional[int] = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__snake_case : Union[str, Any] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
__snake_case : Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
__snake_case : Dict = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = 20
__snake_case : Dict = 4
__snake_case : int = 0
__snake_case : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
# check that min length is applied at length 5
__snake_case : int = ids_tensor((batch_size, 20) , vocab_size=20 )
__snake_case : Optional[int] = 5
__snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
__snake_case : Optional[int] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Tuple = 15
__snake_case : Dict = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = 20
__snake_case : str = 4
__snake_case : List[str] = 0
__snake_case : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
# check that all scores are -inf except the bos_token_id score
__snake_case : Union[str, Any] = ids_tensor((batch_size, 1) , vocab_size=20 )
__snake_case : Tuple = 1
__snake_case : Union[str, Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Tuple = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__snake_case : Optional[Any] = 3
__snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[int] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = 20
__snake_case : Dict = 4
__snake_case : Optional[Any] = 0
__snake_case : Optional[Any] = 5
__snake_case : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
# check that all scores are -inf except the eos_token_id when max_length is reached
__snake_case : Any = ids_tensor((batch_size, 4) , vocab_size=20 )
__snake_case : List[str] = 4
__snake_case : Tuple = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__snake_case : int = 3
__snake_case : Optional[Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Any = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case : Dict = 4
__snake_case : Union[str, Any] = 10
__snake_case : List[Any] = 15
__snake_case : List[Any] = 2
__snake_case : Any = 1
__snake_case : Optional[Any] = 15
# dummy input_ids and scores
__snake_case : int = ids_tensor((batch_size, sequence_length) , __magic_name__ )
__snake_case : Tuple = input_ids.copy()
__snake_case : int = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[int] = scores.copy()
# instantiate all dist processors
__snake_case : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : List[Any] = FlaxTopKLogitsWarper(3 )
__snake_case : Optional[int] = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__snake_case : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
__snake_case : Union[str, Any] = 10
# no processor list
__snake_case : int = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Dict = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : List[Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : int = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Optional[Any] = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Any = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# with processor list
__snake_case : Optional[int] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__snake_case : Optional[int] = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# scores should be equal
self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
__snake_case : Any = 4
__snake_case : Optional[int] = 10
__snake_case : Dict = 15
__snake_case : Tuple = 2
__snake_case : Union[str, Any] = 1
__snake_case : int = 15
# dummy input_ids and scores
__snake_case : Any = ids_tensor((batch_size, sequence_length) , __magic_name__ )
__snake_case : Optional[Any] = input_ids.copy()
__snake_case : Dict = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Any = scores.copy()
# instantiate all dist processors
__snake_case : Any = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : str = FlaxTopKLogitsWarper(3 )
__snake_case : int = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__snake_case : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
__snake_case : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
__snake_case : str = 10
# no processor list
def run_no_processor_list(__magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
__snake_case : Union[str, Any] = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : List[Any] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Union[str, Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : str = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : str = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Optional[Any] = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
return scores
# with processor list
def run_processor_list(__magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Tuple ):
__snake_case : Any = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__snake_case : str = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
return scores
__snake_case : Optional[int] = jax.jit(__magic_name__ )
__snake_case : Optional[int] = jax.jit(__magic_name__ )
__snake_case : Any = jitted_run_no_processor_list(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : Dict = jitted_run_processor_list(__magic_name__ , __magic_name__ , __magic_name__ )
# scores should be equal
self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 370 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 0 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 371 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class _A :
def __init__( self : Dict , __magic_name__ : str , __magic_name__ : List[str]=3 , __magic_name__ : int=32 , __magic_name__ : List[Any]=3 , __magic_name__ : List[Any]=10 , __magic_name__ : int=[8, 16, 32, 64] , __magic_name__ : Tuple=[1, 1, 2, 1] , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]="relu" , __magic_name__ : str=3 , __magic_name__ : Any=None , __magic_name__ : Dict=["stage2", "stage3", "stage4"] , __magic_name__ : Any=[2, 3, 4] , __magic_name__ : Optional[Any]=1 , ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = parent
__snake_case : Any = batch_size
__snake_case : int = image_size
__snake_case : Optional[int] = num_channels
__snake_case : Tuple = embeddings_size
__snake_case : Tuple = hidden_sizes
__snake_case : int = depths
__snake_case : str = is_training
__snake_case : List[Any] = use_labels
__snake_case : str = hidden_act
__snake_case : Optional[int] = num_labels
__snake_case : List[str] = scope
__snake_case : Optional[int] = len(__magic_name__ )
__snake_case : Tuple = out_features
__snake_case : str = out_indices
__snake_case : int = num_groups
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowercase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = BitModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.num_labels
__snake_case : str = BitForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : str , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = BitBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__snake_case : int = None
__snake_case : str = BitBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowercase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case : Optional[int] = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowercase__: List[str] = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
lowercase__: Optional[int] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: Any = False
lowercase__: Dict = False
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : int = BitModelTester(self )
__snake_case : Any = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return
@unittest.skip(reason="""Bit does not output attentions""" )
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Any = model_class(__magic_name__ )
__snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Optional[Any] = [*signature.parameters.keys()]
__snake_case : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(config=__magic_name__ )
for name, module in model.named_modules():
if isinstance(__magic_name__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ):
__snake_case : List[str] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[str] = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : Any = layer_type
__snake_case : Union[str, Any] = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[int] = BitModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Dict:
"""simple docstring"""
__snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ )
__snake_case : Optional[int] = self.default_image_processor
__snake_case : Any = prepare_img()
__snake_case : Any = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : int = model(**__magic_name__ )
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : str = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
@require_torch
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = (BitBackbone,) if is_torch_available() else ()
lowercase__: Optional[Any] = BitConfig
lowercase__: Tuple = False
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[Any] = BitModelTester(self )
| 350 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
__UpperCamelCase = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
__UpperCamelCase = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
__UpperCamelCase = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
__UpperCamelCase = sorted(arg_to_scheduler.keys())
__UpperCamelCase = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class _A ( pl.LightningModule ):
def __init__( self : Optional[Any] , __magic_name__ : argparse.Namespace , __magic_name__ : str=None , __magic_name__ : Any="base" , __magic_name__ : int=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None , **__magic_name__ : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__magic_name__ )
__snake_case : int = 0
__snake_case : Optional[int] = Path(self.hparams.output_dir )
__snake_case : Union[str, Any] = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__snake_case : Optional[int] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , )
else:
__snake_case : PretrainedConfig = config
__snake_case : Optional[Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(self.hparams , __magic_name__ , __magic_name__ ):
assert hasattr(self.config , __magic_name__ ), f'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) )
if tokenizer is None:
__snake_case : Dict = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , )
else:
__snake_case : PreTrainedTokenizer = tokenizer
__snake_case : Optional[Any] = MODEL_MODES[mode]
if model is None:
__snake_case : Dict = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , )
else:
__snake_case : Optional[Any] = model
def lowercase__ ( self : str , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
__snake_case : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__snake_case : Tuple = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1}
return scheduler
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = self.model
__snake_case : List[Any] = ["""bias""", """LayerNorm.weight"""]
__snake_case : List[str] = [
{
"""params""": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"""weight_decay""": self.hparams.weight_decay,
},
{
"""params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
if self.hparams.adafactor:
__snake_case : Dict = Adafactor(
__magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ )
else:
__snake_case : Any = AdamW(
__magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__snake_case : Tuple = optimizer
__snake_case : Dict = self.get_lr_scheduler()
return [optimizer], [scheduler]
def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Any:
"""simple docstring"""
return self.validation_step(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
return self.validation_end(__magic_name__ )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__snake_case : Union[str, Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if stage == "test":
__snake_case : Optional[int] = len(self.test_dataloader().dataset )
else:
__snake_case : int = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__magic_name__ )
__snake_case : Optional[Any] = len(self.train_dataloader().dataset )
def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> Any:
"""simple docstring"""
raise NotImplementedError("""You must implement this for your task""" )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
return self.train_loader
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , """cached_{}_{}_{}""".format(
__magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def lowercase__ ( self : Optional[Any] , __magic_name__ : Dict[str, Any] ) -> None:
"""simple docstring"""
__snake_case : Optional[int] = self.output_dir.joinpath("""best_tfmr""" )
__snake_case : Optional[Any] = self.step_count
self.model.save_pretrained(__magic_name__ )
self.tokenizer.save_pretrained(__magic_name__ )
@staticmethod
def lowercase__ ( __magic_name__ : List[str] , __magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
parser.add_argument(
"""--model_name_or_path""" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--config_name""" , default="""""" , type=__magic_name__ , help="""Pretrained config name or path if not the same as model_name""" )
parser.add_argument(
"""--tokenizer_name""" , default=__magic_name__ , type=__magic_name__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument(
"""--cache_dir""" , default=str(Path(__magic_name__ ).parent / """test_run""" / """cache""" ) , type=__magic_name__ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , )
parser.add_argument(
"""--encoder_layerdrop""" , type=__magic_name__ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--decoder_layerdrop""" , type=__magic_name__ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--dropout""" , type=__magic_name__ , help="""Dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--attention_dropout""" , type=__magic_name__ , help="""Attention dropout probability (Optional). Goes into model.config""" , )
parser.add_argument("""--learning_rate""" , default=5E-5 , type=__magic_name__ , help="""The initial learning rate for Adam.""" )
parser.add_argument(
"""--lr_scheduler""" , default="""linear""" , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help="""Learning rate scheduler""" , )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__magic_name__ , help="""Weight decay if we apply some.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__magic_name__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--warmup_steps""" , default=0 , type=__magic_name__ , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--num_workers""" , default=4 , type=__magic_name__ , help="""kwarg passed to DataLoader""" )
parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__magic_name__ )
parser.add_argument("""--train_batch_size""" , default=32 , type=__magic_name__ )
parser.add_argument("""--eval_batch_size""" , default=32 , type=__magic_name__ )
parser.add_argument("""--adafactor""" , action="""store_true""" )
class _A ( pl.Callback ):
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Any ) -> int:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _A ( pl.Callback ):
def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> str:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__magic_name__ )
class _A ( pl.Callback ):
def lowercase__ ( self : str , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : str = trainer.lr_schedulers[0]["""scheduler"""]
__snake_case : List[str] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> int:
"""simple docstring"""
rank_zero_info("""***** Validation results *****""" )
__snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
def lowercase__ ( self : str , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> Optional[int]:
"""simple docstring"""
rank_zero_info("""***** Test results *****""" )
__snake_case : Union[str, Any] = trainer.callback_metrics
# Log and save results to file
__snake_case : Optional[int] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" )
with open(__magic_name__ , """w""" ) as writer:
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
writer.write("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
parser.add_argument(
"""--output_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=_lowerCamelCase , default="""O2""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_lowerCamelCase )
parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_lowerCamelCase , help="""Max gradient norm""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" )
parser.add_argument(
"""--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--seed""" , type=_lowerCamelCase , default=42 , help="""random seed for initialization""" )
parser.add_argument(
"""--data_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_lowerCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) -> Union[str, Any]:
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__snake_case : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_lowerCamelCase )
# add custom checkpoints
if checkpoint_callback is None:
__snake_case : List[str] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_lowerCamelCase )
if logging_callback is None:
__snake_case : Optional[int] = LoggingCallback()
__snake_case : List[str] = {}
if args.fpaa:
__snake_case : List[str] = 16
if args.gpus > 1:
__snake_case : List[Any] = """auto"""
__snake_case : int = """ddp"""
__snake_case : int = args.accumulate_grad_batches
__snake_case : Dict = None
__snake_case : Union[str, Any] = """auto"""
__snake_case : List[str] = pl.Trainer.from_argparse_args(
_lowerCamelCase , weights_summary=_lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCamelCase , )
if args.do_train:
trainer.fit(_lowerCamelCase )
else:
print("""RAG modeling tests with new set functions successfuly executed!""" )
return trainer
| 351 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = FunnelConfig.from_json_file(_lowerCamelCase )
print(F'''Building PyTorch model from configuration: {config}''' )
__snake_case : int = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
__UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 352 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _A ( __lowercase ):
lowercase__: Tuple = '''gpt_neo'''
lowercase__: int = ['''past_key_values''']
lowercase__: str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __magic_name__ : str=5_02_57 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[int]=24 , __magic_name__ : Union[str, Any]=[[["global", "local"], 12]] , __magic_name__ : Any=16 , __magic_name__ : Any=None , __magic_name__ : Optional[int]=2_56 , __magic_name__ : List[Any]="gelu_new" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=True , __magic_name__ : int=5_02_56 , __magic_name__ : Optional[Any]=5_02_56 , **__magic_name__ : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = vocab_size
__snake_case : List[str] = max_position_embeddings
__snake_case : List[str] = hidden_size
__snake_case : Optional[Any] = num_layers
__snake_case : Optional[int] = num_heads
__snake_case : int = intermediate_size
__snake_case : Any = window_size
__snake_case : Any = activation_function
__snake_case : Dict = resid_dropout
__snake_case : Union[str, Any] = embed_dropout
__snake_case : Optional[Any] = attention_dropout
__snake_case : Optional[int] = classifier_dropout
__snake_case : Any = layer_norm_epsilon
__snake_case : List[str] = initializer_range
__snake_case : Any = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Optional[int] = eos_token_id
__snake_case : str = attention_types
__snake_case : str = self.expand_attention_types_params(__magic_name__ )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.attention_layers)` == `config.num_layers` """
f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, '''
f'''`config.num_layers = {self.num_layers}`. '''
"""`config.attention_layers` is prepared using `config.attention_types`. """
"""Please verify the value of `config.attention_types` argument.""" )
super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
@staticmethod
def lowercase__ ( __magic_name__ : str ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[Any] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
import torch
__snake_case : List[Any] = input.size()
__snake_case : Optional[Any] = len(_lowerCamelCase )
__snake_case : Tuple = shape[dimension]
__snake_case : Union[str, Any] = torch.arange(0 , _lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = torch.div(sizedim - size , _lowerCamelCase , rounding_mode="""floor""" ) + 1
__snake_case : Any = torch.arange(_lowerCamelCase ) + low_indices[:min_length][:, None]
__snake_case : Dict = [slice(_lowerCamelCase )] * rank
__snake_case : Optional[int] = indices
__snake_case : List[Any] = input[s]
__snake_case : List[Any] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
import torch
__snake_case : Dict = torch.arange(1 , _lowerCamelCase )
__snake_case : Optional[Any] = torch.remainder(_lowerCamelCase , _lowerCamelCase )
__snake_case : List[str] = remainders == 0
__snake_case : int = candidates[divisor_indices]
__snake_case : Optional[Any] = torch.max(_lowerCamelCase )
return largest_divisor, torch.div(_lowerCamelCase , _lowerCamelCase , rounding_mode="""floor""" )
class _A ( __lowercase ):
@property
def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : List[Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Dict = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
return self._config.num_heads
def lowercase__ ( self : List[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : int = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case : Optional[Any] = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : List[str] = seqlen + 2
__snake_case : Optional[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : Optional[int] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : List[Any] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : str = ordered_inputs["""attention_mask"""].dtype
__snake_case : Tuple = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return 13
| 353 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class _A ( __lowercase , __lowercase ):
lowercase__: str = '''resnet'''
lowercase__: Dict = ['''basic''', '''bottleneck''']
def __init__( self : Dict , __magic_name__ : int=3 , __magic_name__ : Optional[int]=64 , __magic_name__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , __magic_name__ : Optional[int]=[3, 4, 6, 3] , __magic_name__ : List[Any]="bottleneck" , __magic_name__ : int="relu" , __magic_name__ : Union[str, Any]=False , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , **__magic_name__ : Any , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
__snake_case : Tuple = num_channels
__snake_case : List[Any] = embedding_size
__snake_case : int = hidden_sizes
__snake_case : List[Any] = depths
__snake_case : int = layer_type
__snake_case : Optional[Any] = hidden_act
__snake_case : List[Any] = downsample_in_first_stage
__snake_case : Tuple = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )]
__snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
class _A ( __lowercase ):
lowercase__: List[str] = version.parse('''1.11''' )
@property
def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase__ ( self : str ) -> float:
"""simple docstring"""
return 1E-3
| 354 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError("""Length must be a positive integer.""" )
return [n * (2 * n - 1) for n in range(_lowerCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 355 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 356 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 357 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"google/vivit-b-16x2-kinetics400": (
"https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _A ( __lowercase ):
lowercase__: str = '''vivit'''
def __init__( self : Optional[int] , __magic_name__ : List[Any]=2_24 , __magic_name__ : Optional[int]=32 , __magic_name__ : Optional[Any]=[2, 16, 16] , __magic_name__ : List[Any]=3 , __magic_name__ : Any=7_68 , __magic_name__ : int=12 , __magic_name__ : Dict=12 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Dict="gelu_fast" , __magic_name__ : List[str]=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Optional[int]=1E-06 , __magic_name__ : Any=True , **__magic_name__ : Dict , ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Optional[Any] = intermediate_size
__snake_case : List[Any] = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : Union[str, Any] = image_size
__snake_case : Optional[int] = num_frames
__snake_case : Dict = tubelet_size
__snake_case : List[str] = num_channels
__snake_case : Optional[Any] = qkv_bias
super().__init__(**__magic_name__ )
| 358 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
(__snake_case) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
__snake_case
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
__snake_case
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
__snake_case
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
__snake_case
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
__snake_case
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 359 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__lowercase ):
lowercase__: Union[str, Any] = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self : Dict , *__magic_name__ : List[str] , **__magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase__ ( cls : Any , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> str:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase__ ( cls : Union[str, Any] , *__magic_name__ : Dict , **__magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 360 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 361 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 0 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 362 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = len(_lowerCamelCase )
for i in range(length - 1 ):
__snake_case : Union[str, Any] = i
for k in range(i + 1 , _lowerCamelCase ):
if collection[k] < collection[least]:
__snake_case : int = k
if least != i:
__snake_case : Optional[int] = (collection[i], collection[least])
return collection
if __name__ == "__main__":
__UpperCamelCase = input("Enter numbers separated by a comma:\n").strip()
__UpperCamelCase = [int(item) for item in user_input.split(",")]
print(selection_sort(unsorted))
| 363 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: int = '''AutoTokenizer'''
lowercase__: Union[str, Any] = ['''tokenizer''']
lowercase__: Union[str, Any] = {
'''semantic_prompt''': 1,
'''coarse_prompt''': 2,
'''fine_prompt''': 2,
}
def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=None ) -> str:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Tuple = speaker_embeddings
@classmethod
def lowercase__ ( cls : Dict , __magic_name__ : Any , __magic_name__ : int="speaker_embeddings_path.json" , **__magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
__snake_case : Optional[int] = get_file_from_repo(
__magic_name__ , __magic_name__ , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(__magic_name__ , __magic_name__ )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
__snake_case : Union[str, Any] = None
else:
with open(__magic_name__ ) as speaker_embeddings_json:
__snake_case : int = json.load(__magic_name__ )
else:
__snake_case : Optional[int] = None
__snake_case : Tuple = AutoTokenizer.from_pretrained(__magic_name__ , **__magic_name__ )
return cls(tokenizer=__magic_name__ , speaker_embeddings=__magic_name__ )
def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]="speaker_embeddings_path.json" , __magic_name__ : str="speaker_embeddings" , __magic_name__ : bool = False , **__magic_name__ : Dict , ) -> Optional[int]:
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__magic_name__ , __magic_name__ , """v2""" ) , exist_ok=__magic_name__ )
__snake_case : Tuple = {}
__snake_case : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
__snake_case : Any = self._load_voice_preset(__magic_name__ )
__snake_case : str = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , __magic_name__ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__magic_name__ , )
__snake_case : str = os.path.join(__magic_name__ , f'''{prompt_key}_{key}.npy''' )
__snake_case : Optional[Any] = tmp_dict
with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as fp:
json.dump(__magic_name__ , __magic_name__ )
super().save_pretrained(__magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str = None , **__magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.speaker_embeddings[voice_preset]
__snake_case : List[str] = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
__snake_case : Tuple = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
__snake_case : List[Any] = np.load(__magic_name__ )
return voice_preset_dict
def lowercase__ ( self : List[str] , __magic_name__ : Optional[dict] = None ) -> Dict:
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self : Optional[int] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]="pt" , __magic_name__ : Optional[int]=2_56 , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=True , __magic_name__ : str=False , **__magic_name__ : List[str] , ) -> str:
"""simple docstring"""
if voice_preset is not None and not isinstance(__magic_name__ , __magic_name__ ):
if (
isinstance(__magic_name__ , __magic_name__ )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
__snake_case : Dict = self._load_voice_preset(__magic_name__ )
else:
if isinstance(__magic_name__ , __magic_name__ ) and not voice_preset.endswith(""".npz""" ):
__snake_case : Any = voice_preset + """.npz"""
__snake_case : Optional[Any] = np.load(__magic_name__ )
if voice_preset is not None:
self._validate_voice_preset_dict(__magic_name__ , **__magic_name__ )
__snake_case : str = BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
__snake_case : Union[str, Any] = self.tokenizer(
__magic_name__ , return_tensors=__magic_name__ , padding="""max_length""" , max_length=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , )
if voice_preset is not None:
__snake_case : Any = voice_preset
return encoded_text
| 364 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
__UpperCamelCase = logging.get_logger(__name__)
# General docstring
__UpperCamelCase = "MobileNetV1Config"
# Base docstring
__UpperCamelCase = "google/mobilenet_v1_1.0_224"
__UpperCamelCase = [1, 1024, 7, 7]
# Image classification docstring
__UpperCamelCase = "google/mobilenet_v1_1.0_224"
__UpperCamelCase = "tabby, tabby cat"
__UpperCamelCase = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = {}
if isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : List[Any] = model.mobilenet_va
else:
__snake_case : int = model
__snake_case : Optional[int] = """MobilenetV1/Conv2d_0/"""
__snake_case : str = backbone.conv_stem.convolution.weight
__snake_case : List[str] = backbone.conv_stem.normalization.bias
__snake_case : Union[str, Any] = backbone.conv_stem.normalization.weight
__snake_case : str = backbone.conv_stem.normalization.running_mean
__snake_case : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
__snake_case : Dict = i + 1
__snake_case : Dict = i * 2
__snake_case : List[str] = backbone.layer[pt_index]
__snake_case : Optional[Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
__snake_case : Tuple = pointer.convolution.weight
__snake_case : Optional[Any] = pointer.normalization.bias
__snake_case : List[str] = pointer.normalization.weight
__snake_case : str = pointer.normalization.running_mean
__snake_case : Optional[Any] = pointer.normalization.running_var
__snake_case : Optional[Any] = backbone.layer[pt_index + 1]
__snake_case : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
__snake_case : Dict = pointer.convolution.weight
__snake_case : str = pointer.normalization.bias
__snake_case : Tuple = pointer.normalization.weight
__snake_case : List[Any] = pointer.normalization.running_mean
__snake_case : List[str] = pointer.normalization.running_var
if isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Any = """MobilenetV1/Logits/Conv2d_1c_1x1/"""
__snake_case : List[Any] = model.classifier.weight
__snake_case : List[Any] = model.classifier.bias
return tf_to_pt_map
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"""Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """
"""https://www.tensorflow.org/install/ for installation instructions.""" )
raise
# Load weights from TF model
__snake_case : str = tf.train.list_variables(_lowerCamelCase )
__snake_case : List[Any] = {}
for name, shape in init_vars:
logger.info(F'''Loading TF weight {name} with shape {shape}''' )
__snake_case : int = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase )
__snake_case : int = array
# Build TF to PyTorch weights loading map
__snake_case : int = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for name, pointer in tf_to_pt_map.items():
logger.info(F'''Importing {name}''' )
if name not in tf_weights:
logger.info(F'''{name} not in tf pre-trained weights, skipping''' )
continue
__snake_case : List[Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info("""Transposing depthwise""" )
__snake_case : Optional[int] = np.transpose(_lowerCamelCase , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("""Transposing""" )
if len(pointer.shape ) == 2: # copying into linear layer
__snake_case : Union[str, Any] = array.squeeze().transpose()
else:
__snake_case : Union[str, Any] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' )
logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' )
__snake_case : List[Any] = torch.from_numpy(_lowerCamelCase )
tf_weights.pop(_lowerCamelCase , _lowerCamelCase )
tf_weights.pop(name + """/RMSProp""" , _lowerCamelCase )
tf_weights.pop(name + """/RMSProp_1""" , _lowerCamelCase )
tf_weights.pop(name + """/ExponentialMovingAverage""" , _lowerCamelCase )
logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' )
return model
def _a ( _lowerCamelCase , _lowerCamelCase ) -> torch.Tensor:
"""simple docstring"""
__snake_case : Dict = features.shape[-2:]
__snake_case : Optional[int] = conv_layer.stride
__snake_case : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
__snake_case : str = max(kernel_height - stride_height , 0 )
else:
__snake_case : int = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__snake_case : int = max(kernel_width - stride_width , 0 )
else:
__snake_case : Any = max(kernel_width - (in_width % stride_width) , 0 )
__snake_case : Dict = pad_along_width // 2
__snake_case : str = pad_along_width - pad_left
__snake_case : Tuple = pad_along_height // 2
__snake_case : Any = pad_along_height - pad_top
__snake_case : str = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , """constant""" , 0.0 )
class _A ( nn.Module ):
def __init__( self : int , __magic_name__ : MobileNetVaConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = 1 , __magic_name__ : Optional[int] = 1 , __magic_name__ : bool = False , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[bool or str] = True , ) -> None:
"""simple docstring"""
super().__init__()
__snake_case : Dict = config
if in_channels % groups != 0:
raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' )
if out_channels % groups != 0:
raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' )
__snake_case : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
__snake_case : int = nn.Convad(
in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=__magic_name__ , stride=__magic_name__ , padding=__magic_name__ , groups=__magic_name__ , bias=__magic_name__ , padding_mode="""zeros""" , )
if use_normalization:
__snake_case : List[str] = nn.BatchNormad(
num_features=__magic_name__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=__magic_name__ , track_running_stats=__magic_name__ , )
else:
__snake_case : Union[str, Any] = None
if use_activation:
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Dict = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __magic_name__ ):
__snake_case : List[Any] = ACTaFN[config.hidden_act]
else:
__snake_case : Optional[Any] = config.hidden_act
else:
__snake_case : str = None
def lowercase__ ( self : str , __magic_name__ : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
if self.config.tf_padding:
__snake_case : List[Any] = apply_tf_padding(__magic_name__ , self.convolution )
__snake_case : Any = self.convolution(__magic_name__ )
if self.normalization is not None:
__snake_case : Dict = self.normalization(__magic_name__ )
if self.activation is not None:
__snake_case : Union[str, Any] = self.activation(__magic_name__ )
return features
class _A ( __lowercase ):
lowercase__: Tuple = MobileNetVaConfig
lowercase__: int = load_tf_weights_in_mobilenet_va
lowercase__: Union[str, Any] = '''mobilenet_v1'''
lowercase__: Any = '''pixel_values'''
lowercase__: Optional[int] = False
def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[nn.Linear, nn.Convad] ) -> None:
"""simple docstring"""
if isinstance(__magic_name__ , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__magic_name__ , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
__UpperCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__UpperCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __lowercase , )
class _A ( __lowercase ):
def __init__( self : Optional[Any] , __magic_name__ : MobileNetVaConfig , __magic_name__ : bool = True ) -> Optional[int]:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Any = config
__snake_case : Optional[int] = 32
__snake_case : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth )
__snake_case : Dict = MobileNetVaConvLayer(
__magic_name__ , in_channels=config.num_channels , out_channels=__magic_name__ , kernel_size=3 , stride=2 , )
__snake_case : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__snake_case : Any = nn.ModuleList()
for i in range(13 ):
__snake_case : List[str] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__snake_case : str = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=3 , stride=strides[i] , groups=__magic_name__ , ) )
self.layer.append(
MobileNetVaConvLayer(
__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=1 , ) )
__snake_case : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> int:
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
"""simple docstring"""
__snake_case : List[str] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
__snake_case : List[Any] = self.conv_stem(__magic_name__ )
__snake_case : Union[str, Any] = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
__snake_case : List[Any] = layer_module(__magic_name__ )
if output_hidden_states:
__snake_case : Any = all_hidden_states + (hidden_states,)
__snake_case : List[str] = hidden_states
if self.pooler is not None:
__snake_case : Optional[int] = torch.flatten(self.pooler(__magic_name__ ) , start_dim=1 )
else:
__snake_case : Union[str, Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=__magic_name__ , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , __lowercase , )
class _A ( __lowercase ):
def __init__( self : List[str] , __magic_name__ : MobileNetVaConfig ) -> None:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Union[str, Any] = config.num_labels
__snake_case : Optional[Any] = MobileNetVaModel(__magic_name__ )
__snake_case : str = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__snake_case : str = nn.Dropout(config.classifier_dropout_prob , inplace=__magic_name__ )
__snake_case : Dict = nn.Linear(__magic_name__ , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
__snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : int = self.mobilenet_va(__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ )
__snake_case : Dict = outputs.pooler_output if return_dict else outputs[1]
__snake_case : Any = self.classifier(self.dropout(__magic_name__ ) )
__snake_case : List[str] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case : Dict = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case : List[str] = """single_label_classification"""
else:
__snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
__snake_case : Optional[Any] = MSELoss()
if self.num_labels == 1:
__snake_case : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__snake_case : Tuple = loss_fct(__magic_name__ , __magic_name__ )
elif self.config.problem_type == "single_label_classification":
__snake_case : Optional[int] = CrossEntropyLoss()
__snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__snake_case : List[str] = BCEWithLogitsLoss()
__snake_case : str = loss_fct(__magic_name__ , __magic_name__ )
if not return_dict:
__snake_case : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states , )
| 365 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCamelCase = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwinForImageClassification",
"SwinForMaskedImageModeling",
"SwinModel",
"SwinPreTrainedModel",
"SwinBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSwinForImageClassification",
"TFSwinForMaskedImageModeling",
"TFSwinModel",
"TFSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 366 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 0 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = XGLMTokenizer
lowercase__: Dict = XGLMTokenizerFast
lowercase__: List[str] = True
lowercase__: Optional[Any] = True
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : str = """<pad>"""
__snake_case : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(len(__magic_name__ ) , 10_08 )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08 )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
__snake_case : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__snake_case : Tuple = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__magic_name__ , f.name )
__snake_case : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=__magic_name__ )
__snake_case : str = pickle.dumps(__magic_name__ )
pickle.loads(__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__snake_case : Optional[int] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_rust_tokenizer()
__snake_case : Dict = """I was born in 92000, and this is falsé."""
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
__snake_case : Optional[Any] = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : str = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Tuple = self.get_rust_tokenizer()
__snake_case : Optional[int] = tokenizer.encode(__magic_name__ )
__snake_case : Optional[int] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : str = """Hello World!"""
__snake_case : Optional[int] = [2, 3_12_27, 44_47, 35]
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"""
)
# fmt: off
__snake_case : Optional[int] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : str = {
"""input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""facebook/xglm-564M""" , padding=__magic_name__ , )
| 367 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 0 |
from sklearn.metrics import recall_score
import datasets
__UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
__UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
__UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=1 , __magic_name__ : Optional[Any]="binary" , __magic_name__ : List[Any]=None , __magic_name__ : List[str]="warn" , ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = recall_score(
__magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , )
return {"recall": float(__magic_name__ ) if score.size == 1 else score}
| 368 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _A ( unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : str = tempfile.mkdtemp()
__snake_case : List[Any] = BlipImageProcessor()
__snake_case : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
__snake_case : List[Any] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
__snake_case : int = InstructBlipProcessor(__magic_name__ , __magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : int , **__magic_name__ : Any ) -> str:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowercase__ ( self : Any , **__magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowercase__ ( self : Union[str, Any] , **__magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).qformer_tokenizer
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__snake_case : Dict = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
__snake_case : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : Tuple = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
__snake_case : Union[str, Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
self.assertIsInstance(processor.qformer_tokenizer , __magic_name__ )
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = self.get_image_processor()
__snake_case : str = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_qformer_tokenizer()
__snake_case : Optional[Any] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : int = self.prepare_image_inputs()
__snake_case : Dict = image_processor(__magic_name__ , return_tensors="""np""" )
__snake_case : List[Any] = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Any = self.get_qformer_tokenizer()
__snake_case : List[Any] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : List[Any] = """lower newer"""
__snake_case : Tuple = processor(text=__magic_name__ )
__snake_case : Tuple = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
__snake_case : List[str] = qformer_tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def lowercase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = self.get_image_processor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_qformer_tokenizer()
__snake_case : Tuple = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : List[str] = """lower newer"""
__snake_case : Optional[int] = self.prepare_image_inputs()
__snake_case : int = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : int = self.get_qformer_tokenizer()
__snake_case : List[str] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Optional[Any] = processor.batch_decode(__magic_name__ )
__snake_case : int = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case : List[str] = self.get_image_processor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : int = self.get_qformer_tokenizer()
__snake_case : int = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : Tuple = """lower newer"""
__snake_case : Optional[Any] = self.prepare_image_inputs()
__snake_case : Dict = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 369 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 0 |
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = """"""
for i in table:
res += inp[i - 1]
return res
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
return data[1:] + data[0]
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = """"""
for i in range(len(_lowerCamelCase ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 )
__snake_case : Any = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = message[:4]
__snake_case : Dict = message[4:]
__snake_case : Dict = apply_table(_lowerCamelCase , _lowerCamelCase )
__snake_case : Union[str, Any] = xor(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[int] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741
__snake_case : List[str] = apply_sbox(_lowerCamelCase , temp[4:] )
__snake_case : Tuple = """0""" * (2 - len(_lowerCamelCase )) + l # noqa: E741
__snake_case : List[Any] = """0""" * (2 - len(_lowerCamelCase )) + r
__snake_case : Dict = apply_table(l + r , _lowerCamelCase )
__snake_case : List[Any] = xor(_lowerCamelCase , _lowerCamelCase )
return temp + right
if __name__ == "__main__":
__UpperCamelCase = input("Enter 10 bit key: ")
__UpperCamelCase = input("Enter 8 bit message: ")
__UpperCamelCase = [6, 3, 7, 4, 8, 5, 10, 9]
__UpperCamelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
__UpperCamelCase = [2, 4, 3, 1]
__UpperCamelCase = [2, 6, 3, 1, 4, 8, 5, 7]
__UpperCamelCase = [4, 1, 3, 5, 7, 2, 8, 6]
__UpperCamelCase = [4, 1, 2, 3, 2, 3, 4, 1]
__UpperCamelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
__UpperCamelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
__UpperCamelCase = apply_table(key, paa_table)
__UpperCamelCase = temp[:5]
__UpperCamelCase = temp[5:]
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = apply_table(left + right, pa_table)
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = apply_table(left + right, pa_table)
# encryption
__UpperCamelCase = apply_table(message, IP)
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = temp[4:] + temp[:4]
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = apply_table(temp, IP_inv)
print("Cipher text is:", CT)
# decryption
__UpperCamelCase = apply_table(CT, IP)
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = temp[4:] + temp[:4]
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = apply_table(temp, IP_inv)
print("Plain text after decypting is:", PT)
| 370 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 0 |
'''simple docstring'''
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class _A ( __lowercase , unittest.TestCase ):
lowercase__: Union[str, Any] = AlbertTokenizer
lowercase__: int = AlbertTokenizerFast
lowercase__: str = True
lowercase__: List[Any] = True
lowercase__: Optional[Any] = True
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__snake_case : List[Any] = AlbertTokenizer(__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : int = """this is a test"""
__snake_case : List[str] = """this is a test"""
return input_text, output_text
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case : str = """<pad>"""
__snake_case : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """▁eloquent""" )
self.assertEqual(len(__magic_name__ ) , 3_00_00 )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 )
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__snake_case : Dict = self.get_tokenizer()
__snake_case : Tuple = self.get_rust_tokenizer()
__snake_case : Optional[Any] = """I was born in 92000, and this is falsé."""
__snake_case : str = tokenizer.tokenize(__magic_name__ )
__snake_case : Tuple = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self.get_rust_tokenizer()
__snake_case : List[str] = tokenizer.encode(__magic_name__ )
__snake_case : Optional[Any] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = AlbertTokenizer(__magic_name__ , keep_accents=__magic_name__ )
__snake_case : List[str] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__magic_name__ , ["""▁this""", """▁is""", """▁a""", """▁test"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [48, 25, 21, 12_89] )
__snake_case : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] )
__snake_case : List[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] )
__snake_case : str = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = AlbertTokenizer(__magic_name__ )
__snake_case : List[Any] = tokenizer.encode("""sequence builders""" )
__snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" )
__snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
__snake_case : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def lowercase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
| 371 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 0 |
'''simple docstring'''
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = torch.load(_lowerCamelCase , map_location="""cpu""" )
__snake_case : Optional[Any] = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
__snake_case : Optional[Any] = {}
for k, v in state_dict.items():
if "pred_layer" in k:
__snake_case : int = v
else:
__snake_case : Any = v
__snake_case : Dict = chkpt["""params"""]
__snake_case : str = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )}
__snake_case : List[str] = chkpt["""dico_word2id"""]
__snake_case : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()}
# Save pytorch-model
__snake_case : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__snake_case : Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
__snake_case : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(_lowerCamelCase , _lowerCamelCase )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
print(F'''Save vocab file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__UpperCamelCase = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 350 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = """huggingface/label-files"""
__snake_case : List[str] = """imagenet-1k-id2label.json"""
__snake_case : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
__snake_case : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
__snake_case : int = {v: k for k, v in idalabel.items()}
__snake_case : Optional[int] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
__snake_case : int = BitConfig(
conv_layer=_lowerCamelCase , num_labels=1000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , )
return config
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
if "stem.conv" in name:
__snake_case : List[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
__snake_case : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
__snake_case : Optional[Any] = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
__snake_case : Dict = """bit.""" + name
if "bit" not in name and "classifier" not in name:
__snake_case : Optional[int] = """bit.encoder.""" + name
return name
def _a ( ) -> int:
"""simple docstring"""
__snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Any:
"""simple docstring"""
__snake_case : Any = get_config(_lowerCamelCase )
# load original model from timm
__snake_case : List[Any] = create_model(_lowerCamelCase , pretrained=_lowerCamelCase )
timm_model.eval()
# load state_dict of original model
__snake_case : int = timm_model.state_dict()
for key in state_dict.copy().keys():
__snake_case : Optional[Any] = state_dict.pop(_lowerCamelCase )
__snake_case : List[Any] = val.squeeze() if """head""" in key else val
# load HuggingFace model
__snake_case : Dict = BitForImageClassification(_lowerCamelCase )
model.eval()
model.load_state_dict(_lowerCamelCase )
# create image processor
__snake_case : Tuple = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) )
__snake_case : str = transform.transforms
__snake_case : Any = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
__snake_case : Any = BitImageProcessor(
do_resize=_lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
__snake_case : Dict = prepare_img()
__snake_case : int = transform(_lowerCamelCase ).unsqueeze(0 )
__snake_case : Optional[Any] = processor(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(_lowerCamelCase , _lowerCamelCase )
# verify logits
with torch.no_grad():
__snake_case : Any = model(_lowerCamelCase )
__snake_case : Optional[int] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
__snake_case : Optional[Any] = timm_model(_lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
if push_to_hub:
print(F'''Pushing model {model_name} and processor to the hub''' )
model.push_to_hub(F'''ybelkada/{model_name}''' )
processor.push_to_hub(F'''ybelkada/{model_name}''' )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="resnetv2_50x1_bitm",
type=str,
help="Name of the BiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
__UpperCamelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 351 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[Any] = IFInpaintingPipeline
lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
lowercase__: List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase__: Any = PipelineTesterMixin.required_optional_params - {'''latents'''}
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
return self._get_dummy_components()
def lowercase__ ( self : Any , __magic_name__ : str , __magic_name__ : str=0 ) -> Any:
"""simple docstring"""
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : Any = torch.manual_seed(__magic_name__ )
else:
__snake_case : Any = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Any = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
self._test_save_load_local()
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 352 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 0 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
lowercase__: List[str]
lowercase__: Optional[str] = None
# Automatically constructed
lowercase__: ClassVar[str] = "dict"
lowercase__: ClassVar[Any] = None
lowercase__: str = field(default='''Translation''' , init=__lowercase , repr=__lowercase )
def __call__( self : int ) -> Optional[Any]:
"""simple docstring"""
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
lowercase__: Optional[List] = None
lowercase__: Optional[int] = None
lowercase__: Optional[str] = None
# Automatically constructed
lowercase__: ClassVar[str] = "dict"
lowercase__: ClassVar[Any] = None
lowercase__: str = field(default='''TranslationVariableLanguages''' , init=__lowercase , repr=__lowercase )
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : int = sorted(set(self.languages ) ) if self.languages else None
__snake_case : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self : int ) -> Dict:
"""simple docstring"""
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def lowercase__ ( self : int , __magic_name__ : int ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = set(self.languages )
if self.languages and set(__magic_name__ ) - lang_set:
raise ValueError(
f'''Some languages in example ({", ".join(sorted(set(__magic_name__ ) - lang_set ) )}) are not in valid set ({", ".join(__magic_name__ )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__snake_case : int = []
for lang, text in translation_dict.items():
if isinstance(__magic_name__ , __magic_name__ ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__snake_case : Any = zip(*sorted(__magic_name__ ) )
return {"language": languages, "translation": translations}
def lowercase__ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 353 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 0 |
def _a ( _lowerCamelCase = 200_0000 ) -> int:
"""simple docstring"""
__snake_case : Any = [0 for i in range(n + 1 )]
__snake_case : Union[str, Any] = 1
__snake_case : List[Any] = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , _lowerCamelCase ):
__snake_case : Any = 1
__snake_case : int = 0
for i in range(_lowerCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"""{solution() = }""")
| 354 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
__UpperCamelCase = HUGGINGFACE_HUB_CACHE
__UpperCamelCase = "config.json"
__UpperCamelCase = "diffusion_pytorch_model.bin"
__UpperCamelCase = "diffusion_flax_model.msgpack"
__UpperCamelCase = "model.onnx"
__UpperCamelCase = "diffusion_pytorch_model.safetensors"
__UpperCamelCase = "weights.pb"
__UpperCamelCase = "https://huggingface.co"
__UpperCamelCase = default_cache_path
__UpperCamelCase = "diffusers_modules"
__UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
__UpperCamelCase = ["fp16", "non-ema"]
__UpperCamelCase = ".self_attn"
| 355 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
__snake_case : int = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) )
return round(_lowerCamelCase , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 0 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__UpperCamelCase = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class _A ( unittest.TestCase ):
def lowercase__ ( self : int , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )]
if identifier is not None:
__snake_case : Tuple = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__magic_name__ , __magic_name__ ):
for n_ in n_identifier:
__snake_case : List[Any] = [file for file in files if n_ not in file]
else:
__snake_case : Union[str, Any] = [file for file in files if n_identifier not in file]
__snake_case : Any = ignore_files or []
ignore_files.append("""__init__.py""" )
__snake_case : Union[str, Any] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , __magic_name__ )
if only_modules:
__snake_case : Dict = file.split(""".""" )[0]
try:
__snake_case : List[str] = getattr(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = doctest.DocTestSuite(__magic_name__ )
__snake_case : Tuple = unittest.TextTestRunner().run(__magic_name__ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
__snake_case : Optional[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = Path("""src/transformers""" )
__snake_case : List[str] = """modeling"""
__snake_case : List[str] = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = Path("""src/transformers""" )
__snake_case : List[Any] = """tokenization"""
self.analyze_directory(__magic_name__ , identifier=__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = Path("""src/transformers""" )
__snake_case : Optional[int] = """configuration"""
self.analyze_directory(__magic_name__ , identifier=__magic_name__ )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case : Dict = Path("""src/transformers""" )
__snake_case : List[Any] = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Any = Path("""docs/source""" )
__snake_case : Optional[int] = ["""favicon.ico"""]
self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
| 358 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _A ( unittest.TestCase ):
lowercase__: str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowercase__: str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def lowercase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : int = TextaTextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ )
return generator, ["Something to write", "Something else"]
def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = generator("""Something there""" )
self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
__snake_case : Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
] , )
__snake_case : List[Any] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
] , )
with self.assertRaises(__magic_name__ ):
generator(4 )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
__snake_case : int = generator("""Something there""" , do_sample=__magic_name__ )
self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
__snake_case : str = 3
__snake_case : int = generator(
"""Something there""" , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , )
__snake_case : Any = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(__magic_name__ , __magic_name__ )
__snake_case : List[str] = generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ )
self.assertEqual(
__magic_name__ , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
__snake_case : Any = generator.model.config.eos_token_id
__snake_case : Any = """<pad>"""
__snake_case : Optional[int] = generator(
["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , )
self.assertEqual(
__magic_name__ , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
__snake_case : int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
__snake_case : List[Any] = generator("""Something there""" , do_sample=__magic_name__ )
self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
| 359 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _A ( unittest.TestCase ):
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = """laion/clap-htsat-unfused"""
__snake_case : Dict = tempfile.mkdtemp()
def lowercase__ ( self : Union[str, Any] , **__magic_name__ : List[str] ) -> str:
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint , **__magic_name__ )
def lowercase__ ( self : List[str] , **__magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Any = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
processor.save_pretrained(self.tmpdirname )
__snake_case : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
__snake_case : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : List[Any] = self.get_feature_extractor(do_normalize=__magic_name__ , padding_value=1.0 )
__snake_case : Any = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : Tuple = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" )
__snake_case : str = processor(audios=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : int = """This is a test string"""
__snake_case : List[Any] = processor(text=__magic_name__ )
__snake_case : List[Any] = tokenizer(__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_feature_extractor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Optional[int] = processor.batch_decode(__magic_name__ )
__snake_case : int = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = self.get_feature_extractor()
__snake_case : List[Any] = self.get_tokenizer()
__snake_case : Dict = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
| 360 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained("""google/mt5-small""" )
__snake_case : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids
__snake_case : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids
__snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ).loss
__snake_case : Optional[Any] = -tf.math.reduce_mean(__magic_name__ ).numpy()
__snake_case : Union[str, Any] = -21.228168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
| 361 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 0 |
'''simple docstring'''
def _a ( _lowerCamelCase = 1000 ) -> int:
"""simple docstring"""
return sum(e for e in range(3 , _lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 362 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 0 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "spiece.model"}
__UpperCamelCase = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class _A ( __lowercase ):
def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : int=True , __magic_name__ : Dict=False , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : Optional[Any]="<unk>" , __magic_name__ : int="<sep>" , __magic_name__ : int="<pad>" , __magic_name__ : List[Any]="<cls>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Tuple=["<eop>", "<eod>"] , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Any , ) -> None:
"""simple docstring"""
__snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
__snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
__snake_case : Dict = 3
__snake_case : Optional[int] = do_lower_case
__snake_case : str = remove_space
__snake_case : List[Any] = keep_accents
__snake_case : Dict = vocab_file
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
__snake_case : Optional[int] = jieba
__snake_case : int = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def lowercase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
return len(self.sp_model )
def lowercase__ ( self : int ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : List[Any] = self.__dict__.copy()
__snake_case : int = None
return state
def __setstate__( self : int , __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Union[str, Any] = {}
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Any:
"""simple docstring"""
if self.remove_space:
__snake_case : Optional[Any] = """ """.join(inputs.strip().split() )
else:
__snake_case : Any = inputs
__snake_case : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
__snake_case : Optional[Any] = unicodedata.normalize("""NFKD""" , __magic_name__ )
__snake_case : Dict = """""".join([c for c in outputs if not unicodedata.combining(__magic_name__ )] )
if self.do_lower_case:
__snake_case : Union[str, Any] = outputs.lower()
return outputs
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.preprocess_text(__magic_name__ )
__snake_case : str = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
__snake_case : str = []
for piece in pieces:
if len(__magic_name__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
__snake_case : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__snake_case : List[Any] = cur_pieces[1:]
else:
__snake_case : str = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__magic_name__ )
else:
new_pieces.append(__magic_name__ )
return new_pieces
def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> Dict:
"""simple docstring"""
return self.sp_model.PieceToId(__magic_name__ )
def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return self.sp_model.IdToPiece(__magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = """""".join(__magic_name__ ).replace(__magic_name__ , """ """ ).strip()
return out_string
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : str = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is not None:
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1, 1]
return ([0] * len(__magic_name__ )) + [1, 1]
def lowercase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Tuple = [self.sep_token_id]
__snake_case : List[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : List[str] = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def lowercase__ ( self : Dict , *__magic_name__ : Dict , **__magic_name__ : Union[str, Any] ) -> str:
"""simple docstring"""
__snake_case : Dict = super()._decode(*__magic_name__ , **__magic_name__ )
__snake_case : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 363 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import pprint
import requests
__UpperCamelCase = "https://zenquotes.io/api"
def _a ( ) -> list:
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _a ( ) -> list:
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__UpperCamelCase = random_quotes()
pprint.pprint(response)
| 364 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 0 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__snake_case : int = k.replace(_lowerCamelCase , _lowerCamelCase )
if k.startswith("""encoder""" ):
__snake_case : Optional[Any] = k.replace(""".attn""" , """.self_attn""" )
__snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
__snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
__snake_case : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" )
return k
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
__snake_case : Union[str, Any] = sd.pop(_lowerCamelCase )
__snake_case : List[Any] = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
__snake_case : Tuple = v
__UpperCamelCase = ["START"]
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" )
__snake_case : Tuple = model["""model"""]
__snake_case : Union[str, Any] = BlenderbotConfig.from_json_file(_lowerCamelCase )
__snake_case : Tuple = BlenderbotForConditionalGeneration(_lowerCamelCase )
__snake_case : Optional[Any] = m.model.state_dict().keys()
__snake_case : Optional[Any] = []
__snake_case : List[Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__snake_case : List[str] = rename_state_dict_key(_lowerCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__snake_case : str = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_lowerCamelCase )
m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
m.half()
m.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
__UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 365 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 0 |
'''simple docstring'''
__UpperCamelCase = range(2, 20 + 1)
__UpperCamelCase = [10**k for k in range(ks[-1] + 1)]
__UpperCamelCase = {}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) )
__snake_case : Dict = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) )
__snake_case : int = 0, 0
__snake_case : List[str] = n - i
__snake_case : Optional[Any] = memo.get(_lowerCamelCase )
if sub_memo is not None:
__snake_case : int = sub_memo.get(_lowerCamelCase )
if jumps is not None and len(_lowerCamelCase ) > 0:
# find and make the largest jump without going over
__snake_case : Optional[int] = -1
for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__snake_case : Dict = _k
break
if max_jump >= 0:
__snake_case : Any = jumps[max_jump]
# since the difference between jumps is cached, add c
__snake_case : int = diff + c
for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ):
__snake_case : int = divmod(_lowerCamelCase , 10 )
if new_c > 0:
add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
__snake_case : List[str] = []
else:
__snake_case : int = {c: []}
__snake_case : Optional[int] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__snake_case : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__snake_case : List[str] = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase )
diff += _diff
dn += terms_jumped
__snake_case : Union[str, Any] = sub_memo[c]
# keep jumps sorted by # of terms skipped
__snake_case : Union[str, Any] = 0
while j < len(_lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
if i >= n:
return 0, i
if k > len(_lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__snake_case : List[Any] = i
__snake_case : str = 0, 0, 0
for j in range(len(_lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__snake_case : Dict = ds_c + ds_b
diff += addend
__snake_case : List[Any] = 0
for j in range(_lowerCamelCase ):
__snake_case : str = a_i[j] + addend
__snake_case : Any = divmod(_lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return diff, i - start_i
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[Any] = digits[j] + addend
if s >= 10:
__snake_case : List[str] = divmod(_lowerCamelCase , 10 )
__snake_case : List[Any] = addend // 10 + quotient
else:
__snake_case : int = s
__snake_case : Optional[int] = addend // 10
if addend == 0:
break
while addend > 0:
__snake_case : Union[str, Any] = divmod(_lowerCamelCase , 10 )
digits.append(_lowerCamelCase )
def _a ( _lowerCamelCase = 10**15 ) -> int:
"""simple docstring"""
__snake_case : Dict = [1]
__snake_case : Dict = 1
__snake_case : List[Any] = 0
while True:
__snake_case : Any = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__snake_case : Optional[Any] = 0
for j in range(len(_lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 366 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 0 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
__UpperCamelCase = "\nimport os\n"
__UpperCamelCase = "\ndef foo():\n import os\n return False\n"
__UpperCamelCase = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n"
__UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = os.path.join(_lowerCamelCase , """test_file.py""" )
with open(_lowerCamelCase , """w""" ) as _tmp_file:
_tmp_file.write(_lowerCamelCase )
__snake_case : List[str] = get_imports(_lowerCamelCase )
assert parsed_imports == ["os"]
| 367 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCamelCase = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 368 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
__UpperCamelCase = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__UpperCamelCase = "true"
def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=16 ) -> str:
"""simple docstring"""
set_seed(42 )
__snake_case : int = RegressionModel()
__snake_case : Any = deepcopy(_lowerCamelCase )
__snake_case : List[str] = RegressionDataset(length=_lowerCamelCase )
__snake_case : Any = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase )
model.to(accelerator.device )
__snake_case : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
return model, ddp_model, dataloader
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
__snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" , split="""validation""" )
def tokenize_function(_lowerCamelCase ):
__snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
with accelerator.main_process_first():
__snake_case : Union[str, Any] = dataset.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
__snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_lowerCamelCase ):
if use_longest:
return tokenizer.pad(_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )
return tokenizer.pad(_lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=16 )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase )
__snake_case : List[str] = get_dataloader(_lowerCamelCase , not dispatch_batches )
__snake_case : int = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_lowerCamelCase )
__snake_case : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Tuple = []
for batch in dataloader:
__snake_case : Dict = batch.values()
with torch.no_grad():
__snake_case : Optional[Any] = model(_lowerCamelCase )
__snake_case : int = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
__snake_case : str = [], []
for logit, targ in logits_and_targets:
logits.append(_lowerCamelCase )
targs.append(_lowerCamelCase )
__snake_case : Optional[Any] = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase )
return logits, targs
def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=16 ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
assert (
len(_lowerCamelCase ) == num_samples
), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}'''
def _a ( _lowerCamelCase = False , _lowerCamelCase = False ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
__snake_case : Dict = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase )
# First do baseline
__snake_case : Optional[Any] = setup["""no"""]
model.to(_lowerCamelCase )
model.eval()
for batch in dataloader:
batch.to(_lowerCamelCase )
with torch.inference_mode():
__snake_case : List[Any] = model(**_lowerCamelCase )
__snake_case : Tuple = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=_lowerCamelCase , references=batch["""labels"""] )
__snake_case : Optional[int] = metric.compute()
# Then do distributed
__snake_case : Optional[int] = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
__snake_case : Union[str, Any] = model(**_lowerCamelCase )
__snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 )
__snake_case : List[str] = batch["""labels"""]
__snake_case : Optional[Any] = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase )
__snake_case : Union[str, Any] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def _a ( ) -> str:
"""simple docstring"""
__snake_case : str = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(_lowerCamelCase , _lowerCamelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__snake_case : Tuple = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase )
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(_lowerCamelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
__snake_case : Optional[Any] = Accelerator()
test_torch_metrics(_lowerCamelCase , 512 )
accelerator.state._reset_state()
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 370 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 0 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _lowerCamelCase )
__snake_case : List[str] = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
__snake_case : Optional[Any] = dataset_size < in_memory_max_size
else:
__snake_case : List[str] = False
__snake_case : List[Any] = is_small_dataset(_lowerCamelCase )
assert result == expected
| 371 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 0 |
import logging
from transformers import PretrainedConfig
lowerCamelCase_ = logging.getLogger(__name__)
lowerCamelCase_ = {
"""bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""",
}
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = '''bertabs'''
def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=5_1_2 , lowercase_=6 , lowercase_=5_1_2 , lowercase_=8 , lowercase_=5_1_2 , lowercase_=0.2 , lowercase_=6 , lowercase_=7_6_8 , lowercase_=8 , lowercase_=2_0_4_8 , lowercase_=0.2 , **lowercase_ , ) -> Any:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = max_pos
lowerCAmelCase_ = enc_layers
lowerCAmelCase_ = enc_hidden_size
lowerCAmelCase_ = enc_heads
lowerCAmelCase_ = enc_ff_size
lowerCAmelCase_ = enc_dropout
lowerCAmelCase_ = dec_layers
lowerCAmelCase_ = dec_hidden_size
lowerCAmelCase_ = dec_heads
lowerCAmelCase_ = dec_ff_size
lowerCAmelCase_ = dec_dropout
| 14 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 1 |
def lowerCamelCase ( a_ ) -> int:
assert isinstance(a_ , a_ ), F'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowerCAmelCase_ = F'''The input value of [n={number}] has to be > 0'''
raise ValueError(a_ )
else:
lowerCAmelCase_ = sylvester(number - 1 )
lowerCAmelCase_ = num - 1
lowerCAmelCase_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
| 14 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase_ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 1 |
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class a_ ( a_ ):
'''simple docstring'''
__a: torch.FloatTensor
class a_ ( a_ , a_ ):
'''simple docstring'''
@register_to_config
def __init__( self , lowercase_ = 1_6 , lowercase_ = 8_8 , lowercase_ = None , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = True , lowercase_ = True , ) -> Tuple:
'''simple docstring'''
super().__init__()
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = attention_head_dim
lowerCAmelCase_ = num_attention_heads * attention_head_dim
lowerCAmelCase_ = in_channels
lowerCAmelCase_ = torch.nn.GroupNorm(num_groups=lowercase_ , num_channels=lowercase_ , eps=1e-6 , affine=lowercase_ )
lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ )
# 3. Define transformers blocks
lowerCAmelCase_ = nn.ModuleList(
[
BasicTransformerBlock(
lowercase_ , lowercase_ , lowercase_ , dropout=lowercase_ , cross_attention_dim=lowercase_ , activation_fn=lowercase_ , attention_bias=lowercase_ , double_self_attention=lowercase_ , norm_elementwise_affine=lowercase_ , )
for d in range(lowercase_ )
] )
lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=1 , lowercase_=None , lowercase_ = True , ) -> str:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = hidden_states.shape
lowerCAmelCase_ = batch_frames // num_frames
lowerCAmelCase_ = hidden_states
lowerCAmelCase_ = hidden_states[None, :].reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
lowerCAmelCase_ = self.norm(lowercase_ )
lowerCAmelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowercase_ , lowercase_ )
lowerCAmelCase_ = self.proj_in(lowercase_ )
# 2. Blocks
for block in self.transformer_blocks:
lowerCAmelCase_ = block(
lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , class_labels=lowercase_ , )
# 3. Output
lowerCAmelCase_ = self.proj_out(lowercase_ )
lowerCAmelCase_ = (
hidden_states[None, None, :]
.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
lowerCAmelCase_ = hidden_states.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=lowercase_ )
| 14 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 1 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
lowerCAmelCase_ = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
lowerCAmelCase_ = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if "bot_conv" in key:
lowerCAmelCase_ = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
lowerCAmelCase_ = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
lowerCAmelCase_ = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
lowerCAmelCase_ = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
lowerCAmelCase_ = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
lowerCAmelCase_ = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
lowerCAmelCase_ = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
lowerCAmelCase_ = key.replace('module.last_layer_depth' , 'head.head' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> str:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[config.hidden_sizes[i] :]
def lowerCamelCase ( ) -> Any:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_=False , a_=None ) -> Optional[int]:
lowerCAmelCase_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
lowerCAmelCase_ = GLPNImageProcessor()
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
# rename keys
lowerCAmelCase_ = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
lowerCAmelCase_ = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
lowerCAmelCase_ = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
lowerCAmelCase_ = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(F'''Unknown model name: {model_name}''' )
lowerCAmelCase_ = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=a_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=a_ , )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
lowerCamelCase_ = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 14 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase_ = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase_ = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase_ = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
lowerCamelCase_ = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
lowerCamelCase_ = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
lowerCamelCase_ = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
lowerCamelCase_ = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
lowerCamelCase_ = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class a_ ( a_ ):
'''simple docstring'''
__a: int = VOCAB_FILES_NAMES
__a: Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__a: Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = VOCAB_FILES_NAMES
__a: Tuple = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__a: Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowerCamelCase_ = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
lowerCamelCase_ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
lowerCamelCase_ = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a_ )
class a_ :
'''simple docstring'''
def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , )
elif titles is None or texts is None:
lowerCAmelCase_ = titles if texts is None else texts
return super().__call__(
lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , )
lowerCAmelCase_ = titles if not isinstance(lowercase_ , lowercase_ ) else [titles]
lowerCAmelCase_ = texts if not isinstance(lowercase_ , lowercase_ ) else [texts]
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
f'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' )
lowerCAmelCase_ = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )['input_ids']
lowerCAmelCase_ = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )['input_ids']
lowerCAmelCase_ = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ )
]
}
if return_attention_mask is not False:
lowerCAmelCase_ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCAmelCase_ = attention_mask
return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = 1_6 , lowercase_ = 6_4 , lowercase_ = 4 , ) -> List[DPRSpanPrediction]:
'''simple docstring'''
lowerCAmelCase_ = reader_input['input_ids']
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = reader_output[:3]
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ )
lowerCAmelCase_ = []
for doc_id in sorted_docs:
lowerCAmelCase_ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCAmelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCAmelCase_ = sequence_ids.index(self.pad_token_id )
else:
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(lowercase_ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[DPRSpanPrediction]:
'''simple docstring'''
lowerCAmelCase_ = []
for start_index, start_score in enumerate(lowercase_ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCAmelCase_ = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ )
lowerCAmelCase_ = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' )
lowerCAmelCase_ = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowercase_ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a_ )
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = VOCAB_FILES_NAMES
__a: str = READER_PRETRAINED_VOCAB_FILES_MAP
__a: Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: List[Any] = READER_PRETRAINED_INIT_CONFIGURATION
__a: str = ['''input_ids''', '''attention_mask''']
| 14 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
lowerCamelCase_ = {
"""/attention/""": """/0/SelfAttention/""",
"""/self_attention/""": """/0/SelfAttention/""",
"""/encoder_decoder_attention/""": """/1/EncDecAttention/""",
"""value""": """v""",
"""query""": """q""",
"""key""": """k""",
"""out""": """o""",
"""pre_self_attention_layer_norm""": """0/layer_norm""",
"""pre_cross_attention_layer_norm""": """1/layer_norm""",
"""pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong
"""token_embedder""": """shared""",
"""encoder_norm""": """final_layer_norm""",
"""decoder_norm""": """final_layer_norm""",
"""relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""",
"""router/router_weights/w/""": """router/classifier/""",
"""roer/roer_weights/w/""": """router/classifier/""",
"""logits_dense""": """lm_head""",
}
def lowerCamelCase ( a_ ) -> Tuple:
# 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in
# the original model
lowerCAmelCase_ = list(s_dict.keys() )
for key in keys:
lowerCAmelCase_ = R'.*/layers_(\d+)'
lowerCAmelCase_ = key
if re.match(a_ , a_ ):
lowerCAmelCase_ = re.sub(R'layers_(\d+)' , R'block/\1/layer' , a_ )
lowerCAmelCase_ = R'(encoder|decoder)\/'
if re.match(a_ , a_ ):
lowerCAmelCase_ = re.match(a_ , a_ ).groups()
if groups[0] == "encoder":
lowerCAmelCase_ = re.sub(R'/mlp/' , R'/1/mlp/' , a_ )
lowerCAmelCase_ = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , a_ )
elif groups[0] == "decoder":
lowerCAmelCase_ = re.sub(R'/mlp/' , R'/2/mlp/' , a_ )
lowerCAmelCase_ = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , a_ )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
lowerCAmelCase_ = new_key.replace(a_ , a_ )
print(F'''{key} -> {new_key}''' )
lowerCAmelCase_ = s_dict.pop(a_ )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
lowerCAmelCase_ = s_dict[
'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
lowerCAmelCase_ = s_dict[
'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
lowerCAmelCase_ = s_dict[key].shape[0]
lowerCAmelCase_ = s_dict[key]
for idx in range(a_ ):
lowerCAmelCase_ = expert_weihts[idx]
print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' )
s_dict.pop(a_ )
return s_dict
lowerCamelCase_ = {
"""NUM_ENCODER_LAYERS""": """num_layers""",
"""NUM_DECODER_LAYERS""": """num_decoder_layers""",
"""NUM_HEADS""": """num_heads""",
"""HEAD_DIM""": """d_kv""",
"""EMBED_DIM""": """d_model""",
"""MLP_DIM""": """d_ff""",
"""NUM_SELECTED_EXPERTS""": """num_selected_experts""",
"""NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""",
"""NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""",
"""dense.MlpBlock.activations""": """feed_forward_proj""",
}
def lowerCamelCase ( a_ , a_ ) -> int:
# Convert a google style config to the hugging face fromat
import regex as re
with open(a_ , 'r' ) as f:
lowerCAmelCase_ = f.read()
lowerCAmelCase_ = re.findall(R'(.*) = ([0-9.]*)' , a_ )
lowerCAmelCase_ = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
lowerCAmelCase_ = float(a_ ) if '.' in value else int(a_ )
lowerCAmelCase_ = re.findall(R'(.*activations) = \(\'(.*)\',\)' , a_ )[0]
lowerCAmelCase_ = str(activation[1] )
lowerCAmelCase_ = num_experts
lowerCAmelCase_ = SwitchTransformersConfig(**a_ )
return config
def lowerCamelCase ( a_ , a_ , a_=None , a_="./" , a_=8 ) -> Tuple:
# Initialise PyTorch model
print(F'''Loading flax weights from : {flax_checkpoint_path}''' )
lowerCAmelCase_ = checkpoints.load_tax_checkpoint(a_ )
if gin_file is not None:
lowerCAmelCase_ = convert_gin_to_config(a_ , a_ )
else:
lowerCAmelCase_ = SwitchTransformersConfig.from_pretrained(a_ )
lowerCAmelCase_ = SwitchTransformersForConditionalGeneration(a_ )
lowerCAmelCase_ = flax_params['target']
lowerCAmelCase_ = flatten_dict(a_ , sep='/' )
lowerCAmelCase_ = rename_keys(a_ )
lowerCAmelCase_ = unflatten_dict(a_ , sep='/' )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(a_ , a_ )
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
pt_model.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"""
""" model architecture. If not provided, a `gin_file` has to be provided."""
),
)
parser.add_argument(
"""--gin_file""",
default=None,
type=str,
required=False,
help="""Path to the gin config file. If not provided, a `config_file` has to be passed """,
)
parser.add_argument(
"""--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model."""
)
parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""")
lowerCamelCase_ = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 14 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 1 |
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ ) -> str:
return [
int(1_000 * (box[0] / width) ),
int(1_000 * (box[1] / height) ),
int(1_000 * (box[2] / width) ),
int(1_000 * (box[3] / height) ),
]
def lowerCamelCase ( a_ , a_ , a_ = None ) -> str:
lowerCAmelCase_ = tesseract_config if tesseract_config is not None else ''
# apply OCR
lowerCAmelCase_ = to_pil_image(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = pil_image.size
lowerCAmelCase_ = pytesseract.image_to_data(a_ , lang=a_ , output_type='dict' , config=a_ )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
lowerCAmelCase_ = [idx for idx, word in enumerate(a_ ) if not word.strip()]
lowerCAmelCase_ = [word for idx, word in enumerate(a_ ) if idx not in irrelevant_indices]
lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowerCAmelCase_ = []
for x, y, w, h in zip(a_ , a_ , a_ , a_ ):
lowerCAmelCase_ = [x, y, x + w, y + h]
actual_boxes.append(a_ )
# finally, normalize the bounding boxes
lowerCAmelCase_ = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(a_ , a_ , a_ ) )
assert len(a_ ) == len(a_ ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a_ ( a_ ):
'''simple docstring'''
__a: List[Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = "" , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 2_2_4, 'width': 2_2_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = resample
lowerCAmelCase_ = apply_ocr
lowerCAmelCase_ = ocr_lang
lowerCAmelCase_ = tesseract_config
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = (size['height'], size['width'])
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr
lowerCAmelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang
lowerCAmelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if apply_ocr:
requires_backends(self , 'pytesseract' )
lowerCAmelCase_ = []
lowerCAmelCase_ = []
for image in images:
lowerCAmelCase_ , lowerCAmelCase_ = apply_tesseract(lowercase_ , lowercase_ , lowercase_ )
words_batch.append(lowercase_ )
boxes_batch.append(lowercase_ )
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
lowerCAmelCase_ = [flip_channel_order(lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ )
if apply_ocr:
lowerCAmelCase_ = words_batch
lowerCAmelCase_ = boxes_batch
return data
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class a_ ( a_ ):
'''simple docstring'''
__a: Optional[int] = (DDIMParallelScheduler,)
__a: int = (('''eta''', 0.0), ('''num_inference_steps''', 5_0))
def _lowercase ( self , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**lowercase_ )
return config
def _lowercase ( self , **lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.scheduler_classes[0]
lowerCAmelCase_ = self.get_scheduler_config(**lowercase_ )
lowerCAmelCase_ = scheduler_class(**lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = 1_0, 0.0
lowerCAmelCase_ = self.dummy_model()
lowerCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for t in scheduler.timesteps:
lowerCAmelCase_ = model(lowercase_ , lowercase_ )
lowerCAmelCase_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def _lowercase ( self ) -> str:
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
lowerCAmelCase_ = self.scheduler_classes[0]
lowerCAmelCase_ = self.get_scheduler_config(steps_offset=1 )
lowerCAmelCase_ = scheduler_class(**lowercase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase_ )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowercase_ )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
self.check_over_configs(thresholding=lowercase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=lowercase_ )
def _lowercase ( self ) -> str:
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowercase_ , eta=lowercase_ )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.scheduler_classes[0]
lowerCAmelCase_ = self.get_scheduler_config()
lowerCAmelCase_ = scheduler_class(**lowercase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_47_71 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_24_60 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.scheduler_classes[0]
lowerCAmelCase_ = self.get_scheduler_config()
lowerCAmelCase_ = scheduler_class(**lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = 1_0, 0.0
scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = self.dummy_model()
lowerCAmelCase_ = self.dummy_sample_deter
lowerCAmelCase_ = self.dummy_sample_deter + 0.1
lowerCAmelCase_ = self.dummy_sample_deter - 0.1
lowerCAmelCase_ = samplea.shape[0]
lowerCAmelCase_ = torch.stack([samplea, samplea, samplea] , dim=0 )
lowerCAmelCase_ = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ )
lowerCAmelCase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
lowerCAmelCase_ = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ )
lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) )
lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2
assert abs(result_mean.item() - 0.49_82 ) < 1e-3
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.full_loop()
lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) )
lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = self.full_loop(prediction_type='v_prediction' )
lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) )
lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 52.53_02 ) < 1e-2
assert abs(result_mean.item() - 0.06_84 ) < 1e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) )
lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2
assert abs(result_mean.item() - 0.19_51 ) < 1e-3
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) )
lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2
assert abs(result_mean.item() - 0.19_41 ) < 1e-3
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
lowerCamelCase_ = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
lowerCamelCase_ = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
lowerCamelCase_ = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
lowerCamelCase_ = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
lowerCamelCase_ = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def lowerCamelCase ( a_ , a_ ) -> int:
for tf_name, hf_name in patterns:
lowerCAmelCase_ = k.replace(a_ , a_ )
return k
def lowerCamelCase ( a_ , a_ ) -> BigBirdPegasusForConditionalGeneration:
lowerCAmelCase_ = BigBirdPegasusConfig(**a_ )
lowerCAmelCase_ = BigBirdPegasusForConditionalGeneration(a_ )
lowerCAmelCase_ = torch_model.state_dict()
lowerCAmelCase_ = {}
# separating decoder weights
lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )}
lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )}
for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ):
lowerCAmelCase_ = [k.endswith(a_ ) for ending in KEYS_TO_IGNORE]
if any(a_ ):
continue
lowerCAmelCase_ = DECODER_PATTERNS
lowerCAmelCase_ = rename_state_dict_key(a_ , a_ )
if new_k not in state_dict:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ):
lowerCAmelCase_ = v.T
lowerCAmelCase_ = torch.from_numpy(a_ )
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ):
lowerCAmelCase_ = [k.endswith(a_ ) for ending in KEYS_TO_IGNORE]
if any(a_ ):
continue
lowerCAmelCase_ = REMAINING_PATTERNS
lowerCAmelCase_ = rename_state_dict_key(a_ , a_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ):
lowerCAmelCase_ = v.T
lowerCAmelCase_ = torch.from_numpy(a_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
lowerCAmelCase_ = mapping['model.embed_positions.weight']
lowerCAmelCase_ = mapping.pop('model.embed_positions.weight' )
lowerCAmelCase_ , lowerCAmelCase_ = torch_model.load_state_dict(a_ , strict=a_ )
lowerCAmelCase_ = [
k
for k in missing
if k
not in [
'final_logits_bias',
'model.encoder.embed_tokens.weight',
'model.decoder.embed_tokens.weight',
'lm_head.weight',
]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def lowerCamelCase ( a_ ) -> Dict:
lowerCAmelCase_ = tf.train.list_variables(a_ )
lowerCAmelCase_ = {}
lowerCAmelCase_ = ['global_step']
for name, shape in tqdm(a_ , desc='converting tf checkpoint to dict' ):
lowerCAmelCase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowerCAmelCase_ = tf.train.load_variable(a_ , a_ )
lowerCAmelCase_ = array
return tf_weights
def lowerCamelCase ( a_ , a_ , a_ ) -> Dict:
lowerCAmelCase_ = get_tf_weights_as_numpy(a_ )
lowerCAmelCase_ = convert_bigbird_pegasus(a_ , a_ )
torch_model.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class a_ ( a_ ):
'''simple docstring'''
__a: Tuple = ['''image_processor''', '''tokenizer''']
__a: List[Any] = '''BridgeTowerImageProcessor'''
__a: Optional[int] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
super().__init__(lowercase_ , lowercase_ )
def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding:
'''simple docstring'''
lowerCAmelCase_ = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
# add pixel_values + pixel_mask
lowerCAmelCase_ = self.image_processor(
lowercase_ , return_tensors=lowercase_ , do_normalize=lowercase_ , do_center_crop=lowercase_ , **lowercase_ )
encoding.update(lowercase_ )
return encoding
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]:
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.tokenizer.model_input_names
lowerCAmelCase_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class a_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=3_0 , lowercase_=4_0_0 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 2_5_5 , lowercase_=True , ) -> int:
'''simple docstring'''
lowerCAmelCase_ = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3}
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = min_resolution
lowerCAmelCase_ = max_resolution
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean
lowerCAmelCase_ = image_std
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_pad
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self , lowercase_ , lowercase_=False ) -> int:
'''simple docstring'''
if not batched:
lowerCAmelCase_ = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase_ , lowerCAmelCase_ = image.size
else:
lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase_ = int(self.size['shortest_edge'] * h / w )
lowerCAmelCase_ = self.size['shortest_edge']
elif w > h:
lowerCAmelCase_ = self.size['shortest_edge']
lowerCAmelCase_ = int(self.size['shortest_edge'] * w / h )
else:
lowerCAmelCase_ = self.size['shortest_edge']
lowerCAmelCase_ = self.size['shortest_edge']
else:
lowerCAmelCase_ = []
for image in image_inputs:
lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Dict = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase_ , 'image_std' ) )
self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) )
self.assertTrue(hasattr(lowercase_ , 'do_pad' ) )
self.assertTrue(hasattr(lowercase_ , 'size' ) )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
lowerCAmelCase_ = json.loads(f.read() )
lowerCAmelCase_ = {'image_id': 3_9_7_6_9, 'annotations': target}
# encode them
lowerCAmelCase_ = DeformableDetrImageProcessor()
lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' )
# verify pixel values
lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['pixel_values'].shape , lowercase_ )
lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) )
# verify boxes
lowerCAmelCase_ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ )
lowerCAmelCase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase_ = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) )
# verify class_labels
lowerCAmelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) )
# verify orig_size
lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) )
# verify size
lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
@slow
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
lowerCAmelCase_ = json.loads(f.read() )
lowerCAmelCase_ = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target}
lowerCAmelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
lowerCAmelCase_ = DeformableDetrImageProcessor(format='coco_panoptic' )
lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' )
# verify pixel values
lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['pixel_values'].shape , lowercase_ )
lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) )
# verify boxes
lowerCAmelCase_ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ )
lowerCAmelCase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase_ = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) )
# verify class_labels
lowerCAmelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) )
# verify masks
lowerCAmelCase_ = 8_2_2_8_7_3
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) )
# verify size
lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
lowerCamelCase_ = logging.get_logger(__name__)
@dataclass
class a_ :
'''simple docstring'''
__a: str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
__a: str = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
__a: int = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
__a: bool = field(
default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = self.task_name.lower()
class a_ ( a_ ):
'''simple docstring'''
__a: int = '''train'''
__a: Tuple = '''dev'''
__a: List[Any] = '''test'''
class a_ ( a_ ):
'''simple docstring'''
__a: GlueDataTrainingArguments
__a: str
__a: List[InputFeatures]
def __init__( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = Split.train , lowercase_ = None , ) -> List[Any]:
'''simple docstring'''
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowercase_ , )
lowerCAmelCase_ = args
lowerCAmelCase_ = glue_processors[args.task_name]()
lowerCAmelCase_ = glue_output_modes[args.task_name]
if isinstance(lowercase_ , lowercase_ ):
try:
lowerCAmelCase_ = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase_ = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , )
lowerCAmelCase_ = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase_ , lowerCAmelCase_ = label_list[2], label_list[1]
lowerCAmelCase_ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase_ = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
lowerCAmelCase_ = time.time()
lowerCAmelCase_ = torch.load(lowercase_ )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start )
else:
logger.info(f'''Creating features from dataset file at {args.data_dir}''' )
if mode == Split.dev:
lowerCAmelCase_ = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase_ = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase_ = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase_ = examples[:limit_length]
lowerCAmelCase_ = glue_convert_examples_to_features(
lowercase_ , lowercase_ , max_length=args.max_seq_length , label_list=lowercase_ , output_mode=self.output_mode , )
lowerCAmelCase_ = time.time()
torch.save(self.features , lowercase_ )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> List[str]:
'''simple docstring'''
return len(self.features )
def __getitem__( self , lowercase_ ) -> InputFeatures:
'''simple docstring'''
return self.features[i]
def _lowercase ( self ) -> int:
'''simple docstring'''
return self.label_list
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
lowerCamelCase_ = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase_ = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def lowerCamelCase ( a_ ) -> List[str]:
lowerCAmelCase_ = os.path.join(args.tf_model_dir , 'parameters.json' )
lowerCAmelCase_ = json.loads(open(a_ ).read() )
if not params:
raise ValueError(
F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' )
if not args.output.endswith('.pt' ):
lowerCAmelCase_ = args.output + '.pt'
lowerCAmelCase_ = OrderedDict()
with tf.device('/CPU:0' ):
lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir )
lowerCAmelCase_ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowerCAmelCase_ = reader.get_tensor(a_ ).astype(np.floataa )
if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ):
continue
if key_name.startswith('pasts/' ):
if key_name.startswith('pasts/mlp' ):
lowerCAmelCase_ = int(key_name[9] )
elif key_name.startswith('pasts/out' ):
lowerCAmelCase_ = 8
lowerCAmelCase_ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/moe' ):
lowerCAmelCase_ = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/switch_gating/kernel' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/softmlp/kernel' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ):
lowerCAmelCase_ = key_name[-9:-7]
for i in range(16 ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer)
lowerCAmelCase_ = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/mlp' ):
lowerCAmelCase_ = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/p1/kernel' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/p1/bias' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/p2/kernel' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/p2/bias' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/ln' ):
lowerCAmelCase_ = int(key_name[8:].split('/' )[0] )
if key_name.endswith('/b' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.bias' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/g' ):
lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.weight' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/att' ):
lowerCAmelCase_ = int(key_name[9:].split('/' )[0] )
if key_name.endswith('/qkv/kernel' ):
lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowerCAmelCase_ = state[:, 0, :, :]
lowerCAmelCase_ = state[:, 1, :, :]
lowerCAmelCase_ = state[:, 2, :, :]
lowerCAmelCase_ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player
lowerCAmelCase_ = torch.tensor(a_ )
lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player
lowerCAmelCase_ = torch.tensor(a_ )
lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/o/kernel' ):
lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player
lowerCAmelCase_ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/an' ):
lowerCAmelCase_ = int(key_name[8:].split('/' )[0] )
if key_name.endswith('/b' ):
lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.bias' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.endswith('/g' ):
lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.weight' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
elif (
key_name.startswith('model/wte' )
or key_name.startswith('model/wpe' )
or key_name.startswith('model/ete' )
):
lowerCAmelCase_ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[
key_name[-3:]
]
lowerCAmelCase_ = 'model.%s.weight' % nlayer
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = torch.tensor(a_ )
if key_name.startswith('model/wte' ):
lowerCAmelCase_ = 'lm_head.weight'
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name.startswith('model/wob' ):
lowerCAmelCase_ = 'final_logits_bias'
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = state.reshape((1, -1) )
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name == "model/dense/kernel":
lowerCAmelCase_ = 'model.last_project.weight'
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(a_ )
elif key_name == "model/dense_1/bias":
lowerCAmelCase_ = 'model.last_project.bias'
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(a_ )
torch.save(a_ , args.output )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser(
description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""")
parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""")
lowerCamelCase_ = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class a_ ( a_ ):
'''simple docstring'''
@slow
@require_torch
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
lowerCAmelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' )
lowerCAmelCase_ = bertabert.config.encoder.vocab_size
lowerCAmelCase_ = tokenizer.sep_token_id
lowerCAmelCase_ = tokenizer.cls_token_id
lowerCAmelCase_ = 1_2_8
lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
lowerCAmelCase_ = train_dataset.select(range(3_2 ) )
lowerCAmelCase_ = val_dataset.select(range(1_6 ) )
lowerCAmelCase_ = 4
def _map_to_encoder_decoder_inputs(lowercase_ ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowerCAmelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase_ , max_length=5_1_2 )
lowerCAmelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase_ , max_length=1_2_8 )
lowerCAmelCase_ = inputs.input_ids
lowerCAmelCase_ = inputs.attention_mask
lowerCAmelCase_ = outputs.input_ids
lowerCAmelCase_ = outputs.input_ids.copy()
lowerCAmelCase_ = [
[-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
lowerCAmelCase_ = outputs.attention_mask
assert all(len(lowercase_ ) == 5_1_2 for x in inputs.input_ids )
assert all(len(lowercase_ ) == 1_2_8 for x in outputs.input_ids )
return batch
def _compute_metrics(lowercase_ ):
lowerCAmelCase_ = pred.label_ids
lowerCAmelCase_ = pred.predictions
# all unnecessary tokens are removed
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ )
return {"accuracy": accuracy}
# map train dataset
lowerCAmelCase_ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
lowerCAmelCase_ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
lowerCAmelCase_ = self.get_auto_remove_tmp_dir()
lowerCAmelCase_ = SeqaSeqTrainingArguments(
output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy='steps' , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowerCAmelCase_ = SeqaSeqTrainer(
model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , )
# start training
trainer.train()
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = [
("""bert.bert""", """visual_bert"""),
("""bert.cls""", """cls"""),
("""bert.classifier""", """cls"""),
("""token_type_embeddings_visual""", """visual_token_type_embeddings"""),
("""position_embeddings_visual""", """visual_position_embeddings"""),
("""projection""", """visual_projection"""),
]
lowerCamelCase_ = [
"""nlvr2_coco_pre_trained.th""",
"""nlvr2_fine_tuned.th""",
"""nlvr2_pre_trained.th""",
"""vcr_coco_pre_train.th""",
"""vcr_fine_tune.th""",
"""vcr_pre_train.th""",
"""vqa_coco_pre_trained.th""",
"""vqa_fine_tuned.th""",
"""vqa_pre_trained.th""",
]
def lowerCamelCase ( a_ ) -> str:
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )
return sd
def lowerCamelCase ( a_ , a_ , a_=rename_keys_prefix ) -> List[str]:
lowerCAmelCase_ = OrderedDict()
lowerCAmelCase_ = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
lowerCAmelCase_ = key
for name_pair in rename_keys_prefix:
lowerCAmelCase_ = new_key.replace(name_pair[0] , name_pair[1] )
lowerCAmelCase_ = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
lowerCAmelCase_ = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def lowerCamelCase ( a_ , a_ ) -> Optional[Any]:
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
lowerCAmelCase_ = 'pretraining'
if "vcr" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 2_048}
elif "vqa" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 2_048}
elif "nlvr" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 1_024}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 512}
lowerCAmelCase_ = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 2_048}
lowerCAmelCase_ = 'vqa_advanced'
elif "vqa" in checkpoint_path:
lowerCAmelCase_ = {'visual_embedding_dim': 2_048, 'num_labels': 3_129}
lowerCAmelCase_ = 'vqa'
elif "nlvr" in checkpoint_path:
lowerCAmelCase_ = {
'visual_embedding_dim': 1_024,
'num_labels': 2,
}
lowerCAmelCase_ = 'nlvr'
lowerCAmelCase_ = VisualBertConfig(**a_ )
# Load State Dict
lowerCAmelCase_ = load_state_dict(a_ )
lowerCAmelCase_ = get_new_dict(a_ , a_ )
if model_type == "pretraining":
lowerCAmelCase_ = VisualBertForPreTraining(a_ )
elif model_type == "vqa":
lowerCAmelCase_ = VisualBertForQuestionAnswering(a_ )
elif model_type == "nlvr":
lowerCAmelCase_ = VisualBertForVisualReasoning(a_ )
elif model_type == "multichoice":
lowerCAmelCase_ = VisualBertForMultipleChoice(a_ )
model.load_state_dict(a_ )
# Save Checkpoints
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""")
lowerCamelCase_ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 14 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( a_ ) -> Any:
lowerCAmelCase_ = tmp_path / 'file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = tmp_path / 'malformed_file.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ , a_ ) -> List[str]:
lowerCAmelCase_ = tmp_path / 'csv_with_image.csv'
lowerCAmelCase_ = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = tmp_path / 'csv_with_label.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
@pytest.fixture
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv'
lowerCAmelCase_ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(a_ , 'w' ) as f:
f.write(a_ )
return str(a_ )
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
lowerCAmelCase_ = Csv()
lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(a_ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(a_ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( a_ ) -> Optional[Any]:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
lowerCAmelCase_ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( a_ ) -> int:
with open(a_ , encoding='utf-8' ) as f:
lowerCAmelCase_ = f.read().splitlines()[1:]
lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
lowerCAmelCase_ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels]
def lowerCamelCase ( a_ ) -> Union[str, Any]:
lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} )
lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] )
lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
lowerCAmelCase_ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCamelCase_ = {
"""configuration_speecht5""": [
"""SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""",
"""SpeechT5Config""",
"""SpeechT5HifiGanConfig""",
],
"""feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""],
"""processing_speecht5""": ["""SpeechT5Processor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ["""SpeechT5Tokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SpeechT5ForSpeechToText""",
"""SpeechT5ForSpeechToSpeech""",
"""SpeechT5ForTextToSpeech""",
"""SpeechT5Model""",
"""SpeechT5PreTrainedModel""",
"""SpeechT5HifiGan""",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
from maths.prime_factors import prime_factors
def lowerCamelCase ( a_ ) -> int:
if not isinstance(a_ , a_ ):
lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCAmelCase_ = [144, 192, 240]
lowerCAmelCase_ = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCAmelCase_ = [96, 120, 144]
lowerCAmelCase_ = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCAmelCase_ = [64, 80, 96]
lowerCAmelCase_ = [16, 16, 24, 48, 64, 80, 320]
lowerCAmelCase_ = 0.05
lowerCAmelCase_ = 2.0
if mobilevit_name.startswith('deeplabv3_' ):
lowerCAmelCase_ = 512
lowerCAmelCase_ = 16
lowerCAmelCase_ = 21
lowerCAmelCase_ = 'pascal-voc-id2label.json'
else:
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = 'huggingface/label-files'
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( a_ , a_=False ) -> List[Any]:
for i in range(1 , 6 ):
if F'''layer_{i}.''' in name:
lowerCAmelCase_ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
lowerCAmelCase_ = name.replace('conv_1.' , 'conv_stem.' )
if ".block." in name:
lowerCAmelCase_ = name.replace('.block.' , '.' )
if "exp_1x1" in name:
lowerCAmelCase_ = name.replace('exp_1x1' , 'expand_1x1' )
if "red_1x1" in name:
lowerCAmelCase_ = name.replace('red_1x1' , 'reduce_1x1' )
if ".local_rep.conv_3x3." in name:
lowerCAmelCase_ = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' )
if ".local_rep.conv_1x1." in name:
lowerCAmelCase_ = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' )
if ".norm." in name:
lowerCAmelCase_ = name.replace('.norm.' , '.normalization.' )
if ".conv." in name:
lowerCAmelCase_ = name.replace('.conv.' , '.convolution.' )
if ".conv_proj." in name:
lowerCAmelCase_ = name.replace('.conv_proj.' , '.conv_projection.' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
lowerCAmelCase_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
lowerCAmelCase_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' )
if "expand_1x1" in name:
lowerCAmelCase_ = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' )
if "conv_3x3" in name:
lowerCAmelCase_ = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' )
if "reduce_1x1" in name:
lowerCAmelCase_ = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' )
for i in range(2 , 5 ):
if F'''.global_rep.{i}.weight''' in name:
lowerCAmelCase_ = name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' )
if F'''.global_rep.{i}.bias''' in name:
lowerCAmelCase_ = name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' )
if ".global_rep." in name:
lowerCAmelCase_ = name.replace('.global_rep.' , '.transformer.' )
if ".pre_norm_mha.0." in name:
lowerCAmelCase_ = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCAmelCase_ = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' )
if ".pre_norm_ffn.0." in name:
lowerCAmelCase_ = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' )
if ".pre_norm_ffn.1." in name:
lowerCAmelCase_ = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' )
if ".pre_norm_ffn.4." in name:
lowerCAmelCase_ = name.replace('.pre_norm_ffn.4.' , '.output.dense.' )
if ".transformer." in name:
lowerCAmelCase_ = name.replace('.transformer.' , '.transformer.layer.' )
if ".aspp_layer." in name:
lowerCAmelCase_ = name.replace('.aspp_layer.' , '.' )
if ".aspp_pool." in name:
lowerCAmelCase_ = name.replace('.aspp_pool.' , '.' )
if "seg_head." in name:
lowerCAmelCase_ = name.replace('seg_head.' , 'segmentation_head.' )
if "segmentation_head.classifier.classifier." in name:
lowerCAmelCase_ = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' )
if "classifier.fc." in name:
lowerCAmelCase_ = name.replace('classifier.fc.' , 'classifier.' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCAmelCase_ = 'mobilevit.' + name
return name
def lowerCamelCase ( a_ , a_ , a_=False ) -> str:
if base_model:
lowerCAmelCase_ = ''
else:
lowerCAmelCase_ = 'mobilevit.'
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if key[:8] == "encoder.":
lowerCAmelCase_ = key[8:]
if "qkv" in key:
lowerCAmelCase_ = key.split('.' )
lowerCAmelCase_ = int(key_split[0][6:] ) - 1
lowerCAmelCase_ = int(key_split[3] )
lowerCAmelCase_ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' )
lowerCAmelCase_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCAmelCase_ = (
F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( ) -> Union[str, Any]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ , a_=False ) -> List[Any]:
lowerCAmelCase_ = get_mobilevit_config(a_ )
# load original state_dict
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )
# load 🤗 model
if mobilevit_name.startswith('deeplabv3_' ):
lowerCAmelCase_ = MobileViTForSemanticSegmentation(a_ ).eval()
else:
lowerCAmelCase_ = MobileViTForImageClassification(a_ ).eval()
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
model.load_state_dict(a_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCAmelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors='pt' )
lowerCAmelCase_ = model(**a_ )
lowerCAmelCase_ = outputs.logits
if mobilevit_name.startswith('deeplabv3_' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCAmelCase_ = torch.tensor(
[
[[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]],
[[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]],
[[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCAmelCase_ = torch.tensor(
[
[[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]],
[[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]],
[[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCAmelCase_ = torch.tensor(
[
[[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]],
[[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]],
[[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]],
] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCAmelCase_ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] )
elif mobilevit_name == "mobilevit_xs":
lowerCAmelCase_ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] )
elif mobilevit_name == "mobilevit_xxs":
lowerCAmelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3] , a_ , atol=1e-4 )
Path(a_ ).mkdir(exist_ok=a_ )
print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a_ )
if push_to_hub:
lowerCAmelCase_ = {
'mobilevit_s': 'mobilevit-small',
'mobilevit_xs': 'mobilevit-x-small',
'mobilevit_xxs': 'mobilevit-xx-small',
'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small',
'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small',
'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small',
}
print('Pushing to the hub...' )
lowerCAmelCase_ = model_mapping[mobilevit_name]
image_processor.push_to_hub(a_ , organization='apple' )
model.push_to_hub(a_ , organization='apple' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--mobilevit_name""",
default="""mobilevit_s""",
type=str,
help=(
"""Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"""
""" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."""
),
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase ( a_ , a_ ) -> Tuple:
lowerCAmelCase_ = XCLIPTextConfig()
# derive patch size from model name
lowerCAmelCase_ = model_name.find('patch' )
lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
lowerCAmelCase_ = 12
lowerCAmelCase_ = 1_024
lowerCAmelCase_ = 4_096
lowerCAmelCase_ = 16
lowerCAmelCase_ = 24
lowerCAmelCase_ = 768
lowerCAmelCase_ = 3_072
if model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = 336
lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ )
if "large" in model_name:
lowerCAmelCase_ = 768
return config
def lowerCamelCase ( a_ ) -> List[str]:
# text encoder
if name == "token_embedding.weight":
lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase_ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase_ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
lowerCAmelCase_ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def lowerCamelCase ( a_ , a_ ) -> Dict:
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ = orig_state_dict.pop(a_ )
if "attn.in_proj" in key:
lowerCAmelCase_ = key.split('.' )
if key.startswith('visual' ):
lowerCAmelCase_ = key_split[3]
lowerCAmelCase_ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[
:dim
]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[
-dim:
]
else:
if "weight" in key:
lowerCAmelCase_ = val[
:dim, :
]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[
-dim:, :
]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
elif key.startswith('mit' ):
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.vision_config.mit_hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[dim : dim * 2, :]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[dim : dim * 2]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = key_split[2]
lowerCAmelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase_ = val[:dim, :]
lowerCAmelCase_ = val[
dim : dim * 2, :
]
lowerCAmelCase_ = val[-dim:, :]
else:
lowerCAmelCase_ = val[:dim]
lowerCAmelCase_ = val[
dim : dim * 2
]
lowerCAmelCase_ = val[-dim:]
else:
lowerCAmelCase_ = rename_key(a_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
lowerCAmelCase_ = val.T
lowerCAmelCase_ = val
return orig_state_dict
def lowerCamelCase ( a_ ) -> List[str]:
if num_frames == 8:
lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
lowerCAmelCase_ = 'eating_spaghetti.npy'
elif num_frames == 32:
lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy'
lowerCAmelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , )
lowerCAmelCase_ = np.load(a_ )
return list(a_ )
def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]:
lowerCAmelCase_ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
lowerCAmelCase_ = model_to_url[model_name]
lowerCAmelCase_ = 8
if "16-frames" in model_name:
lowerCAmelCase_ = 16
elif "shot" in model_name:
lowerCAmelCase_ = 32
lowerCAmelCase_ = get_xclip_config(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
model.eval()
if "drive" in checkpoint_url:
lowerCAmelCase_ = 'pytorch_model.bin'
gdown.cached_download(a_ , a_ , quiet=a_ )
lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model']
else:
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model']
lowerCAmelCase_ = convert_state_dict(a_ , a_ )
lowerCAmelCase_ = XCLIPModel(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ )
lowerCAmelCase_ = prepare_video(a_ )
lowerCAmelCase_ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
lowerCAmelCase_ = model(**a_ )
# Verify outputs
lowerCAmelCase_ = outputs.logits_per_video
lowerCAmelCase_ = logits_per_video.softmax(dim=1 )
print('Probs:' , a_ )
# kinetics-400
if model_name == "xclip-base-patch32":
lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] )
elif model_name == "xclip-base-patch16":
lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] )
elif model_name == "xclip-large-patch14":
lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(a_ , a_ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(a_ , organization='nielsr' )
processor.push_to_hub(a_ , organization='nielsr' )
slow_tokenizer.push_to_hub(a_ , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase_ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 | 1 |
from ...processing_utils import ProcessorMixin
class a_ ( a_ ):
'''simple docstring'''
__a: Any = '''SpeechT5FeatureExtractor'''
__a: Tuple = '''SpeechT5Tokenizer'''
def __init__( self , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
super().__init__(lowercase_ , lowercase_ )
def __call__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = kwargs.pop('audio' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('text' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('text_target' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('audio_target' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('sampling_rate' , lowercase_ )
if audio is not None and text is not None:
raise ValueError(
'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' )
if audio_target is not None and text_target is not None:
raise ValueError(
'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' )
if audio is not None:
lowerCAmelCase_ = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ )
elif text is not None:
lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ )
else:
lowerCAmelCase_ = None
if audio_target is not None:
lowerCAmelCase_ = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ )
lowerCAmelCase_ = targets['input_values']
elif text_target is not None:
lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ )
lowerCAmelCase_ = targets['input_ids']
else:
lowerCAmelCase_ = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase_ = labels
lowerCAmelCase_ = targets.get('attention_mask' )
if decoder_attention_mask is not None:
lowerCAmelCase_ = decoder_attention_mask
return inputs
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = kwargs.pop('input_values' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('input_ids' , lowercase_ )
lowerCAmelCase_ = kwargs.pop('labels' , lowercase_ )
if input_values is not None and input_ids is not None:
raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' )
if input_values is not None:
lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ )
elif input_ids is not None:
lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ )
else:
lowerCAmelCase_ = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_ ) and "input_ids" in labels[0]):
lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ )
lowerCAmelCase_ = targets['input_ids']
else:
lowerCAmelCase_ = self.feature_extractor.feature_size
lowerCAmelCase_ = self.feature_extractor.num_mel_bins
lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ )
lowerCAmelCase_ = feature_size_hack
lowerCAmelCase_ = targets['input_values']
else:
lowerCAmelCase_ = None
if inputs is None:
return targets
if targets is not None:
lowerCAmelCase_ = labels
lowerCAmelCase_ = targets.get('attention_mask' )
if decoder_attention_mask is not None:
lowerCAmelCase_ = decoder_attention_mask
return inputs
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def _lowercase ( self , *lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
| 14 |
def lowerCamelCase ( a_ , a_ ) -> List[Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
lowerCAmelCase_ = 0
while b > 0:
if b & 1:
lowerCAmelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCamelCase ( a_ , a_=10 ) -> Optional[int]:
lowerCAmelCase_ = []
for _ in range(a_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCamelCase ( a_ , a_=10 ) -> Optional[Any]:
lowerCAmelCase_ = []
for step in range(a_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase_ = os.path.join(a_ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a_ )
lowerCAmelCase_ = torch.load(a_ )
scheduler.load_state_dict(a_ )
return lrs
@require_torch
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for a, b in zip(lowercase_ , lowercase_ ):
self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ )
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ )
lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] )
lowerCAmelCase_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowerCAmelCase_ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_0_0 ):
lowerCAmelCase_ = criterion(lowercase_ , lowercase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ )
lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] )
lowerCAmelCase_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowerCAmelCase_ = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , )
for _ in range(1_0_0_0 ):
lowerCAmelCase_ = criterion(lowercase_ , lowercase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Tuple = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
__a: Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
__a: str = 1_0
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for a, b in zip(lowercase_ , lowercase_ ):
self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = {'num_warmup_steps': 2, 'num_training_steps': 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
lowerCAmelCase_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14],
),
}
for scheduler_func, data in scheds.items():
lowerCAmelCase_ , lowerCAmelCase_ = data
lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
lowerCAmelCase_ = unwrap_schedule(lowercase_ , self.num_steps )
self.assertListAlmostEqual(
lowercase_ , lowercase_ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule
lowerCAmelCase_ = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps )
self.assertListEqual(lowercase_ , lowercase_ , msg=f'''failed for {scheduler_func} in save and reload''' )
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = fn
def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]:
'''simple docstring'''
return self.fn(*lowercase_ , **lowercase_ )
@classmethod
def _lowercase ( self , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = list(map(self , scheduler.lr_lambdas ) )
| 14 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class a_ ( a_ ):
'''simple docstring'''
__a: str = ['''vqvae''']
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
lowerCAmelCase_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
lowerCAmelCase_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowercase_ , device=self.device , )
lowerCAmelCase_ = noise
lowerCAmelCase_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowercase_ , lowercase_ )
lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ )
lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample(
generator=lowercase_ )[0]
lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] )
lowerCAmelCase_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
lowerCAmelCase_ = int(mask_start_secs * pixels_per_second )
lowerCAmelCase_ = int(mask_end_secs * pixels_per_second )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowercase_ ):
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample']
else:
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
if isinstance(self.scheduler , lowercase_ ):
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample']
else:
lowerCAmelCase_ = self.scheduler.step(
model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample']
if mask is not None:
if mask_start > 0:
lowerCAmelCase_ = mask[:, step, :, :mask_start]
if mask_end > 0:
lowerCAmelCase_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images
lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample']
lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' )
lowerCAmelCase_ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) )
lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) )
@torch.no_grad()
def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , lowercase_ )
self.scheduler.set_timesteps(lowercase_ )
lowerCAmelCase_ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1
lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
lowerCAmelCase_ = self.scheduler.alphas_cumprod[t]
lowerCAmelCase_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
lowerCAmelCase_ = 1 - alpha_prod_t
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample']
lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
| 14 | 1 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 14 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class a_ ( a_ ):
'''simple docstring'''
__a: Dict = '''perceiver'''
def __init__( self , lowercase_=2_5_6 , lowercase_=1_2_8_0 , lowercase_=7_6_8 , lowercase_=1 , lowercase_=2_6 , lowercase_=8 , lowercase_=8 , lowercase_=None , lowercase_=None , lowercase_="kv" , lowercase_=1 , lowercase_=1 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=2_6_2 , lowercase_=2_0_4_8 , lowercase_=5_6 , lowercase_=[3_6_8, 4_9_6] , lowercase_=1_6 , lowercase_=1_9_2_0 , lowercase_=1_6 , lowercase_=[1, 1_6, 2_2_4, 2_2_4] , **lowercase_ , ) -> Dict:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = num_latents
lowerCAmelCase_ = d_latents
lowerCAmelCase_ = d_model
lowerCAmelCase_ = num_blocks
lowerCAmelCase_ = num_self_attends_per_block
lowerCAmelCase_ = num_self_attention_heads
lowerCAmelCase_ = num_cross_attention_heads
lowerCAmelCase_ = qk_channels
lowerCAmelCase_ = v_channels
lowerCAmelCase_ = cross_attention_shape_for_attention
lowerCAmelCase_ = self_attention_widening_factor
lowerCAmelCase_ = cross_attention_widening_factor
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = use_query_residual
# masked language modeling attributes
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = max_position_embeddings
# image classification attributes
lowerCAmelCase_ = image_size
# flow attributes
lowerCAmelCase_ = train_size
# multimodal autoencoding attributes
lowerCAmelCase_ = num_frames
lowerCAmelCase_ = audio_samples_per_frame
lowerCAmelCase_ = samples_per_patch
lowerCAmelCase_ = output_shape
class a_ ( a_ ):
'''simple docstring'''
@property
def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowerCAmelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def _lowercase ( self ) -> float:
'''simple docstring'''
return 1e-4
def _lowercase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 4_0 , lowercase_ = 4_0 , ) -> Mapping[str, Any]:
'''simple docstring'''
if isinstance(lowercase_ , lowercase_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowerCAmelCase_ = compute_effective_axis_dimension(
lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCAmelCase_ = preprocessor.num_special_tokens_to_add(lowercase_ )
lowerCAmelCase_ = compute_effective_axis_dimension(
lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ )
# Generate dummy inputs according to compute batch and sequence
lowerCAmelCase_ = [' '.join(['a'] ) * seq_length] * batch_size
lowerCAmelCase_ = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) )
lowerCAmelCase_ = inputs.pop('input_ids' )
return inputs
elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowerCAmelCase_ = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch )
lowerCAmelCase_ = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) )
lowerCAmelCase_ = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 14 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCamelCase_ = logging.get_logger(__name__)
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> None:
'''simple docstring'''
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 14 | 1 |
from __future__ import annotations
def lowerCamelCase ( a_ , a_ ) -> float:
lowerCAmelCase_ = sorted(numsa + numsa )
lowerCAmelCase_ , lowerCAmelCase_ = divmod(len(a_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase_ = [float(x) for x in input("""Enter the elements of first array: """).split()]
lowerCamelCase_ = [float(x) for x in input("""Enter the elements of second array: """).split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 14 |
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class a_ ( a_ ):
'''simple docstring'''
__a: Dict = '''git_vision_model'''
def __init__( self , lowercase_=7_6_8 , lowercase_=3_0_7_2 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3 , lowercase_=2_2_4 , lowercase_=1_6 , lowercase_="quick_gelu" , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=0.02 , **lowercase_ , ) -> int:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = image_size
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = attention_dropout
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = hidden_act
@classmethod
def _lowercase ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get('model_type' ) == "git":
lowerCAmelCase_ = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowercase_ , **lowercase_ )
class a_ ( a_ ):
'''simple docstring'''
__a: List[str] = '''git'''
def __init__( self , lowercase_=None , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=6 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_4 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=False , lowercase_=1_0_1 , lowercase_=1_0_2 , lowercase_=None , **lowercase_ , ) -> Any:
'''simple docstring'''
super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ )
if vision_config is None:
lowerCAmelCase_ = {}
logger.info('vision_config is None. initializing the GitVisionConfig with default values.' )
lowerCAmelCase_ = GitVisionConfig(**lowercase_ )
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = position_embedding_type
lowerCAmelCase_ = use_cache
lowerCAmelCase_ = tie_word_embeddings
lowerCAmelCase_ = num_image_with_embedding
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = eos_token_id
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ = self.vision_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
| 14 |
import baseaa
def lowerCamelCase ( a_ ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def lowerCamelCase ( a_ ) -> str:
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowerCamelCase_ = """Hello World!"""
lowerCamelCase_ = baseaa_encode(test)
print(encoded)
lowerCamelCase_ = baseaa_decode(encoded)
print(decoded)
| 14 | 1 |
from collections import namedtuple
lowerCamelCase_ = namedtuple("""from_to""", """from_ to""")
lowerCamelCase_ = {
"""cubicmeter""": from_to(1, 1),
"""litre""": from_to(0.001, 1_0_0_0),
"""kilolitre""": from_to(1, 1),
"""gallon""": from_to(0.00454, 264.172),
"""cubicyard""": from_to(0.76455, 1.30795),
"""cubicfoot""": from_to(0.028, 35.3147),
"""cup""": from_to(0.000236588, 4226.75),
}
def lowerCamelCase ( a_ , a_ , a_ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(a_ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(a_ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int:
if attention_mask is None:
lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class a_ :
'''simple docstring'''
__a: Tuple = OPTConfig
__a: Optional[Any] = {}
__a: Tuple = '''gelu'''
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = seq_length
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = eos_token_id
lowerCAmelCase_ = pad_token_id
lowerCAmelCase_ = bos_token_id
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = word_embed_proj_dim
lowerCAmelCase_ = False
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , )
lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ )
return config, inputs_dict
def _lowercase ( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel(config=lowercase_ )
lowerCAmelCase_ = inputs_dict['input_ids']
lowerCAmelCase_ = input_ids[:1, :]
lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :]
lowerCAmelCase_ = 1
# first forward pass
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ )
lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0]
lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 )
@require_tf
class a_ ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
__a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else ()
__a: Union[str, Any] = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
__a: int = False
__a: List[Any] = False
__a: Dict = False
__a: List[Any] = 1_0
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase_ , lowercase_ ):
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase_ , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]:
# build the embeddings
lowerCAmelCase_ = model_class(config=lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase_ )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() )
lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
lowerCAmelCase_ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase_ )
# check that weights remain the same after resizing
lowerCAmelCase_ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase_ )
lowerCAmelCase_ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
lowerCAmelCase_ = False
self.assertTrue(lowercase_ )
def lowerCamelCase ( a_ ) -> Any:
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
__a: Optional[int] = 9_9
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2
lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
lowerCAmelCase_ = input_ids.shape[0]
lowerCAmelCase_ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class a_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' )
lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id )
with tf.GradientTape():
lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state
lowerCAmelCase_ = (1, 1_1, 5_1_2)
self.assertEqual(output.shape , lowercase_ )
lowerCAmelCase_ = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = 'facebook/opt-350m'
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model )
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model )
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
lowerCAmelCase_ = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ )
lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
@require_tf
@slow
class a_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-125m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
lowerCAmelCase_ = 'left'
# use different length sentences to test batching
lowerCAmelCase_ = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ )
lowerCAmelCase_ = inputs['input_ids']
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] )
lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ )
lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase_ = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = 'facebook/opt-350m'
lowerCAmelCase_ = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
lowerCAmelCase_ = []
lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ )
lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ )
for prompt in self.prompts:
lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids
lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 )
lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
predicted_outputs += generated_string
self.assertListEqual(lowercase_ , lowercase_ )
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase_ = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_=False ) -> Tuple:
lowerCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
lowerCAmelCase_ = 'segformer.encoder.' + key
if key.startswith('backbone' ):
lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )]
lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' )
if "norm" in key:
lowerCAmelCase_ = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase_ = key[key.find('block' ) + len('block' )]
lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' )
if "attn.q" in key:
lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
lowerCAmelCase_ = key.replace('attn' , 'attention.self' )
if "fc1" in key:
lowerCAmelCase_ = key.replace('fc1' , 'dense1' )
if "fc2" in key:
lowerCAmelCase_ = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' )
lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )]
lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' )
if key.startswith('head' ):
lowerCAmelCase_ = key.replace('head' , 'classifier' )
lowerCAmelCase_ = value
return new_state_dict
def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase ( ) -> Optional[int]:
lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw )
return image
@torch.no_grad()
def lowerCamelCase ( a_ , a_ , a_ ) -> int:
lowerCAmelCase_ = SegformerConfig()
lowerCAmelCase_ = False
# set attributes based on model_name
lowerCAmelCase_ = 'huggingface/label-files'
if "segformer" in model_name:
lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
lowerCAmelCase_ = 150
lowerCAmelCase_ = 'ade20k-id2label.json'
lowerCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase_ = 19
lowerCAmelCase_ = 'cityscapes-id2label.json'
lowerCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase_ = True
lowerCAmelCase_ = model_name[4:6]
lowerCAmelCase_ = 1_000
lowerCAmelCase_ = 'imagenet-1k-id2label.json'
lowerCAmelCase_ = (1, 1_000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()}
lowerCAmelCase_ = idalabel
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 256
elif size == "b2":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase_ = [64, 128, 320, 512]
lowerCAmelCase_ = 768
lowerCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ )
# prepare image
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )
else:
lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase_ = False
lowerCAmelCase_ = SegformerForImageClassification(a_ )
else:
lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
lowerCAmelCase_ = model(a_ )
lowerCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase_ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 | 1 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase_ = logging.get_logger(__name__)
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]:
def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ):
lowerCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size
lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = output_size
# determine new height and width
lowerCAmelCase_ = output_height / input_height
lowerCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCAmelCase_ = scale_width
else:
# fit height
lowerCAmelCase_ = scale_height
lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ )
lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ )
return (new_height, new_width)
class a_ ( a_ ):
'''simple docstring'''
__a: Union[str, Any] = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = do_resize
lowerCAmelCase_ = size
lowerCAmelCase_ = keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of
lowerCAmelCase_ = resample
lowerCAmelCase_ = do_rescale
lowerCAmelCase_ = rescale_factor
lowerCAmelCase_ = do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase_ = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase_ = get_resize_output_image_size(
lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict:
'''simple docstring'''
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ = size if size is not None else self.size
lowerCAmelCase_ = get_size_dict(lowercase_ )
lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCAmelCase_ = resample if resample is not None else self.resample
lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ = image_std if image_std is not None else self.image_std
lowerCAmelCase_ = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase_ = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
lowerCAmelCase_ = target_sizes.numpy()
lowerCAmelCase_ = []
for idx in range(len(lowercase_ ) ):
lowerCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ )
lowerCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
lowerCAmelCase_ = logits.argmax(dim=1 )
lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class a_ ( a_ , a_ ):
'''simple docstring'''
__a: Optional[Any] = '''nat'''
__a: int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**lowercase_ )
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = depths
lowerCAmelCase_ = len(lowercase_ )
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = kernel_size
lowerCAmelCase_ = mlp_ratio
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = drop_path_rate
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase_ = layer_scale_init_value
lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 14 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowerCamelCase_ = datasets.utils.logging.get_logger(__name__)
@dataclass
class a_ ( datasets.BuilderConfig ):
'''simple docstring'''
__a: Optional[datasets.Features] = None
__a: str = "utf-8"
__a: Optional[str] = None
__a: Optional[str] = None
__a: bool = True # deprecated
__a: Optional[int] = None # deprecated
__a: int = 1_0 << 2_0 # 10MB
__a: Optional[bool] = None
class a_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__a: Dict = JsonConfig
def _lowercase ( self ) -> Any:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' )
lowerCAmelCase_ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' )
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' )
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self , lowercase_ ) -> Tuple:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
lowerCAmelCase_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowercase_ , (str, list, tuple) ):
lowerCAmelCase_ = data_files
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = [files]
lowerCAmelCase_ = [dl_manager.iter_files(lowercase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCAmelCase_ = []
for split_name, files in data_files.items():
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = [files]
lowerCAmelCase_ = [dl_manager.iter_files(lowercase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files} ) )
return splits
def _lowercase ( self , lowercase_ ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
lowerCAmelCase_ = self.config.features.arrow_schema.field(lowercase_ ).type
lowerCAmelCase_ = pa_table.append_column(lowercase_ , pa.array([None] * len(lowercase_ ) , type=lowercase_ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase_ = table_cast(lowercase_ , self.config.features.arrow_schema )
return pa_table
def _lowercase ( self , lowercase_ ) -> Optional[int]:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
lowerCAmelCase_ = json.load(lowercase_ )
# We keep only the field we are interested in
lowerCAmelCase_ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(lowercase_ , (list, tuple) ):
lowerCAmelCase_ = set().union(*[row.keys() for row in dataset] )
lowerCAmelCase_ = {col: [row.get(lowercase_ ) for row in dataset] for col in keys}
else:
lowerCAmelCase_ = dataset
lowerCAmelCase_ = pa.Table.from_pydict(lowercase_ )
yield file_idx, self._cast_table(lowercase_ )
# If the file has one json object per line
else:
with open(lowercase_ , 'rb' ) as f:
lowerCAmelCase_ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
lowerCAmelCase_ = max(self.config.chunksize // 3_2 , 1_6 << 1_0 )
lowerCAmelCase_ = (
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
lowerCAmelCase_ = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(lowercase_ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
lowerCAmelCase_ = batch.decode(self.config.encoding , errors=lowercase_ ).encode('utf-8' )
try:
while True:
try:
lowerCAmelCase_ = paj.read_json(
io.BytesIO(lowercase_ ) , read_options=paj.ReadOptions(block_size=lowercase_ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(lowercase_ , pa.ArrowInvalid )
and "straddling" not in str(lowercase_ )
or block_size > len(lowercase_ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(lowercase_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
lowerCAmelCase_ = json.load(lowercase_ )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(lowercase_ , lowercase_ ): # list is the only sequence type supported in JSON
try:
lowerCAmelCase_ = set().union(*[row.keys() for row in dataset] )
lowerCAmelCase_ = {col: [row.get(lowercase_ ) for row in dataset] for col in keys}
lowerCAmelCase_ = pa.Table.from_pydict(lowercase_ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(lowercase_ )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowercase_ )
batch_idx += 1
| 14 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 | 1 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCamelCase_ = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
lowerCamelCase_ = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
lowerCamelCase_ = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] , )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="auto" , lowercase_=-1 , lowercase_=0.9 , lowercase_=5 , lowercase_=5_0_0 , lowercase_="gpt2-large" , lowercase_=-1 , lowercase_=1_0_2_4 , lowercase_=2_5 , lowercase_=5 , lowercase_=True , lowercase_=2_5 , ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = compute_mauve(
p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , )
return out
| 14 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCamelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def lowerCamelCase ( a_ ) -> List[str]:
if isinstance(a_ , torch.Tensor ):
return image
elif isinstance(a_ , PIL.Image.Image ):
lowerCAmelCase_ = [image]
lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image]
lowerCAmelCase_ = torch.stack(a_ )
return image
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def _lowercase ( self , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ )
lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase_ = init_latents.shape
lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
# get latents
print('add noise to latents at timestep' , lowercase_ )
lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase_ = init_latents
return latents
@torch.no_grad()
def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(lowercase_ )
# 2. Preprocess image
lowerCAmelCase_ = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_ , device=self.device )
lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device )
lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ )
lowerCAmelCase_ = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase_ = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample
lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 14 | 1 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCamelCase_ = get_tests_dir("""fixtures""")
lowerCamelCase_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
lowerCamelCase_ = get_tests_dir("""fixtures/dummy-config.json""")
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = 0
def _lowercase ( self ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def _lowercase ( self ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase_ = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict()
config_dict.pop('feature_extractor_type' )
lowerCAmelCase_ = WavaVecaFeatureExtractor(**lowercase_ )
# save in new folder
model_config.save_pretrained(lowercase_ )
config.save_pretrained(lowercase_ )
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ )
# make sure private variable is not incorrectly saved
lowerCAmelCase_ = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
with self.assertRaisesRegex(
lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ):
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('bert-base' )
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
with self.assertRaisesRegex(
lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ):
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' )
def _lowercase ( self ) -> int:
'''simple docstring'''
with self.assertRaises(lowercase_ ):
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowercase_ ):
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ )
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowercase_ )
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
try:
AutoConfig.register('custom' , lowercase_ )
AutoFeatureExtractor.register(lowercase_ , lowercase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowercase_ ):
AutoFeatureExtractor.register(lowercase_ , lowercase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowercase_ )
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
class a_ ( a_ ):
'''simple docstring'''
__a: str = True
try:
AutoConfig.register('custom' , lowercase_ )
AutoFeatureExtractor.register(lowercase_ , lowercase_ )
# If remote code is not set, the default is to use local
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(not hasattr(lowercase_ , 'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 14 |
def lowerCamelCase ( a_ ) -> "list[int]":
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
lowerCAmelCase_ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
lowerCAmelCase_ = 1
if upper_limit > 0:
lowerCAmelCase_ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
lowerCamelCase_ = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
lowerCamelCase_ = """pytorch_model.bin"""
lowerCamelCase_ = """pytorch_model.bin.index.json"""
lowerCamelCase_ = """adapter_config.json"""
lowerCamelCase_ = """adapter_model.bin"""
lowerCamelCase_ = """adapter_model.safetensors"""
lowerCamelCase_ = """tf_model.h5"""
lowerCamelCase_ = """tf_model.h5.index.json"""
lowerCamelCase_ = """model.ckpt"""
lowerCamelCase_ = """flax_model.msgpack"""
lowerCamelCase_ = """flax_model.msgpack.index.json"""
lowerCamelCase_ = """model.safetensors"""
lowerCamelCase_ = """model.safetensors.index.json"""
lowerCamelCase_ = """config.json"""
lowerCamelCase_ = """preprocessor_config.json"""
lowerCamelCase_ = FEATURE_EXTRACTOR_NAME
lowerCamelCase_ = """generation_config.json"""
lowerCamelCase_ = """modelcard.json"""
lowerCamelCase_ = """▁"""
lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
lowerCamelCase_ = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def lowerCamelCase ( a_ ) -> Dict:
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
lowerCAmelCase_ = (
'This example requires a source install from HuggingFace Transformers (see '
'`https://huggingface.co/docs/transformers/installation#install-from-source`),'
)
else:
lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other '
'versions of HuggingFace Transformers.' )
| 14 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
lowerCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class a_ ( a_ ):
'''simple docstring'''
def __init__( self , *lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
super().__init__(*lowercase_ , **lowercase_ )
self.check_model_type(lowercase_ )
def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ , lowerCAmelCase_ = {}, {}
if padding is not None:
lowerCAmelCase_ = padding
if truncation is not None:
lowerCAmelCase_ = truncation
if top_k is not None:
lowerCAmelCase_ = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int:
'''simple docstring'''
if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase_ = {'image': image, 'question': question}
else:
lowerCAmelCase_ = image
lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ )
return results
def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = load_image(inputs['image'] )
lowerCAmelCase_ = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ )
lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
return model_inputs
def _lowercase ( self , lowercase_ ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ = self.model(**lowercase_ )
return model_outputs
def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any:
'''simple docstring'''
if top_k > self.model.config.num_labels:
lowerCAmelCase_ = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase_ = model_outputs.logits.sigmoid()[0]
lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowerCAmelCase_ = scores.tolist()
lowerCAmelCase_ = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 14 | 1 |
import math
lowerCamelCase_ = 1_0
lowerCamelCase_ = 7
lowerCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCamelCase ( a_ = 20 ) -> str:
lowerCAmelCase_ = math.comb(a_ , a_ )
lowerCAmelCase_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a_ )
lowerCAmelCase_ = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 14 |
def lowerCamelCase ( a_ ) -> bool:
lowerCAmelCase_ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCAmelCase_ = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool:
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 | 1 |
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Dict:
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowerCAmelCase_ = mf_knapsack(i - 1 , a_ , a_ , a_ )
else:
lowerCAmelCase_ = max(
mf_knapsack(i - 1 , a_ , a_ , a_ ) , mf_knapsack(i - 1 , a_ , a_ , j - wt[i - 1] ) + val[i - 1] , )
lowerCAmelCase_ = val
return f[i][j]
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> List[str]:
lowerCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowerCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowerCAmelCase_ = dp[i - 1][w_]
return dp[n][w_], dp
def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]:
if not (isinstance(a_ , (list, tuple) ) and isinstance(a_ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
lowerCAmelCase_ = len(a_ )
if num_items != len(a_ ):
lowerCAmelCase_ = (
'The number of weights must be the same as the number of values.\n'
F'''But got {num_items} weights and {len(a_ )} values'''
)
raise ValueError(a_ )
for i in range(a_ ):
if not isinstance(wt[i] , a_ ):
lowerCAmelCase_ = (
'All weights must be integers but got weight of '
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(a_ )
lowerCAmelCase_ , lowerCAmelCase_ = knapsack(a_ , a_ , a_ , a_ )
lowerCAmelCase_ = set()
_construct_solution(a_ , a_ , a_ , a_ , a_ )
return optimal_val, example_optional_set
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]:
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(a_ , a_ , i - 1 , a_ , a_ )
else:
optimal_set.add(a_ )
_construct_solution(a_ , a_ , i - 1 , j - wt[i - 1] , a_ )
if __name__ == "__main__":
lowerCamelCase_ = [3, 2, 4, 4]
lowerCamelCase_ = [4, 3, 2, 3]
lowerCamelCase_ = 4
lowerCamelCase_ = 6
lowerCamelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase_ , lowerCamelCase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase_ , lowerCamelCase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 14 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a_ , a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__a: int = StableDiffusionInpaintPipeline
__a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__a: int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__a: List[str] = frozenset([] )
def _lowercase ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ )
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
lowerCAmelCase_ = CLIPTextModel(lowercase_ )
lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) )
lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) )
if str(lowercase_ ).startswith('mps' ):
lowerCAmelCase_ = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def _lowercase ( self ) -> str:
'''simple docstring'''
lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ )
lowerCAmelCase_ = sd_pipe.to(lowercase_ )
sd_pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase_ = sd_pipe(**lowercase_ ).images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'
'/yellow_cat_sitting_on_a_park_bench_fp16.npy' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
lowerCAmelCase_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting'
lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' )
lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench'
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 14 | 1 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
class a_ ( a_ , unittest.TestCase ):
'''simple docstring'''
__a: Any = BartphoTokenizer
__a: Union[str, Any] = False
__a: List[str] = True
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
lowerCAmelCase_ = ['▁This', '▁is', '▁a', '▁t', 'est']
lowerCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowerCAmelCase_ = {'unk_token': '<unk>'}
lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] )
with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp:
for token in vocab_tokens:
fp.write(f'''{token} {vocab_tokens[token]}\n''' )
lowerCAmelCase_ = BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self , **lowercase_ ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def _lowercase ( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = 'This is a là test'
lowerCAmelCase_ = 'This is a<unk><unk> test'
return input_text, output_text
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ = BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase_ = 'This is a là test'
lowerCAmelCase_ = '▁This ▁is ▁a ▁l à ▁t est'.split()
lowerCAmelCase_ = tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase_ = tokens + [tokenizer.unk_token]
lowerCAmelCase_ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ )
| 14 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
'''simple docstring'''
__a: int
__a: int
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ = [[] for _ in range(lowercase_ )]
lowerCAmelCase_ = size
def __getitem__( self , lowercase_ ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
return self._size
def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
lowerCAmelCase_ = deque([start_vertex] )
lowerCAmelCase_ = [None] * self.size
lowerCAmelCase_ = 0
while queue:
lowerCAmelCase_ = queue.popleft()
lowerCAmelCase_ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ = current_distance + edge.weight
lowerCAmelCase_ = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase_ = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
lowerCamelCase_ = {
"""junnyu/roformer_chinese_small""": 1_5_3_6,
"""junnyu/roformer_chinese_base""": 1_5_3_6,
"""junnyu/roformer_chinese_char_small""": 5_1_2,
"""junnyu/roformer_chinese_char_base""": 5_1_2,
"""junnyu/roformer_small_discriminator""": 1_2_8,
"""junnyu/roformer_small_generator""": 1_2_8,
}
lowerCamelCase_ = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class a_ ( a_ ):
'''simple docstring'''
__a: Any = VOCAB_FILES_NAMES
__a: List[str] = PRETRAINED_VOCAB_FILES_MAP
__a: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a: Optional[Any] = PRETRAINED_INIT_CONFIGURATION
__a: Tuple = RoFormerTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , )
lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , lowercase_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , lowercase_ ) != strip_accents
):
lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) )
lowerCAmelCase_ = do_lower_case
lowerCAmelCase_ = strip_accents
lowerCAmelCase_ = pre_tok_class(**lowercase_ )
lowerCAmelCase_ = do_lower_case
def __getstate__( self ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ = self.__dict__.copy()
lowerCAmelCase_ = BertPreTokenizer()
return state
def __setstate__( self , lowercase_ ) -> Any:
'''simple docstring'''
lowerCAmelCase_ = d
lowerCAmelCase_ = self.__dict__['_tokenizer'].get_vocab()
lowerCAmelCase_ = PreTokenizer.custom(JiebaPreTokenizer(lowercase_ ) )
def _lowercase ( self , lowercase_ , lowercase_=None ) -> str:
'''simple docstring'''
lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def _lowercase ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , **lowercase_ , ) -> str:
'''simple docstring'''
lowerCAmelCase_ = BertPreTokenizer()
return super().save_pretrained(lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
| 14 |
from __future__ import annotations
lowerCamelCase_ = 1_0
def lowerCamelCase ( a_ ) -> list[int]:
lowerCAmelCase_ = 1
lowerCAmelCase_ = max(a_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ = [[] for _ in range(a_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ = int((i / placement) % RADIX )
buckets[tmp].append(a_ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ = 0
for b in range(a_ ):
for i in buckets[b]:
lowerCAmelCase_ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]:
# load base model
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowerCAmelCase_ = load_file(a_ )
lowerCAmelCase_ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.text_encoder
else:
lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
lowerCAmelCase_ = pipeline.unet
# find the target layer
lowerCAmelCase_ = layer_infos.pop(0 )
while len(a_ ) > -1:
try:
lowerCAmelCase_ = curr_layer.__getattr__(a_ )
if len(a_ ) > 0:
lowerCAmelCase_ = layer_infos.pop(0 )
elif len(a_ ) == 0:
break
except Exception:
if len(a_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowerCAmelCase_ = layer_infos.pop(0 )
lowerCAmelCase_ = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(a_ )
else:
pair_keys.append(a_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa )
lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(a_ , a_ )
# update visited list
for item in pair_keys:
visited.append(a_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = args.base_model_path
lowerCamelCase_ = args.checkpoint_path
lowerCamelCase_ = args.dump_path
lowerCamelCase_ = args.lora_prefix_unet
lowerCamelCase_ = args.lora_prefix_text_encoder
lowerCamelCase_ = args.alpha
lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.