code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import numpy as np def _a ( _lowerCamelCase , _lowerCamelCase ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , _lowerCamelCase , (alpha * (np.exp(_lowerCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if curr_ind == len(_lowerCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_lowerCamelCase ) ): if valid_connection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # Insert current vertex into path as next transition __snake_case : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , curr_ind + 1 ): return True # Backtrack __snake_case : Optional[int] = -1 return False def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> list[int]: """simple docstring""" __snake_case : List[str] = [-1] * (len(_lowerCamelCase ) + 1) # initialize start and end of path with starting index __snake_case : Tuple = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , 1 ) else []
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase : List[str] ) -> list: """simple docstring""" if len(_lowerCamelCase ) == 0: return [] __snake_case : Tuple = min(_lowerCamelCase ), max(_lowerCamelCase ) __snake_case : List[Any] = int(max_value - min_value ) + 1 __snake_case : list[list] = [[] for _ in range(_lowerCamelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCamelCase ) return [v for bucket in buckets for v in sorted(_lowerCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( __lowercase ): lowercase__: Optional[int] = ['''pixel_values'''] def __init__( self : Tuple , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = True , **__magic_name__ : int , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : int = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Dict = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name="""crop_size""" ) __snake_case : Dict = do_resize __snake_case : Tuple = size __snake_case : Union[str, Any] = resample __snake_case : Optional[Any] = do_center_crop __snake_case : List[str] = crop_size __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : int = do_normalize __snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : List[str] = do_convert_rgb def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: """simple docstring""" __snake_case : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : Dict = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray: """simple docstring""" __snake_case : Any = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image: """simple docstring""" __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : Union[str, Any] = size if size is not None else self.size __snake_case : Tuple = get_size_dict(__magic_name__ , param_name="""size""" , default_to_square=__magic_name__ ) __snake_case : Optional[Any] = resample if resample is not None else self.resample __snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : List[str] = crop_size if crop_size is not None else self.crop_size __snake_case : Union[str, Any] = get_size_dict(__magic_name__ , param_name="""crop_size""" , default_to_square=__magic_name__ ) __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean __snake_case : Any = image_std if image_std is not None else self.image_std __snake_case : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : int = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. __snake_case : List[str] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: __snake_case : Optional[int] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: __snake_case : Tuple = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : int = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Tuple = '''timm_backbone''' def __init__( self : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Dict=3 , __magic_name__ : List[str]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=None , **__magic_name__ : Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Any = backbone __snake_case : Tuple = num_channels __snake_case : int = features_only __snake_case : int = use_pretrained_backbone __snake_case : List[str] = True __snake_case : Dict = out_indices if out_indices is not None else (-1,)
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCamelCase = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCamelCase = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Tuple: """simple docstring""" __snake_case : Tuple = create_model( """HTSAT-tiny""" , """roberta""" , _lowerCamelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_lowerCamelCase , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = {} __snake_case : Any = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : List[str] = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): # replace sequential layers with list __snake_case : Optional[int] = re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) __snake_case : List[str] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_lowerCamelCase )//3}.linear.''' ) elif re.match(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : Tuple = 1 if projecton_layer == 0 else 2 __snake_case : List[Any] = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Any = value __snake_case : Tuple = mixed_qkv.size(0 ) // 3 __snake_case : Dict = mixed_qkv[:qkv_dim] __snake_case : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : Union[str, Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Union[str, Any] = query_layer __snake_case : Dict = key_layer __snake_case : Optional[int] = value_layer else: __snake_case : Dict = value return model_state_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: """simple docstring""" __snake_case : Dict = init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase ) clap_model.eval() __snake_case : int = clap_model.state_dict() __snake_case : Dict = rename_state_dict(_lowerCamelCase ) __snake_case : Any = ClapConfig() __snake_case : Any = enable_fusion __snake_case : Optional[Any] = ClapModel(_lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) transformers_config.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : Tuple , *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = TransfoXLTokenizer lowercase__: str = False lowercase__: List[str] = False def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" super().setUp() __snake_case : Any = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase__ ( self : List[str] , **__magic_name__ : str ) -> List[Any]: """simple docstring""" __snake_case : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> int: """simple docstring""" __snake_case : List[str] = """<unk> UNwanted , running""" __snake_case : Optional[Any] = """<unk> unwanted, running""" return input_text, output_text def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__magic_name__ ) __snake_case : Optional[int] = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__magic_name__ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [0, 4, 8, 7] ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : str = TransfoXLTokenizer(lower_case=__magic_name__ ) __snake_case : int = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __snake_case : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.convert_tokens_to_string(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : int = self.get_tokenizer() __snake_case : List[Any] = len(__magic_name__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__magic_name__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: # noqa: E741 """simple docstring""" while r - l > 1: __snake_case : List[str] = (l + r) // 2 if v[m] >= key: __snake_case : Any = m else: __snake_case : Tuple = m # noqa: E741 return r def _a ( _lowerCamelCase ) -> int: """simple docstring""" if len(_lowerCamelCase ) == 0: return 0 __snake_case : int = [0] * len(_lowerCamelCase ) __snake_case : Dict = 1 __snake_case : Optional[Any] = v[0] for i in range(1 , len(_lowerCamelCase ) ): if v[i] < tail[0]: __snake_case : Optional[Any] = v[i] elif v[i] > tail[length - 1]: __snake_case : Tuple = v[i] length += 1 else: __snake_case : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" if isinstance(_lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : int ) -> str: """simple docstring""" pass def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : str , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any]=None , **__magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) __snake_case : List[str] = TFVisionTextDualEncoderModel(__magic_name__ ) __snake_case : int = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None , **__magic_name__ : Dict ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ ) __snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str=None , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ ) __snake_case : List[str] = {"""vision_model""": vision_model, """text_model""": text_model} __snake_case : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) __snake_case : Union[str, Any] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int=None , **__magic_name__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ ) __snake_case : Tuple = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ ) __snake_case : Any = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) __snake_case : str = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) __snake_case : str = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) __snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) __snake_case : int = after_output[0].numpy() __snake_case : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1E-5 ) def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None , **__magic_name__ : Dict ) -> str: """simple docstring""" __snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ ) __snake_case : Dict = model( input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ ) __snake_case : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Any = to_atuple(vision_model.config.image_size ) __snake_case : Tuple = to_atuple(vision_model.config.patch_size ) __snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __snake_case : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __snake_case : Any = output.text_model_output.attentions self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : float ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = np.abs((a - b) ).max() self.assertLessEqual(__magic_name__ , __magic_name__ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__magic_name__ ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : int = self.prepare_config_and_inputs() self.check_save_load(**__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case : List[str] = self.get_pretrained_model_and_inputs() __snake_case : Any = model_a(**__magic_name__ ) __snake_case : Any = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__magic_name__ ) __snake_case : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) __snake_case : Optional[int] = model_a(**__magic_name__ ) __snake_case : Union[str, Any] = after_outputs[0].numpy() __snake_case : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1E-5 ) @require_tf class _A ( __lowercase , unittest.TestCase ): def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __snake_case : Tuple = 13 __snake_case : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Optional[Any] = random_attention_mask([batch_size, 4] ) __snake_case : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = TFViTModel(__magic_name__ , name="""vision_model""" ) __snake_case : int = TFBertModel(__magic_name__ , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Any = TFViTModelTester(self ) __snake_case : Optional[Any] = TFBertModelTester(self ) __snake_case : List[str] = vit_model_tester.prepare_config_and_inputs() __snake_case : Tuple = bert_model_tester.prepare_config_and_inputs() __snake_case : Optional[Any] = vision_config_and_inputs ( __snake_case ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __lowercase , unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __snake_case : int = 13 __snake_case : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Tuple = random_attention_mask([batch_size, 4] ) __snake_case : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Tuple=None , **__magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Any = self.get_vision_text_model(__magic_name__ , __magic_name__ ) __snake_case : int = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ ) __snake_case : Any = model( input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ ) __snake_case : List[str] = output.vision_model_output.attentions self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __snake_case : Optional[int] = to_atuple(vision_model.config.image_size ) __snake_case : Optional[int] = to_atuple(vision_model.config.patch_size ) __snake_case : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __snake_case : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __snake_case : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : int = TFDeiTModel(__magic_name__ , name="""vision_model""" ) __snake_case : Optional[Any] = TFRobertaModel(__magic_name__ , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Dict = TFDeiTModelTester(self ) __snake_case : Optional[int] = TFRobertaModelTester(self ) __snake_case : Dict = vit_model_tester.prepare_config_and_inputs() __snake_case : Optional[int] = bert_model_tester.prepare_config_and_inputs() __snake_case : int = vision_config_and_inputs ( __snake_case ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __lowercase , unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __snake_case : Optional[int] = 13 __snake_case : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Optional[int] = random_attention_mask([batch_size, 4] ) __snake_case : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Any: """simple docstring""" __snake_case : Tuple = TFCLIPVisionModel(__magic_name__ , name="""vision_model""" ) __snake_case : str = TFBertModel(__magic_name__ , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : List[Any] = TFCLIPVisionModelTester(self ) __snake_case : Dict = TFBertModelTester(self ) __snake_case : str = clip_model_tester.prepare_config_and_inputs() __snake_case : Tuple = bert_model_tester.prepare_config_and_inputs() __snake_case : Optional[int] = vision_config_and_inputs ( __snake_case ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : int = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__magic_name__ ) __snake_case : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__magic_name__ , padding=__magic_name__ , return_tensors="""np""" ) __snake_case : str = model(**__magic_name__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __snake_case : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __magic_name__ , atol=1E-3 ) )
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _A ( __lowercase ): lowercase__: int = '''ctrl''' lowercase__: Optional[Any] = ['''past_key_values'''] lowercase__: Any = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __magic_name__ : Optional[int]=24_65_34 , __magic_name__ : List[Any]=2_56 , __magic_name__ : List[Any]=12_80 , __magic_name__ : str=81_92 , __magic_name__ : Optional[int]=48 , __magic_name__ : int=16 , __magic_name__ : Tuple=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=1E-6 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Any=True , **__magic_name__ : Optional[int] , ) -> Tuple: """simple docstring""" __snake_case : Any = vocab_size __snake_case : Any = n_positions __snake_case : Optional[int] = n_embd __snake_case : List[str] = n_layer __snake_case : int = n_head __snake_case : Dict = dff __snake_case : Optional[int] = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : List[Any] = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Any = use_cache super().__init__(**__magic_name__ )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
from __future__ import annotations from math import pi def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : List[str] = x __snake_case : Optional[Any] = y for step in range(_lowerCamelCase ): # noqa: B007 __snake_case : Tuple = a * a - b * b + x __snake_case : List[Any] = 2 * a * b + y __snake_case : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _a ( _lowerCamelCase ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _a ( _lowerCamelCase ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCamelCase , 1 , 1 ) ) def _a ( _lowerCamelCase = 800 , _lowerCamelCase = 600 , _lowerCamelCase = -0.6 , _lowerCamelCase = 0 , _lowerCamelCase = 3.2 , _lowerCamelCase = 50 , _lowerCamelCase = True , ) -> Image.Image: """simple docstring""" __snake_case : List[Any] = Image.new("""RGB""" , (image_width, image_height) ) __snake_case : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(_lowerCamelCase ): for image_y in range(_lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates __snake_case : Tuple = figure_width / image_width * image_height __snake_case : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __snake_case : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __snake_case : Any = get_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __snake_case : Union[str, Any] = get_color_coded_rgb(_lowerCamelCase ) else: __snake_case : str = get_black_and_white_rgb(_lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __UpperCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" __snake_case : Any = jnp.ones((batch_size, length) ) / length return scores def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case : Any = None __snake_case : str = 20 __snake_case : List[str] = self._get_uniform_logits(batch_size=2 , length=__magic_name__ ) # tweak scores to not be uniform anymore __snake_case : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __snake_case : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __snake_case : str = jax.nn.softmax(__magic_name__ , axis=-1 ) __snake_case : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) __snake_case : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) __snake_case : str = jax.nn.softmax(temp_dist_warper_smoother(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Any = None __snake_case : Optional[int] = 10 __snake_case : int = 2 # create ramp distribution __snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() __snake_case : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size __snake_case : Union[str, Any] = FlaxTopKLogitsWarper(3 ) __snake_case : Optional[int] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __snake_case : Dict = 5 __snake_case : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, length) ).copy() __snake_case : Tuple = top_k_warp_safety_check(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = None __snake_case : Optional[int] = 10 __snake_case : List[str] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __snake_case : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __snake_case : Any = FlaxTopPLogitsWarper(0.8 ) __snake_case : List[str] = np.exp(top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __snake_case : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits __snake_case : Optional[int] = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __snake_case : Union[str, Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __snake_case : Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __snake_case : Dict = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = 20 __snake_case : Dict = 4 __snake_case : int = 0 __snake_case : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) # check that min length is applied at length 5 __snake_case : int = ids_tensor((batch_size, 20) , vocab_size=20 ) __snake_case : Optional[int] = 5 __snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __snake_case : Optional[int] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Tuple = 15 __snake_case : Dict = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = 20 __snake_case : str = 4 __snake_case : List[str] = 0 __snake_case : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) # check that all scores are -inf except the bos_token_id score __snake_case : Union[str, Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) __snake_case : Tuple = 1 __snake_case : Union[str, Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Tuple = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __snake_case : Optional[Any] = 3 __snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Optional[int] = 20 __snake_case : Dict = 4 __snake_case : Optional[Any] = 0 __snake_case : Optional[Any] = 5 __snake_case : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) # check that all scores are -inf except the eos_token_id when max_length is reached __snake_case : Any = ids_tensor((batch_size, 4) , vocab_size=20 ) __snake_case : List[str] = 4 __snake_case : Tuple = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __snake_case : int = 3 __snake_case : Optional[Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Any = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : Dict = 4 __snake_case : Union[str, Any] = 10 __snake_case : List[Any] = 15 __snake_case : List[Any] = 2 __snake_case : Any = 1 __snake_case : Optional[Any] = 15 # dummy input_ids and scores __snake_case : int = ids_tensor((batch_size, sequence_length) , __magic_name__ ) __snake_case : Tuple = input_ids.copy() __snake_case : int = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = scores.copy() # instantiate all dist processors __snake_case : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : List[Any] = FlaxTopKLogitsWarper(3 ) __snake_case : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) __snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) __snake_case : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) __snake_case : Union[str, Any] = 10 # no processor list __snake_case : int = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Dict = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : List[Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : int = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Optional[Any] = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Any = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # with processor list __snake_case : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : Optional[int] = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : Any = 4 __snake_case : Optional[int] = 10 __snake_case : Dict = 15 __snake_case : Tuple = 2 __snake_case : Union[str, Any] = 1 __snake_case : int = 15 # dummy input_ids and scores __snake_case : Any = ids_tensor((batch_size, sequence_length) , __magic_name__ ) __snake_case : Optional[Any] = input_ids.copy() __snake_case : Dict = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Any = scores.copy() # instantiate all dist processors __snake_case : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : str = FlaxTopKLogitsWarper(3 ) __snake_case : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) __snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) __snake_case : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) __snake_case : str = 10 # no processor list def run_no_processor_list(__magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): __snake_case : Union[str, Any] = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : List[Any] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Union[str, Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : str = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : str = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Optional[Any] = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores # with processor list def run_processor_list(__magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Tuple ): __snake_case : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : str = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores __snake_case : Optional[int] = jax.jit(__magic_name__ ) __snake_case : Optional[int] = jax.jit(__magic_name__ ) __snake_case : Any = jitted_run_no_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Dict = jitted_run_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _A : def __init__( self : Dict , __magic_name__ : str , __magic_name__ : List[str]=3 , __magic_name__ : int=32 , __magic_name__ : List[Any]=3 , __magic_name__ : List[Any]=10 , __magic_name__ : int=[8, 16, 32, 64] , __magic_name__ : Tuple=[1, 1, 2, 1] , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]="relu" , __magic_name__ : str=3 , __magic_name__ : Any=None , __magic_name__ : Dict=["stage2", "stage3", "stage4"] , __magic_name__ : Any=[2, 3, 4] , __magic_name__ : Optional[Any]=1 , ) -> List[Any]: """simple docstring""" __snake_case : Tuple = parent __snake_case : Any = batch_size __snake_case : int = image_size __snake_case : Optional[int] = num_channels __snake_case : Tuple = embeddings_size __snake_case : Tuple = hidden_sizes __snake_case : int = depths __snake_case : str = is_training __snake_case : List[Any] = use_labels __snake_case : str = hidden_act __snake_case : Optional[int] = num_labels __snake_case : List[str] = scope __snake_case : Optional[int] = len(__magic_name__ ) __snake_case : Tuple = out_features __snake_case : str = out_indices __snake_case : int = num_groups def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : str = BitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : str = BitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : str , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : List[str] = BitBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : int = None __snake_case : str = BitBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case : Optional[int] = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase__: List[str] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowercase__: Optional[int] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: Any = False lowercase__: Dict = False def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : int = BitModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(__magic_name__ ) __snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(config=__magic_name__ ) for name, module in model.named_modules(): if isinstance(__magic_name__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ): __snake_case : List[str] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Any = layer_type __snake_case : Union[str, Any] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" pass def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = BitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Dict: """simple docstring""" __snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Any = prepare_img() __snake_case : Any = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @require_torch class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = (BitBackbone,) if is_torch_available() else () lowercase__: Optional[Any] = BitConfig lowercase__: Tuple = False def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = BitModelTester(self )
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __UpperCamelCase = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") __UpperCamelCase = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __UpperCamelCase = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __UpperCamelCase = sorted(arg_to_scheduler.keys()) __UpperCamelCase = "{" + ", ".join(arg_to_scheduler_choices) + "}" class _A ( pl.LightningModule ): def __init__( self : Optional[Any] , __magic_name__ : argparse.Namespace , __magic_name__ : str=None , __magic_name__ : Any="base" , __magic_name__ : int=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None , **__magic_name__ : List[Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) __snake_case : int = 0 __snake_case : Optional[int] = Path(self.hparams.output_dir ) __snake_case : Union[str, Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __snake_case : Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: __snake_case : PretrainedConfig = config __snake_case : Optional[Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: __snake_case : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: __snake_case : PreTrainedTokenizer = tokenizer __snake_case : Optional[Any] = MODEL_MODES[mode] if model is None: __snake_case : Dict = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: __snake_case : Optional[Any] = model def lowercase__ ( self : str , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] __snake_case : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __snake_case : Tuple = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.model __snake_case : List[Any] = ["""bias""", """LayerNorm.weight"""] __snake_case : List[str] = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __snake_case : Dict = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: __snake_case : Any = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __snake_case : Tuple = optimizer __snake_case : Dict = self.get_lr_scheduler() return [optimizer], [scheduler] def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Any: """simple docstring""" return self.validation_step(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return self.validation_end(__magic_name__ ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" __snake_case : List[str] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __snake_case : Union[str, Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if stage == "test": __snake_case : Optional[int] = len(self.test_dataloader().dataset ) else: __snake_case : int = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__magic_name__ ) __snake_case : Optional[Any] = len(self.train_dataloader().dataset ) def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> Any: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.train_loader def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Dict: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowercase__ ( self : Optional[Any] , __magic_name__ : Dict[str, Any] ) -> None: """simple docstring""" __snake_case : Optional[int] = self.output_dir.joinpath("""best_tfmr""" ) __snake_case : Optional[Any] = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def lowercase__ ( __magic_name__ : List[str] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__magic_name__ , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__magic_name__ , type=__magic_name__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__magic_name__ ).parent / """test_run""" / """cache""" ) , type=__magic_name__ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__magic_name__ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__magic_name__ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__magic_name__ , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__magic_name__ , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__magic_name__ , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__magic_name__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__magic_name__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__magic_name__ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__magic_name__ , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__magic_name__ ) parser.add_argument("""--train_batch_size""" , default=32 , type=__magic_name__ ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__magic_name__ ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class _A ( pl.Callback ): def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Any ) -> int: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _A ( pl.Callback ): def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> str: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class _A ( pl.Callback ): def lowercase__ ( self : str , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : str = trainer.lr_schedulers[0]["""scheduler"""] __snake_case : List[str] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> int: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) ) def lowercase__ ( self : str , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> Optional[int]: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __snake_case : Union[str, Any] = trainer.callback_metrics # Log and save results to file __snake_case : Optional[int] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__magic_name__ , """w""" ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_lowerCamelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_lowerCamelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_lowerCamelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=_lowerCamelCase , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_lowerCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) -> Union[str, Any]: """simple docstring""" pl.seed_everything(args.seed ) # init model __snake_case : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: __snake_case : List[str] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowerCamelCase ) if logging_callback is None: __snake_case : Optional[int] = LoggingCallback() __snake_case : List[str] = {} if args.fpaa: __snake_case : List[str] = 16 if args.gpus > 1: __snake_case : List[Any] = """auto""" __snake_case : int = """ddp""" __snake_case : int = args.accumulate_grad_batches __snake_case : Dict = None __snake_case : Union[str, Any] = """auto""" __snake_case : List[str] = pl.Trainer.from_argparse_args( _lowerCamelCase , weights_summary=_lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCamelCase , ) if args.do_train: trainer.fit(_lowerCamelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = FunnelConfig.from_json_file(_lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case : int = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _A ( __lowercase ): lowercase__: Tuple = '''gpt_neo''' lowercase__: int = ['''past_key_values'''] lowercase__: str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , __magic_name__ : str=5_02_57 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[int]=24 , __magic_name__ : Union[str, Any]=[[["global", "local"], 12]] , __magic_name__ : Any=16 , __magic_name__ : Any=None , __magic_name__ : Optional[int]=2_56 , __magic_name__ : List[Any]="gelu_new" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=True , __magic_name__ : int=5_02_56 , __magic_name__ : Optional[Any]=5_02_56 , **__magic_name__ : Union[str, Any] , ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = vocab_size __snake_case : List[str] = max_position_embeddings __snake_case : List[str] = hidden_size __snake_case : Optional[Any] = num_layers __snake_case : Optional[int] = num_heads __snake_case : int = intermediate_size __snake_case : Any = window_size __snake_case : Any = activation_function __snake_case : Dict = resid_dropout __snake_case : Union[str, Any] = embed_dropout __snake_case : Optional[Any] = attention_dropout __snake_case : Optional[int] = classifier_dropout __snake_case : Any = layer_norm_epsilon __snake_case : List[str] = initializer_range __snake_case : Any = use_cache __snake_case : Dict = bos_token_id __snake_case : Optional[int] = eos_token_id __snake_case : str = attention_types __snake_case : str = self.expand_attention_types_params(__magic_name__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @staticmethod def lowercase__ ( __magic_name__ : str ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" import torch __snake_case : List[Any] = input.size() __snake_case : Optional[Any] = len(_lowerCamelCase ) __snake_case : Tuple = shape[dimension] __snake_case : Union[str, Any] = torch.arange(0 , _lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = torch.div(sizedim - size , _lowerCamelCase , rounding_mode="""floor""" ) + 1 __snake_case : Any = torch.arange(_lowerCamelCase ) + low_indices[:min_length][:, None] __snake_case : Dict = [slice(_lowerCamelCase )] * rank __snake_case : Optional[int] = indices __snake_case : List[Any] = input[s] __snake_case : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" import torch __snake_case : Dict = torch.arange(1 , _lowerCamelCase ) __snake_case : Optional[Any] = torch.remainder(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = remainders == 0 __snake_case : int = candidates[divisor_indices] __snake_case : Optional[Any] = torch.max(_lowerCamelCase ) return largest_divisor, torch.div(_lowerCamelCase , _lowerCamelCase , rounding_mode="""floor""" ) class _A ( __lowercase ): @property def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : List[Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Dict = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" return self._config.num_heads def lowercase__ ( self : List[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : int = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : List[str] = seqlen + 2 __snake_case : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : Optional[int] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : List[Any] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : str = ordered_inputs["""attention_mask"""].dtype __snake_case : Tuple = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return 13
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class _A ( __lowercase , __lowercase ): lowercase__: str = '''resnet''' lowercase__: Dict = ['''basic''', '''bottleneck'''] def __init__( self : Dict , __magic_name__ : int=3 , __magic_name__ : Optional[int]=64 , __magic_name__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , __magic_name__ : Optional[int]=[3, 4, 6, 3] , __magic_name__ : List[Any]="bottleneck" , __magic_name__ : int="relu" , __magic_name__ : Union[str, Any]=False , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , **__magic_name__ : Any , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__magic_name__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) __snake_case : Tuple = num_channels __snake_case : List[Any] = embedding_size __snake_case : int = hidden_sizes __snake_case : List[Any] = depths __snake_case : int = layer_type __snake_case : Optional[Any] = hidden_act __snake_case : List[Any] = downsample_in_first_stage __snake_case : Tuple = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )] __snake_case : List[str] = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names ) class _A ( __lowercase ): lowercase__: List[str] = version.parse('''1.11''' ) @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self : str ) -> float: """simple docstring""" return 1E-3
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(_lowerCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _A ( __lowercase ): lowercase__: str = '''vivit''' def __init__( self : Optional[int] , __magic_name__ : List[Any]=2_24 , __magic_name__ : Optional[int]=32 , __magic_name__ : Optional[Any]=[2, 16, 16] , __magic_name__ : List[Any]=3 , __magic_name__ : Any=7_68 , __magic_name__ : int=12 , __magic_name__ : Dict=12 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Dict="gelu_fast" , __magic_name__ : List[str]=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Optional[int]=1E-06 , __magic_name__ : Any=True , **__magic_name__ : Dict , ) -> str: """simple docstring""" __snake_case : Union[str, Any] = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : Union[str, Any] = image_size __snake_case : Optional[int] = num_frames __snake_case : Dict = tubelet_size __snake_case : List[str] = num_channels __snake_case : Optional[Any] = qkv_bias super().__init__(**__magic_name__ )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() (__snake_case) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( __snake_case ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( __snake_case ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( __snake_case ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( __snake_case ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( __snake_case ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__lowercase ): lowercase__: Union[str, Any] = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Dict , *__magic_name__ : List[str] , **__magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase__ ( cls : Any , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> str: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *__magic_name__ : Dict , **__magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = len(_lowerCamelCase ) for i in range(length - 1 ): __snake_case : Union[str, Any] = i for k in range(i + 1 , _lowerCamelCase ): if collection[k] < collection[least]: __snake_case : int = k if least != i: __snake_case : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": __UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCamelCase = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: int = '''AutoTokenizer''' lowercase__: Union[str, Any] = ['''tokenizer'''] lowercase__: Union[str, Any] = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=None ) -> str: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : Tuple = speaker_embeddings @classmethod def lowercase__ ( cls : Dict , __magic_name__ : Any , __magic_name__ : int="speaker_embeddings_path.json" , **__magic_name__ : List[Any] ) -> List[str]: """simple docstring""" if speaker_embeddings_dict_path is not None: __snake_case : Optional[int] = get_file_from_repo( __magic_name__ , __magic_name__ , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(__magic_name__ , __magic_name__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) __snake_case : Union[str, Any] = None else: with open(__magic_name__ ) as speaker_embeddings_json: __snake_case : int = json.load(__magic_name__ ) else: __snake_case : Optional[int] = None __snake_case : Tuple = AutoTokenizer.from_pretrained(__magic_name__ , **__magic_name__ ) return cls(tokenizer=__magic_name__ , speaker_embeddings=__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]="speaker_embeddings_path.json" , __magic_name__ : str="speaker_embeddings" , __magic_name__ : bool = False , **__magic_name__ : Dict , ) -> Optional[int]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(__magic_name__ , __magic_name__ , """v2""" ) , exist_ok=__magic_name__ ) __snake_case : Tuple = {} __snake_case : List[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __snake_case : Any = self._load_voice_preset(__magic_name__ ) __snake_case : str = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , __magic_name__ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__magic_name__ , ) __snake_case : str = os.path.join(__magic_name__ , f'''{prompt_key}_{key}.npy''' ) __snake_case : Optional[Any] = tmp_dict with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as fp: json.dump(__magic_name__ , __magic_name__ ) super().save_pretrained(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : str = None , **__magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = self.speaker_embeddings[voice_preset] __snake_case : List[str] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) __snake_case : Tuple = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) __snake_case : List[Any] = np.load(__magic_name__ ) return voice_preset_dict def lowercase__ ( self : List[str] , __magic_name__ : Optional[dict] = None ) -> Dict: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : Optional[int] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]="pt" , __magic_name__ : Optional[int]=2_56 , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=True , __magic_name__ : str=False , **__magic_name__ : List[str] , ) -> str: """simple docstring""" if voice_preset is not None and not isinstance(__magic_name__ , __magic_name__ ): if ( isinstance(__magic_name__ , __magic_name__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __snake_case : Dict = self._load_voice_preset(__magic_name__ ) else: if isinstance(__magic_name__ , __magic_name__ ) and not voice_preset.endswith(""".npz""" ): __snake_case : Any = voice_preset + """.npz""" __snake_case : Optional[Any] = np.load(__magic_name__ ) if voice_preset is not None: self._validate_voice_preset_dict(__magic_name__ , **__magic_name__ ) __snake_case : str = BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) __snake_case : Union[str, Any] = self.tokenizer( __magic_name__ , return_tensors=__magic_name__ , padding="""max_length""" , max_length=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , ) if voice_preset is not None: __snake_case : Any = voice_preset return encoded_text
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __UpperCamelCase = logging.get_logger(__name__) # General docstring __UpperCamelCase = "MobileNetV1Config" # Base docstring __UpperCamelCase = "google/mobilenet_v1_1.0_224" __UpperCamelCase = [1, 1024, 7, 7] # Image classification docstring __UpperCamelCase = "google/mobilenet_v1_1.0_224" __UpperCamelCase = "tabby, tabby cat" __UpperCamelCase = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> int: """simple docstring""" __snake_case : Optional[int] = {} if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : List[Any] = model.mobilenet_va else: __snake_case : int = model __snake_case : Optional[int] = """MobilenetV1/Conv2d_0/""" __snake_case : str = backbone.conv_stem.convolution.weight __snake_case : List[str] = backbone.conv_stem.normalization.bias __snake_case : Union[str, Any] = backbone.conv_stem.normalization.weight __snake_case : str = backbone.conv_stem.normalization.running_mean __snake_case : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): __snake_case : Dict = i + 1 __snake_case : Dict = i * 2 __snake_case : List[str] = backbone.layer[pt_index] __snake_case : Optional[Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' __snake_case : Tuple = pointer.convolution.weight __snake_case : Optional[Any] = pointer.normalization.bias __snake_case : List[str] = pointer.normalization.weight __snake_case : str = pointer.normalization.running_mean __snake_case : Optional[Any] = pointer.normalization.running_var __snake_case : Optional[Any] = backbone.layer[pt_index + 1] __snake_case : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' __snake_case : Dict = pointer.convolution.weight __snake_case : str = pointer.normalization.bias __snake_case : Tuple = pointer.normalization.weight __snake_case : List[Any] = pointer.normalization.running_mean __snake_case : List[str] = pointer.normalization.running_var if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = """MobilenetV1/Logits/Conv2d_1c_1x1/""" __snake_case : List[Any] = model.classifier.weight __snake_case : List[Any] = model.classifier.bias return tf_to_pt_map def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model __snake_case : str = tf.train.list_variables(_lowerCamelCase ) __snake_case : List[Any] = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) __snake_case : int = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) __snake_case : int = array # Build TF to PyTorch weights loading map __snake_case : int = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue __snake_case : List[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) __snake_case : Optional[int] = np.transpose(_lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer __snake_case : Union[str, Any] = array.squeeze().transpose() else: __snake_case : Union[str, Any] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) __snake_case : List[Any] = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase , _lowerCamelCase ) tf_weights.pop(name + """/RMSProp""" , _lowerCamelCase ) tf_weights.pop(name + """/RMSProp_1""" , _lowerCamelCase ) tf_weights.pop(name + """/ExponentialMovingAverage""" , _lowerCamelCase ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def _a ( _lowerCamelCase , _lowerCamelCase ) -> torch.Tensor: """simple docstring""" __snake_case : Dict = features.shape[-2:] __snake_case : Optional[int] = conv_layer.stride __snake_case : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: __snake_case : str = max(kernel_height - stride_height , 0 ) else: __snake_case : int = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __snake_case : int = max(kernel_width - stride_width , 0 ) else: __snake_case : Any = max(kernel_width - (in_width % stride_width) , 0 ) __snake_case : Dict = pad_along_width // 2 __snake_case : str = pad_along_width - pad_left __snake_case : Tuple = pad_along_height // 2 __snake_case : Any = pad_along_height - pad_top __snake_case : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , """constant""" , 0.0 ) class _A ( nn.Module ): def __init__( self : int , __magic_name__ : MobileNetVaConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = 1 , __magic_name__ : Optional[int] = 1 , __magic_name__ : bool = False , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[bool or str] = True , ) -> None: """simple docstring""" super().__init__() __snake_case : Dict = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) __snake_case : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __snake_case : int = nn.Convad( in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=__magic_name__ , stride=__magic_name__ , padding=__magic_name__ , groups=__magic_name__ , bias=__magic_name__ , padding_mode="""zeros""" , ) if use_normalization: __snake_case : List[str] = nn.BatchNormad( num_features=__magic_name__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=__magic_name__ , track_running_stats=__magic_name__ , ) else: __snake_case : Union[str, Any] = None if use_activation: if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , __magic_name__ ): __snake_case : List[Any] = ACTaFN[config.hidden_act] else: __snake_case : Optional[Any] = config.hidden_act else: __snake_case : str = None def lowercase__ ( self : str , __magic_name__ : torch.Tensor ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: __snake_case : List[Any] = apply_tf_padding(__magic_name__ , self.convolution ) __snake_case : Any = self.convolution(__magic_name__ ) if self.normalization is not None: __snake_case : Dict = self.normalization(__magic_name__ ) if self.activation is not None: __snake_case : Union[str, Any] = self.activation(__magic_name__ ) return features class _A ( __lowercase ): lowercase__: Tuple = MobileNetVaConfig lowercase__: int = load_tf_weights_in_mobilenet_va lowercase__: Union[str, Any] = '''mobilenet_v1''' lowercase__: Any = '''pixel_values''' lowercase__: Optional[int] = False def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[nn.Linear, nn.Convad] ) -> None: """simple docstring""" if isinstance(__magic_name__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__magic_name__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __UpperCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class _A ( __lowercase ): def __init__( self : Optional[Any] , __magic_name__ : MobileNetVaConfig , __magic_name__ : bool = True ) -> Optional[int]: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : Any = config __snake_case : Optional[int] = 32 __snake_case : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) __snake_case : Dict = MobileNetVaConvLayer( __magic_name__ , in_channels=config.num_channels , out_channels=__magic_name__ , kernel_size=3 , stride=2 , ) __snake_case : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __snake_case : Any = nn.ModuleList() for i in range(13 ): __snake_case : List[str] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __snake_case : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=3 , stride=strides[i] , groups=__magic_name__ , ) ) self.layer.append( MobileNetVaConvLayer( __magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=1 , ) ) __snake_case : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> int: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" __snake_case : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __snake_case : List[Any] = self.conv_stem(__magic_name__ ) __snake_case : Union[str, Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __snake_case : List[Any] = layer_module(__magic_name__ ) if output_hidden_states: __snake_case : Any = all_hidden_states + (hidden_states,) __snake_case : List[str] = hidden_states if self.pooler is not None: __snake_case : Optional[int] = torch.flatten(self.pooler(__magic_name__ ) , start_dim=1 ) else: __snake_case : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=__magic_name__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __lowercase , ) class _A ( __lowercase ): def __init__( self : List[str] , __magic_name__ : MobileNetVaConfig ) -> None: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : Union[str, Any] = config.num_labels __snake_case : Optional[Any] = MobileNetVaModel(__magic_name__ ) __snake_case : str = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __snake_case : str = nn.Dropout(config.classifier_dropout_prob , inplace=__magic_name__ ) __snake_case : Dict = nn.Linear(__magic_name__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : int = self.mobilenet_va(__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ ) __snake_case : Dict = outputs.pooler_output if return_dict else outputs[1] __snake_case : Any = self.classifier(self.dropout(__magic_name__ ) ) __snake_case : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case : Dict = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case : List[str] = """single_label_classification""" else: __snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": __snake_case : Optional[Any] = MSELoss() if self.num_labels == 1: __snake_case : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case : Tuple = loss_fct(__magic_name__ , __magic_name__ ) elif self.config.problem_type == "single_label_classification": __snake_case : Optional[int] = CrossEntropyLoss() __snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case : List[str] = BCEWithLogitsLoss() __snake_case : str = loss_fct(__magic_name__ , __magic_name__ ) if not return_dict: __snake_case : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states , )
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = XGLMTokenizer lowercase__: Dict = XGLMTokenizerFast lowercase__: List[str] = True lowercase__: Optional[Any] = True def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : str = """<pad>""" __snake_case : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__magic_name__ ) , 10_08 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ ) __snake_case : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case : Tuple = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowercase__ ( self : str ) -> Any: """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__magic_name__ , f.name ) __snake_case : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=__magic_name__ ) __snake_case : str = pickle.dumps(__magic_name__ ) pickle.loads(__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Dict = """I was born in 92000, and this is falsé.""" __snake_case : Any = tokenizer.tokenize(__magic_name__ ) __snake_case : Optional[Any] = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : str = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[int] = tokenizer.encode(__magic_name__ ) __snake_case : Optional[int] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : str = """Hello World!""" __snake_case : Optional[int] = [2, 3_12_27, 44_47, 35] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : Optional[int] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __snake_case : Optional[int] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : str = { """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""facebook/xglm-564M""" , padding=__magic_name__ , )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=1 , __magic_name__ : Optional[Any]="binary" , __magic_name__ : List[Any]=None , __magic_name__ : List[str]="warn" , ) -> Optional[Any]: """simple docstring""" __snake_case : int = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : str = tempfile.mkdtemp() __snake_case : List[Any] = BlipImageProcessor() __snake_case : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __snake_case : List[Any] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __snake_case : int = InstructBlipProcessor(__magic_name__ , __magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : int , **__magic_name__ : Any ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def lowercase__ ( self : Any , **__magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def lowercase__ ( self : Union[str, Any] , **__magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).qformer_tokenizer def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" __snake_case : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __snake_case : Dict = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __snake_case : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : Tuple = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) __snake_case : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) self.assertIsInstance(processor.qformer_tokenizer , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Tuple = self.get_image_processor() __snake_case : str = self.get_tokenizer() __snake_case : Optional[Any] = self.get_qformer_tokenizer() __snake_case : Optional[Any] = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : int = self.prepare_image_inputs() __snake_case : Dict = image_processor(__magic_name__ , return_tensors="""np""" ) __snake_case : List[Any] = processor(images=__magic_name__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Tuple = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Any = self.get_qformer_tokenizer() __snake_case : List[Any] = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : List[Any] = """lower newer""" __snake_case : Tuple = processor(text=__magic_name__ ) __snake_case : Tuple = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) __snake_case : List[str] = qformer_tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : str = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_qformer_tokenizer() __snake_case : Tuple = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : List[str] = """lower newer""" __snake_case : Optional[int] = self.prepare_image_inputs() __snake_case : int = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Dict = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : int = self.get_qformer_tokenizer() __snake_case : List[str] = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Optional[Any] = processor.batch_decode(__magic_name__ ) __snake_case : int = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : List[str] = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : int = self.get_qformer_tokenizer() __snake_case : int = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : Tuple = """lower newer""" __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Dict = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Tuple = """""" for i in table: res += inp[i - 1] return res def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" return data[1:] + data[0] def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Tuple = """""" for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 ) __snake_case : Any = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : int = message[:4] __snake_case : Dict = message[4:] __snake_case : Dict = apply_table(_lowerCamelCase , _lowerCamelCase ) __snake_case : Union[str, Any] = xor(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[int] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 __snake_case : List[str] = apply_sbox(_lowerCamelCase , temp[4:] ) __snake_case : Tuple = """0""" * (2 - len(_lowerCamelCase )) + l # noqa: E741 __snake_case : List[Any] = """0""" * (2 - len(_lowerCamelCase )) + r __snake_case : Dict = apply_table(l + r , _lowerCamelCase ) __snake_case : List[Any] = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": __UpperCamelCase = input("Enter 10 bit key: ") __UpperCamelCase = input("Enter 8 bit message: ") __UpperCamelCase = [6, 3, 7, 4, 8, 5, 10, 9] __UpperCamelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __UpperCamelCase = [2, 4, 3, 1] __UpperCamelCase = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCamelCase = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCamelCase = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCamelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCamelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCamelCase = apply_table(key, paa_table) __UpperCamelCase = temp[:5] __UpperCamelCase = temp[5:] __UpperCamelCase = left_shift(left) __UpperCamelCase = left_shift(right) __UpperCamelCase = apply_table(left + right, pa_table) __UpperCamelCase = left_shift(left) __UpperCamelCase = left_shift(right) __UpperCamelCase = left_shift(left) __UpperCamelCase = left_shift(right) __UpperCamelCase = apply_table(left + right, pa_table) # encryption __UpperCamelCase = apply_table(message, IP) __UpperCamelCase = function(expansion, sa, sa, keya, temp) __UpperCamelCase = temp[4:] + temp[:4] __UpperCamelCase = function(expansion, sa, sa, keya, temp) __UpperCamelCase = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCamelCase = apply_table(CT, IP) __UpperCamelCase = function(expansion, sa, sa, keya, temp) __UpperCamelCase = temp[4:] + temp[:4] __UpperCamelCase = function(expansion, sa, sa, keya, temp) __UpperCamelCase = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = AlbertTokenizer lowercase__: int = AlbertTokenizerFast lowercase__: str = True lowercase__: List[Any] = True lowercase__: Optional[Any] = True def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[Any] = AlbertTokenizer(__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = """this is a test""" __snake_case : List[str] = """this is a test""" return input_text, output_text def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = """<pad>""" __snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__magic_name__ ) , 3_00_00 ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[Any] = """I was born in 92000, and this is falsé.""" __snake_case : str = tokenizer.tokenize(__magic_name__ ) __snake_case : Tuple = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(__magic_name__ ) __snake_case : Optional[Any] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Dict = AlbertTokenizer(__magic_name__ , keep_accents=__magic_name__ ) __snake_case : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [48, 25, 21, 12_89] ) __snake_case : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __snake_case : List[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __snake_case : str = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = AlbertTokenizer(__magic_name__ ) __snake_case : List[Any] = tokenizer.encode("""sequence builders""" ) __snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) __snake_case : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[Any] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Optional[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __snake_case : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: __snake_case : int = v else: __snake_case : Any = v __snake_case : Dict = chkpt["""params"""] __snake_case : str = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} __snake_case : List[str] = chkpt["""dico_word2id"""] __snake_case : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __snake_case : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __snake_case : Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME __snake_case : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Tuple = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __snake_case : int = BitConfig( conv_layer=_lowerCamelCase , num_labels=1000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if "stem.conv" in name: __snake_case : List[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __snake_case : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __snake_case : Optional[Any] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __snake_case : Dict = """bit.""" + name if "bit" not in name and "classifier" not in name: __snake_case : Optional[int] = """bit.encoder.""" + name return name def _a ( ) -> int: """simple docstring""" __snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Any: """simple docstring""" __snake_case : Any = get_config(_lowerCamelCase ) # load original model from timm __snake_case : List[Any] = create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model __snake_case : int = timm_model.state_dict() for key in state_dict.copy().keys(): __snake_case : Optional[Any] = state_dict.pop(_lowerCamelCase ) __snake_case : List[Any] = val.squeeze() if """head""" in key else val # load HuggingFace model __snake_case : Dict = BitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # create image processor __snake_case : Tuple = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) __snake_case : str = transform.transforms __snake_case : Any = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __snake_case : Any = BitImageProcessor( do_resize=_lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __snake_case : Dict = prepare_img() __snake_case : int = transform(_lowerCamelCase ).unsqueeze(0 ) __snake_case : Optional[Any] = processor(_lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): __snake_case : Any = model(_lowerCamelCase ) __snake_case : Optional[int] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __snake_case : Optional[Any] = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = IFInpaintingPipeline lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase__: List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__: Any = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return self._get_dummy_components() def lowercase__ ( self : Any , __magic_name__ : str , __magic_name__ : str=0 ) -> Any: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : Any = torch.manual_seed(__magic_name__ ) else: __snake_case : Any = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase__ ( self : int ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : int ) -> int: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : lowercase__: List[str] lowercase__: Optional[str] = None # Automatically constructed lowercase__: ClassVar[str] = "dict" lowercase__: ClassVar[Any] = None lowercase__: str = field(default='''Translation''' , init=__lowercase , repr=__lowercase ) def __call__( self : int ) -> Optional[Any]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : lowercase__: Optional[List] = None lowercase__: Optional[int] = None lowercase__: Optional[str] = None # Automatically constructed lowercase__: ClassVar[str] = "dict" lowercase__: ClassVar[Any] = None lowercase__: str = field(default='''TranslationVariableLanguages''' , init=__lowercase , repr=__lowercase ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : int = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : int ) -> Dict: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : int , __magic_name__ : int ) -> Dict: """simple docstring""" __snake_case : Tuple = set(self.languages ) if self.languages and set(__magic_name__ ) - lang_set: raise ValueError( f'''Some languages in example ({", ".join(sorted(set(__magic_name__ ) - lang_set ) )}) are not in valid set ({", ".join(__magic_name__ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : int = [] for lang, text in translation_dict.items(): if isinstance(__magic_name__ , __magic_name__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case : Any = zip(*sorted(__magic_name__ ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
def _a ( _lowerCamelCase = 200_0000 ) -> int: """simple docstring""" __snake_case : Any = [0 for i in range(n + 1 )] __snake_case : Union[str, Any] = 1 __snake_case : List[Any] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _lowerCamelCase ): __snake_case : Any = 1 __snake_case : int = 0 for i in range(_lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __snake_case : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : int , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> List[str]: """simple docstring""" __snake_case : Tuple = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : List[Any] = [file for file in files if n_ not in file] else: __snake_case : Union[str, Any] = [file for file in files if n_identifier not in file] __snake_case : Any = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : Dict = file.split(""".""" )[0] try: __snake_case : List[str] = getattr(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Tuple = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Optional[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" __snake_case : List[str] = Path("""src/transformers""" ) __snake_case : List[str] = """modeling""" __snake_case : List[str] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : List[str] = Path("""src/transformers""" ) __snake_case : List[Any] = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : str = Path("""src/transformers""" ) __snake_case : Optional[int] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : Dict = Path("""src/transformers""" ) __snake_case : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Any = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): lowercase__: str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__: str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[Any]: """simple docstring""" __snake_case : int = TextaTextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) return generator, ["Something to write", "Something else"] def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = generator("""Something there""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __snake_case : Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) __snake_case : List[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) with self.assertRaises(__magic_name__ ): generator(4 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __snake_case : int = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] ) __snake_case : str = 3 __snake_case : int = generator( """Something there""" , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , ) __snake_case : Any = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(__magic_name__ , __magic_name__ ) __snake_case : List[str] = generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ ) self.assertEqual( __magic_name__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __snake_case : Any = generator.model.config.eos_token_id __snake_case : Any = """<pad>""" __snake_case : Optional[int] = generator( ["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , ) self.assertEqual( __magic_name__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __snake_case : List[Any] = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = """laion/clap-htsat-unfused""" __snake_case : Dict = tempfile.mkdtemp() def lowercase__ ( self : Union[str, Any] , **__magic_name__ : List[str] ) -> str: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **__magic_name__ ) def lowercase__ ( self : List[str] , **__magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : List[str] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Any = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : List[Any] = self.get_feature_extractor(do_normalize=__magic_name__ , padding_value=1.0 ) __snake_case : Any = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) __snake_case : Tuple = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ) __snake_case : str = processor(audios=__magic_name__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : str = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) __snake_case : int = """This is a test string""" __snake_case : List[Any] = processor(text=__magic_name__ ) __snake_case : List[Any] = tokenizer(__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_feature_extractor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) __snake_case : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Optional[int] = processor.batch_decode(__magic_name__ ) __snake_case : int = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = self.get_feature_extractor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Dict = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __snake_case : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids __snake_case : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids __snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ).loss __snake_case : Optional[Any] = -tf.math.reduce_mean(__magic_name__ ).numpy() __snake_case : Union[str, Any] = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' def _a ( _lowerCamelCase = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "spiece.model"} __UpperCamelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class _A ( __lowercase ): def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : int=True , __magic_name__ : Dict=False , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : Optional[Any]="<unk>" , __magic_name__ : int="<sep>" , __magic_name__ : int="<pad>" , __magic_name__ : List[Any]="<cls>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Tuple=["<eop>", "<eod>"] , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Any , ) -> None: """simple docstring""" __snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token __snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) __snake_case : Dict = 3 __snake_case : Optional[int] = do_lower_case __snake_case : str = remove_space __snake_case : List[Any] = keep_accents __snake_case : Dict = vocab_file __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) __snake_case : Optional[int] = jieba __snake_case : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Tuple: """simple docstring""" __snake_case : List[Any] = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : int , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Union[str, Any] = {} __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" if self.remove_space: __snake_case : Optional[Any] = """ """.join(inputs.strip().split() ) else: __snake_case : Any = inputs __snake_case : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __snake_case : Optional[Any] = unicodedata.normalize("""NFKD""" , __magic_name__ ) __snake_case : Dict = """""".join([c for c in outputs if not unicodedata.combining(__magic_name__ )] ) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> List[str]: """simple docstring""" __snake_case : int = self.preprocess_text(__magic_name__ ) __snake_case : str = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) __snake_case : str = [] for piece in pieces: if len(__magic_name__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __snake_case : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __snake_case : List[Any] = cur_pieces[1:] else: __snake_case : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__magic_name__ ) else: new_pieces.append(__magic_name__ ) return new_pieces def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> Dict: """simple docstring""" return self.sp_model.PieceToId(__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] ) -> int: """simple docstring""" __snake_case : List[Any] = """""".join(__magic_name__ ).replace(__magic_name__ , """ """ ).strip() return out_string def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : str = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is not None: return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1, 1] return ([0] * len(__magic_name__ )) + [1, 1] def lowercase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Tuple = [self.sep_token_id] __snake_case : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : List[str] = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def lowercase__ ( self : Dict , *__magic_name__ : Dict , **__magic_name__ : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Dict = super()._decode(*__magic_name__ , **__magic_name__ ) __snake_case : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import pprint import requests __UpperCamelCase = "https://zenquotes.io/api" def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __UpperCamelCase = random_quotes() pprint.pprint(response)
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : int = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[Any] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Union[str, Any] = sd.pop(_lowerCamelCase ) __snake_case : List[Any] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Tuple = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Tuple = model["""model"""] __snake_case : Union[str, Any] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Tuple = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : Optional[Any] = m.model.state_dict().keys() __snake_case : Optional[Any] = [] __snake_case : List[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : List[str] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' __UpperCamelCase = range(2, 20 + 1) __UpperCamelCase = [10**k for k in range(ks[-1] + 1)] __UpperCamelCase = {} def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) ) __snake_case : Dict = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) ) __snake_case : int = 0, 0 __snake_case : List[str] = n - i __snake_case : Optional[Any] = memo.get(_lowerCamelCase ) if sub_memo is not None: __snake_case : int = sub_memo.get(_lowerCamelCase ) if jumps is not None and len(_lowerCamelCase ) > 0: # find and make the largest jump without going over __snake_case : Optional[int] = -1 for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __snake_case : Dict = _k break if max_jump >= 0: __snake_case : Any = jumps[max_jump] # since the difference between jumps is cached, add c __snake_case : int = diff + c for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ): __snake_case : int = divmod(_lowerCamelCase , 10 ) if new_c > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case : List[str] = [] else: __snake_case : int = {c: []} __snake_case : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __snake_case : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __snake_case : List[str] = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped __snake_case : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped __snake_case : Union[str, Any] = 0 while j < len(_lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) ) return (diff, dn) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" if i >= n: return 0, i if k > len(_lowerCamelCase ): a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __snake_case : List[Any] = i __snake_case : str = 0, 0, 0 for j in range(len(_lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __snake_case : Dict = ds_c + ds_b diff += addend __snake_case : List[Any] = 0 for j in range(_lowerCamelCase ): __snake_case : str = a_i[j] + addend __snake_case : Any = divmod(_lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return diff, i - start_i def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[Any] = digits[j] + addend if s >= 10: __snake_case : List[str] = divmod(_lowerCamelCase , 10 ) __snake_case : List[Any] = addend // 10 + quotient else: __snake_case : int = s __snake_case : Optional[int] = addend // 10 if addend == 0: break while addend > 0: __snake_case : Union[str, Any] = divmod(_lowerCamelCase , 10 ) digits.append(_lowerCamelCase ) def _a ( _lowerCamelCase = 10**15 ) -> int: """simple docstring""" __snake_case : Dict = [1] __snake_case : Dict = 1 __snake_case : List[Any] = 0 while True: __snake_case : Any = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase ) dn += terms_jumped if dn == n - i: break __snake_case : Optional[Any] = 0 for j in range(len(_lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports __UpperCamelCase = "\nimport os\n" __UpperCamelCase = "\ndef foo():\n import os\n return False\n" __UpperCamelCase = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" __UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" __UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = os.path.join(_lowerCamelCase , """test_file.py""" ) with open(_lowerCamelCase , """w""" ) as _tmp_file: _tmp_file.write(_lowerCamelCase ) __snake_case : List[str] = get_imports(_lowerCamelCase ) assert parsed_imports == ["os"]
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCamelCase = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase = "true" def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=16 ) -> str: """simple docstring""" set_seed(42 ) __snake_case : int = RegressionModel() __snake_case : Any = deepcopy(_lowerCamelCase ) __snake_case : List[str] = RegressionDataset(length=_lowerCamelCase ) __snake_case : Any = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) model.to(accelerator.device ) __snake_case : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return model, ddp_model, dataloader def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) __snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_lowerCamelCase ): __snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs with accelerator.main_process_first(): __snake_case : Union[str, Any] = dataset.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) __snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): if use_longest: return tokenizer.pad(_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=16 ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase ) __snake_case : List[str] = get_dataloader(_lowerCamelCase , not dispatch_batches ) __snake_case : int = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_lowerCamelCase ) __snake_case : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Tuple = [] for batch in dataloader: __snake_case : Dict = batch.values() with torch.no_grad(): __snake_case : Optional[Any] = model(_lowerCamelCase ) __snake_case : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __snake_case : str = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCamelCase ) targs.append(_lowerCamelCase ) __snake_case : Optional[Any] = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase ) return logits, targs def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=16 ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert ( len(_lowerCamelCase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}''' def _a ( _lowerCamelCase = False , _lowerCamelCase = False ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) __snake_case : Dict = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase ) # First do baseline __snake_case : Optional[Any] = setup["""no"""] model.to(_lowerCamelCase ) model.eval() for batch in dataloader: batch.to(_lowerCamelCase ) with torch.inference_mode(): __snake_case : List[Any] = model(**_lowerCamelCase ) __snake_case : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCamelCase , references=batch["""labels"""] ) __snake_case : Optional[int] = metric.compute() # Then do distributed __snake_case : Optional[int] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): __snake_case : Union[str, Any] = model(**_lowerCamelCase ) __snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) __snake_case : List[str] = batch["""labels"""] __snake_case : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase ) __snake_case : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _a ( ) -> str: """simple docstring""" __snake_case : str = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_lowerCamelCase , _lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __snake_case : Tuple = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_lowerCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) __snake_case : Optional[Any] = Accelerator() test_torch_metrics(_lowerCamelCase , 512 ) accelerator.state._reset_state() def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _lowerCamelCase ) __snake_case : List[str] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case : Optional[Any] = dataset_size < in_memory_max_size else: __snake_case : List[str] = False __snake_case : List[Any] = is_small_dataset(_lowerCamelCase ) assert result == expected
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
import logging from transformers import PretrainedConfig lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class a_ ( a_ ): '''simple docstring''' __a: List[Any] = '''bertabs''' def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=5_1_2 , lowercase_=6 , lowercase_=5_1_2 , lowercase_=8 , lowercase_=5_1_2 , lowercase_=0.2 , lowercase_=6 , lowercase_=7_6_8 , lowercase_=8 , lowercase_=2_0_4_8 , lowercase_=0.2 , **lowercase_ , ) -> Any: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
def lowerCamelCase ( a_ ) -> int: assert isinstance(a_ , a_ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase_ = F'''The input value of [n={number}] has to be > 0''' raise ValueError(a_ ) else: lowerCAmelCase_ = sylvester(number - 1 ) lowerCAmelCase_ = num - 1 lowerCAmelCase_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class a_ ( a_ ): '''simple docstring''' __a: torch.FloatTensor class a_ ( a_ , a_ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 1_6 , lowercase_ = 8_8 , lowercase_ = None , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = True , lowercase_ = True , ) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = attention_head_dim lowerCAmelCase_ = num_attention_heads * attention_head_dim lowerCAmelCase_ = in_channels lowerCAmelCase_ = torch.nn.GroupNorm(num_groups=lowercase_ , num_channels=lowercase_ , eps=1e-6 , affine=lowercase_ ) lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ ) # 3. Define transformers blocks lowerCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowercase_ , lowercase_ , lowercase_ , dropout=lowercase_ , cross_attention_dim=lowercase_ , activation_fn=lowercase_ , attention_bias=lowercase_ , double_self_attention=lowercase_ , norm_elementwise_affine=lowercase_ , ) for d in range(lowercase_ ) ] ) lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=1 , lowercase_=None , lowercase_ = True , ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = hidden_states.shape lowerCAmelCase_ = batch_frames // num_frames lowerCAmelCase_ = hidden_states lowerCAmelCase_ = hidden_states[None, :].reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCAmelCase_ = self.norm(lowercase_ ) lowerCAmelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowercase_ , lowercase_ ) lowerCAmelCase_ = self.proj_in(lowercase_ ) # 2. Blocks for block in self.transformer_blocks: lowerCAmelCase_ = block( lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , class_labels=lowercase_ , ) # 3. Output lowerCAmelCase_ = self.proj_out(lowercase_ ) lowerCAmelCase_ = ( hidden_states[None, None, :] .reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCAmelCase_ = hidden_states.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowercase_ )
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase_ = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase_ = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if "bot_conv" in key: lowerCAmelCase_ = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase_ = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase_ = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase_ = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase_ = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase_ = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase_ = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase_ = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase ( ) -> Any: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_=False , a_=None ) -> Optional[int]: lowerCAmelCase_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase_ = GLPNImageProcessor() # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase_ = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict lowerCAmelCase_ = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase_ = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase_ = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) lowerCAmelCase_ = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=a_ , ) image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=a_ , ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) lowerCamelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } lowerCamelCase_ = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } lowerCamelCase_ = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } lowerCamelCase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase_ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase_ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class a_ ( a_ ): '''simple docstring''' __a: int = VOCAB_FILES_NAMES __a: Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __a: Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a_ ( a_ ): '''simple docstring''' __a: List[Any] = VOCAB_FILES_NAMES __a: Tuple = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __a: Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCamelCase_ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCamelCase_ = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a_ ) class a_ : '''simple docstring''' def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: lowerCAmelCase_ = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] lowerCAmelCase_ = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( f'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) lowerCAmelCase_ = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )['input_ids'] lowerCAmelCase_ = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )['input_ids'] lowerCAmelCase_ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: lowerCAmelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase_ = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = 1_6 , lowercase_ = 6_4 , lowercase_ = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase_ = reader_input['input_ids'] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = reader_output[:3] lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) lowerCAmelCase_ = [] for doc_id in sorted_docs: lowerCAmelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase_ = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase_ = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ ) lowerCAmelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) lowerCAmelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = VOCAB_FILES_NAMES __a: str = READER_PRETRAINED_VOCAB_FILES_MAP __a: Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: List[Any] = READER_PRETRAINED_INIT_CONFIGURATION __a: str = ['''input_ids''', '''attention_mask''']
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase_ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase ( a_ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCAmelCase_ = list(s_dict.keys() ) for key in keys: lowerCAmelCase_ = R'.*/layers_(\d+)' lowerCAmelCase_ = key if re.match(a_ , a_ ): lowerCAmelCase_ = re.sub(R'layers_(\d+)' , R'block/\1/layer' , a_ ) lowerCAmelCase_ = R'(encoder|decoder)\/' if re.match(a_ , a_ ): lowerCAmelCase_ = re.match(a_ , a_ ).groups() if groups[0] == "encoder": lowerCAmelCase_ = re.sub(R'/mlp/' , R'/1/mlp/' , a_ ) lowerCAmelCase_ = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , a_ ) elif groups[0] == "decoder": lowerCAmelCase_ = re.sub(R'/mlp/' , R'/2/mlp/' , a_ ) lowerCAmelCase_ = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , a_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase_ = new_key.replace(a_ , a_ ) print(F'''{key} -> {new_key}''' ) lowerCAmelCase_ = s_dict.pop(a_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase_ = s_dict[key].shape[0] lowerCAmelCase_ = s_dict[key] for idx in range(a_ ): lowerCAmelCase_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(a_ ) return s_dict lowerCamelCase_ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase ( a_ , a_ ) -> int: # Convert a google style config to the hugging face fromat import regex as re with open(a_ , 'r' ) as f: lowerCAmelCase_ = f.read() lowerCAmelCase_ = re.findall(R'(.*) = ([0-9.]*)' , a_ ) lowerCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase_ = float(a_ ) if '.' in value else int(a_ ) lowerCAmelCase_ = re.findall(R'(.*activations) = \(\'(.*)\',\)' , a_ )[0] lowerCAmelCase_ = str(activation[1] ) lowerCAmelCase_ = num_experts lowerCAmelCase_ = SwitchTransformersConfig(**a_ ) return config def lowerCamelCase ( a_ , a_ , a_=None , a_="./" , a_=8 ) -> Tuple: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) lowerCAmelCase_ = checkpoints.load_tax_checkpoint(a_ ) if gin_file is not None: lowerCAmelCase_ = convert_gin_to_config(a_ , a_ ) else: lowerCAmelCase_ = SwitchTransformersConfig.from_pretrained(a_ ) lowerCAmelCase_ = SwitchTransformersForConditionalGeneration(a_ ) lowerCAmelCase_ = flax_params['target'] lowerCAmelCase_ = flatten_dict(a_ , sep='/' ) lowerCAmelCase_ = rename_keys(a_ ) lowerCAmelCase_ = unflatten_dict(a_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(a_ , a_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCamelCase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
14
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ ) -> str: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowerCamelCase ( a_ , a_ , a_ = None ) -> str: lowerCAmelCase_ = tesseract_config if tesseract_config is not None else '' # apply OCR lowerCAmelCase_ = to_pil_image(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = pil_image.size lowerCAmelCase_ = pytesseract.image_to_data(a_ , lang=a_ , output_type='dict' , config=a_ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCAmelCase_ = [idx for idx, word in enumerate(a_ ) if not word.strip()] lowerCAmelCase_ = [word for idx, word in enumerate(a_ ) if idx not in irrelevant_indices] lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] lowerCAmelCase_ = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase_ = [] for x, y, w, h in zip(a_ , a_ , a_ , a_ ): lowerCAmelCase_ = [x, y, x + w, y + h] actual_boxes.append(a_ ) # finally, normalize the bounding boxes lowerCAmelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(a_ , a_ , a_ ) ) assert len(a_ ) == len(a_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a_ ( a_ ): '''simple docstring''' __a: List[Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = "" , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = resample lowerCAmelCase_ = apply_ocr lowerCAmelCase_ = ocr_lang lowerCAmelCase_ = tesseract_config def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for image in images: lowerCAmelCase_ , lowerCAmelCase_ = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCAmelCase_ = [flip_channel_order(lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) if apply_ocr: lowerCAmelCase_ = words_batch lowerCAmelCase_ = boxes_batch return data
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( a_ ): '''simple docstring''' __a: Optional[int] = (DDIMParallelScheduler,) __a: int = (('''eta''', 0.0), ('''num_inference_steps''', 5_0)) def _lowercase ( self , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowercase_ ) return config def _lowercase ( self , **lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase_ = scheduler_class(**lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = 1_0, 0.0 lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: lowerCAmelCase_ = model(lowercase_ , lowercase_ ) lowerCAmelCase_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def _lowercase ( self ) -> str: '''simple docstring''' for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def _lowercase ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = 1_0, 0.0 scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = self.dummy_sample_deter + 0.1 lowerCAmelCase_ = self.dummy_sample_deter - 0.1 lowerCAmelCase_ = samplea.shape[0] lowerCAmelCase_ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase_ = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) lowerCAmelCase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase_ = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.full_loop() lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) lowerCAmelCase_ = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCamelCase_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] lowerCamelCase_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] lowerCamelCase_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) lowerCamelCase_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) lowerCamelCase_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCamelCase ( a_ , a_ ) -> int: for tf_name, hf_name in patterns: lowerCAmelCase_ = k.replace(a_ , a_ ) return k def lowerCamelCase ( a_ , a_ ) -> BigBirdPegasusForConditionalGeneration: lowerCAmelCase_ = BigBirdPegasusConfig(**a_ ) lowerCAmelCase_ = BigBirdPegasusForConditionalGeneration(a_ ) lowerCAmelCase_ = torch_model.state_dict() lowerCAmelCase_ = {} # separating decoder weights lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase_ = [k.endswith(a_ ) for ending in KEYS_TO_IGNORE] if any(a_ ): continue lowerCAmelCase_ = DECODER_PATTERNS lowerCAmelCase_ = rename_state_dict_key(a_ , a_ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(a_ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase_ = [k.endswith(a_ ) for ending in KEYS_TO_IGNORE] if any(a_ ): continue lowerCAmelCase_ = REMAINING_PATTERNS lowerCAmelCase_ = rename_state_dict_key(a_ , a_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(a_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' lowerCAmelCase_ = mapping['model.embed_positions.weight'] lowerCAmelCase_ = mapping.pop('model.embed_positions.weight' ) lowerCAmelCase_ , lowerCAmelCase_ = torch_model.load_state_dict(a_ , strict=a_ ) lowerCAmelCase_ = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase ( a_ ) -> Dict: lowerCAmelCase_ = tf.train.list_variables(a_ ) lowerCAmelCase_ = {} lowerCAmelCase_ = ['global_step'] for name, shape in tqdm(a_ , desc='converting tf checkpoint to dict' ): lowerCAmelCase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase_ = tf.train.load_variable(a_ , a_ ) lowerCAmelCase_ = array return tf_weights def lowerCamelCase ( a_ , a_ , a_ ) -> Dict: lowerCAmelCase_ = get_tf_weights_as_numpy(a_ ) lowerCAmelCase_ = convert_bigbird_pegasus(a_ , a_ ) torch_model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( a_ ): '''simple docstring''' __a: Tuple = ['''image_processor''', '''tokenizer'''] __a: List[Any] = '''BridgeTowerImageProcessor''' __a: Optional[int] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , lowercase_ , lowercase_ ) -> int: '''simple docstring''' super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask lowerCAmelCase_ = self.image_processor( lowercase_ , return_tensors=lowercase_ , do_normalize=lowercase_ , do_center_crop=lowercase_ , **lowercase_ ) encoding.update(lowercase_ ) return encoding def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=3_0 , lowercase_=4_0_0 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 2_5_5 , lowercase_=True , ) -> int: '''simple docstring''' lowerCAmelCase_ = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def _lowercase ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self , lowercase_ , lowercase_=False ) -> int: '''simple docstring''' if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase_ = self.size['shortest_edge'] elif w > h: lowerCAmelCase_ = self.size['shortest_edge'] lowerCAmelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase_ = self.size['shortest_edge'] lowerCAmelCase_ = self.size['shortest_edge'] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase_ = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Dict = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase_ , 'do_pad' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(lowercase_ , return_tensors='pt' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) ) @slow def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCAmelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase_ = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) lowerCAmelCase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify masks lowerCAmelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size lowerCAmelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase_ = logging.get_logger(__name__) @dataclass class a_ : '''simple docstring''' __a: str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) __a: str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __a: int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __a: bool = field( default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.task_name.lower() class a_ ( a_ ): '''simple docstring''' __a: int = '''train''' __a: Tuple = '''dev''' __a: List[Any] = '''test''' class a_ ( a_ ): '''simple docstring''' __a: GlueDataTrainingArguments __a: str __a: List[InputFeatures] def __init__( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = Split.train , lowercase_ = None , ) -> List[Any]: '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowercase_ , ) lowerCAmelCase_ = args lowerCAmelCase_ = glue_processors[args.task_name]() lowerCAmelCase_ = glue_output_modes[args.task_name] if isinstance(lowercase_ , lowercase_ ): try: lowerCAmelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowerCAmelCase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ = label_list[2], label_list[1] lowerCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: lowerCAmelCase_ = time.time() lowerCAmelCase_ = torch.load(lowercase_ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowerCAmelCase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase_ = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase_ = examples[:limit_length] lowerCAmelCase_ = glue_convert_examples_to_features( lowercase_ , lowercase_ , max_length=args.max_seq_length , label_list=lowercase_ , output_mode=self.output_mode , ) lowerCAmelCase_ = time.time() torch.save(self.features , lowercase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[str]: '''simple docstring''' return len(self.features ) def __getitem__( self , lowercase_ ) -> InputFeatures: '''simple docstring''' return self.features[i] def _lowercase ( self ) -> int: '''simple docstring''' return self.label_list
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
lowerCamelCase_ = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCamelCase ( a_ ) -> List[str]: lowerCAmelCase_ = os.path.join(args.tf_model_dir , 'parameters.json' ) lowerCAmelCase_ = json.loads(open(a_ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): lowerCAmelCase_ = args.output + '.pt' lowerCAmelCase_ = OrderedDict() with tf.device('/CPU:0' ): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): lowerCAmelCase_ = int(key_name[9] ) elif key_name.startswith('pasts/out' ): lowerCAmelCase_ = 8 lowerCAmelCase_ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/moe' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/softmlp/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): lowerCAmelCase_ = key_name[-9:-7] for i in range(16 ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/mlp' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p1/bias' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p2/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p2/bias' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/ln' ): lowerCAmelCase_ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/g' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.weight' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/att' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/o/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/an' ): lowerCAmelCase_ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/g' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.weight' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): lowerCAmelCase_ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] lowerCAmelCase_ = 'model.%s.weight' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(a_ ) if key_name.startswith('model/wte' ): lowerCAmelCase_ = 'lm_head.weight' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/wob' ): lowerCAmelCase_ = 'final_logits_bias' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1) ) lowerCAmelCase_ = torch.tensor(a_ ) elif key_name == "model/dense/kernel": lowerCAmelCase_ = 'model.last_project.weight' lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = 'model.last_project.bias' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") lowerCamelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a_ ( a_ ): '''simple docstring''' @slow @require_torch def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) lowerCAmelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase_ = bertabert.config.encoder.vocab_size lowerCAmelCase_ = tokenizer.sep_token_id lowerCAmelCase_ = tokenizer.cls_token_id lowerCAmelCase_ = 1_2_8 lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) lowerCAmelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) lowerCAmelCase_ = train_dataset.select(range(3_2 ) ) lowerCAmelCase_ = val_dataset.select(range(1_6 ) ) lowerCAmelCase_ = 4 def _map_to_encoder_decoder_inputs(lowercase_ ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCAmelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase_ , max_length=5_1_2 ) lowerCAmelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase_ , max_length=1_2_8 ) lowerCAmelCase_ = inputs.input_ids lowerCAmelCase_ = inputs.attention_mask lowerCAmelCase_ = outputs.input_ids lowerCAmelCase_ = outputs.input_ids.copy() lowerCAmelCase_ = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] lowerCAmelCase_ = outputs.attention_mask assert all(len(lowercase_ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowercase_ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase_ ): lowerCAmelCase_ = pred.label_ids lowerCAmelCase_ = pred.predictions # all unnecessary tokens are removed lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ ) return {"accuracy": accuracy} # map train dataset lowerCAmelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset lowerCAmelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) lowerCAmelCase_ = self.get_auto_remove_tmp_dir() lowerCAmelCase_ = SeqaSeqTrainingArguments( output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy='steps' , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCAmelCase_ = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , ) # start training trainer.train()
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] lowerCamelCase_ = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase ( a_ ) -> str: lowerCAmelCase_ = torch.load(a_ , map_location='cpu' ) return sd def lowerCamelCase ( a_ , a_ , a_=rename_keys_prefix ) -> List[str]: lowerCAmelCase_ = OrderedDict() lowerCAmelCase_ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase_ = key for name_pair in rename_keys_prefix: lowerCAmelCase_ = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase_ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase_ = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def lowerCamelCase ( a_ , a_ ) -> Optional[Any]: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowerCAmelCase_ = 'pretraining' if "vcr" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 512} lowerCAmelCase_ = 'multichoice' elif "vqa_advanced" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 2_048} lowerCAmelCase_ = 'vqa_advanced' elif "vqa" in checkpoint_path: lowerCAmelCase_ = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} lowerCAmelCase_ = 'vqa' elif "nlvr" in checkpoint_path: lowerCAmelCase_ = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } lowerCAmelCase_ = 'nlvr' lowerCAmelCase_ = VisualBertConfig(**a_ ) # Load State Dict lowerCAmelCase_ = load_state_dict(a_ ) lowerCAmelCase_ = get_new_dict(a_ , a_ ) if model_type == "pretraining": lowerCAmelCase_ = VisualBertForPreTraining(a_ ) elif model_type == "vqa": lowerCAmelCase_ = VisualBertForQuestionAnswering(a_ ) elif model_type == "nlvr": lowerCAmelCase_ = VisualBertForVisualReasoning(a_ ) elif model_type == "multichoice": lowerCAmelCase_ = VisualBertForMultipleChoice(a_ ) model.load_state_dict(a_ ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
14
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( a_ ) -> Any: lowerCAmelCase_ = tmp_path / 'file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = tmp_path / 'malformed_file.csv' lowerCAmelCase_ = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ , a_ ) -> List[str]: lowerCAmelCase_ = tmp_path / 'csv_with_image.csv' lowerCAmelCase_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = tmp_path / 'csv_with_label.csv' lowerCAmelCase_ = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) @pytest.fixture def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = tmp_path / 'csv_with_int_list.csv' lowerCAmelCase_ = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(a_ , 'w' ) as f: f.write(a_ ) return str(a_ ) def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: lowerCAmelCase_ = Csv() lowerCAmelCase_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a_ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(a_ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( a_ ) -> Optional[Any]: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() lowerCAmelCase_ = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( a_ ) -> int: with open(a_ , encoding='utf-8' ) as f: lowerCAmelCase_ = f.read().splitlines()[1:] lowerCAmelCase_ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() lowerCAmelCase_ = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(a_ ) for label in labels] def lowerCamelCase ( a_ ) -> Union[str, Any]: lowerCAmelCase_ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda a_ : [int(a_ ) for i in x.split()]} ) lowerCAmelCase_ = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) lowerCAmelCase_ = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCamelCase_ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCAmelCase_ = [144, 192, 240] lowerCAmelCase_ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCAmelCase_ = [96, 120, 144] lowerCAmelCase_ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCAmelCase_ = [64, 80, 96] lowerCAmelCase_ = [16, 16, 24, 48, 64, 80, 320] lowerCAmelCase_ = 0.05 lowerCAmelCase_ = 2.0 if mobilevit_name.startswith('deeplabv3_' ): lowerCAmelCase_ = 512 lowerCAmelCase_ = 16 lowerCAmelCase_ = 21 lowerCAmelCase_ = 'pascal-voc-id2label.json' else: lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = 'huggingface/label-files' lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( a_ , a_=False ) -> List[Any]: for i in range(1 , 6 ): if F'''layer_{i}.''' in name: lowerCAmelCase_ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: lowerCAmelCase_ = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: lowerCAmelCase_ = name.replace('.block.' , '.' ) if "exp_1x1" in name: lowerCAmelCase_ = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: lowerCAmelCase_ = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: lowerCAmelCase_ = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: lowerCAmelCase_ = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: lowerCAmelCase_ = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: lowerCAmelCase_ = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: lowerCAmelCase_ = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: lowerCAmelCase_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: lowerCAmelCase_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: lowerCAmelCase_ = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: lowerCAmelCase_ = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: lowerCAmelCase_ = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: lowerCAmelCase_ = name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' ) if F'''.global_rep.{i}.bias''' in name: lowerCAmelCase_ = name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' ) if ".global_rep." in name: lowerCAmelCase_ = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: lowerCAmelCase_ = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: lowerCAmelCase_ = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: lowerCAmelCase_ = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: lowerCAmelCase_ = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: lowerCAmelCase_ = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: lowerCAmelCase_ = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: lowerCAmelCase_ = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: lowerCAmelCase_ = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: lowerCAmelCase_ = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: lowerCAmelCase_ = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: lowerCAmelCase_ = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): lowerCAmelCase_ = 'mobilevit.' + name return name def lowerCamelCase ( a_ , a_ , a_=False ) -> str: if base_model: lowerCAmelCase_ = '' else: lowerCAmelCase_ = 'mobilevit.' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if key[:8] == "encoder.": lowerCAmelCase_ = key[8:] if "qkv" in key: lowerCAmelCase_ = key.split('.' ) lowerCAmelCase_ = int(key_split[0][6:] ) - 1 lowerCAmelCase_ = int(key_split[3] ) lowerCAmelCase_ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) lowerCAmelCase_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCAmelCase_ = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( ) -> Union[str, Any]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ , a_=False ) -> List[Any]: lowerCAmelCase_ = get_mobilevit_config(a_ ) # load original state_dict lowerCAmelCase_ = torch.load(a_ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): lowerCAmelCase_ = MobileViTForSemanticSegmentation(a_ ).eval() else: lowerCAmelCase_ = MobileViTForImageClassification(a_ ).eval() lowerCAmelCase_ = convert_state_dict(a_ , a_ ) model.load_state_dict(a_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCAmelCase_ = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCAmelCase_ = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCAmelCase_ = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCAmelCase_ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowerCAmelCase_ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowerCAmelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , a_ , atol=1e-4 ) Path(a_ ).mkdir(exist_ok=a_ ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) if push_to_hub: lowerCAmelCase_ = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) lowerCAmelCase_ = model_mapping[mobilevit_name] image_processor.push_to_hub(a_ , organization='apple' ) model.push_to_hub(a_ , organization='apple' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase ( a_ , a_ ) -> Tuple: lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find('patch' ) lowerCAmelCase_ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=a_ , num_frames=a_ ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1_024 lowerCAmelCase_ = 4_096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(a_ , a_ ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase ( a_ ) -> List[str]: # text encoder if name == "token_embedding.weight": lowerCAmelCase_ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase_ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase_ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase_ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase_ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase_ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase_ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase_ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase_ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase_ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCamelCase ( a_ , a_ ) -> Dict: for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(a_ ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(a_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase ( a_ ) -> List[str]: if num_frames == 8: lowerCAmelCase_ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase_ = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase_ = 'eating_spaghetti_32_frames.npy' lowerCAmelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=a_ , repo_type='dataset' , ) lowerCAmelCase_ = np.load(a_ ) return list(a_ ) def lowerCamelCase ( a_ , a_=None , a_=False ) -> List[Any]: lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = 'pytorch_model.bin' gdown.cached_download(a_ , a_ , quiet=a_ ) lowerCAmelCase_ = torch.load(a_ , map_location='cpu' )['model'] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(a_ )['model'] lowerCAmelCase_ = convert_state_dict(a_ , a_ ) lowerCAmelCase_ = XCLIPModel(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=a_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase_ = XCLIPProcessor(image_processor=a_ , tokenizer=a_ ) lowerCAmelCase_ = prepare_video(a_ ) lowerCAmelCase_ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=a_ , return_tensors='pt' , padding=a_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print('Probs:' , a_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(a_ , a_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(a_ , organization='nielsr' ) processor.push_to_hub(a_ , organization='nielsr' ) slow_tokenizer.push_to_hub(a_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
1
from ...processing_utils import ProcessorMixin class a_ ( a_ ): '''simple docstring''' __a: Any = '''SpeechT5FeatureExtractor''' __a: Tuple = '''SpeechT5Tokenizer''' def __init__( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' super().__init__(lowercase_ , lowercase_ ) def __call__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = kwargs.pop('audio' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('text' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('text_target' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('audio_target' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('sampling_rate' , lowercase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase_ = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) elif text is not None: lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) else: lowerCAmelCase_ = None if audio_target is not None: lowerCAmelCase_ = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_values'] elif text_target is not None: lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_ids'] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = kwargs.pop('input_values' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('input_ids' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('labels' , lowercase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) elif input_ids is not None: lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ ) else: lowerCAmelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_ ) and "input_ids" in labels[0]): lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_ids'] else: lowerCAmelCase_ = self.feature_extractor.feature_size lowerCAmelCase_ = self.feature_extractor.num_mel_bins lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) lowerCAmelCase_ = feature_size_hack lowerCAmelCase_ = targets['input_values'] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ )
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase ( a_ , a_=10 ) -> Optional[int]: lowerCAmelCase_ = [] for _ in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase ( a_ , a_=10 ) -> Optional[Any]: lowerCAmelCase_ = [] for step in range(a_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = os.path.join(a_ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a_ ) lowerCAmelCase_ = torch.load(a_ ) scheduler.load_state_dict(a_ ) return lrs @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase_ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase_ = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' __a: Tuple = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None __a: Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None __a: str = 1_0 def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = {'num_warmup_steps': 2, 'num_training_steps': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase_ , lowerCAmelCase_ = data lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase_ = unwrap_schedule(lowercase_ , self.num_steps ) self.assertListAlmostEqual( lowercase_ , lowercase_ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase_ = scheduler_func(self.optimizer , **lowercase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule lowerCAmelCase_ = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps ) self.assertListEqual(lowercase_ , lowercase_ , msg=f'''failed for {scheduler_func} in save and reload''' ) class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = fn def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return self.fn(*lowercase_ , **lowercase_ ) @classmethod def _lowercase ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = list(map(self , scheduler.lr_lambdas ) )
14
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
14
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a_ ( a_ ): '''simple docstring''' __a: Dict = '''perceiver''' def __init__( self , lowercase_=2_5_6 , lowercase_=1_2_8_0 , lowercase_=7_6_8 , lowercase_=1 , lowercase_=2_6 , lowercase_=8 , lowercase_=8 , lowercase_=None , lowercase_=None , lowercase_="kv" , lowercase_=1 , lowercase_=1 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=2_6_2 , lowercase_=2_0_4_8 , lowercase_=5_6 , lowercase_=[3_6_8, 4_9_6] , lowercase_=1_6 , lowercase_=1_9_2_0 , lowercase_=1_6 , lowercase_=[1, 1_6, 2_2_4, 2_2_4] , **lowercase_ , ) -> Dict: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = num_latents lowerCAmelCase_ = d_latents lowerCAmelCase_ = d_model lowerCAmelCase_ = num_blocks lowerCAmelCase_ = num_self_attends_per_block lowerCAmelCase_ = num_self_attention_heads lowerCAmelCase_ = num_cross_attention_heads lowerCAmelCase_ = qk_channels lowerCAmelCase_ = v_channels lowerCAmelCase_ = cross_attention_shape_for_attention lowerCAmelCase_ = self_attention_widening_factor lowerCAmelCase_ = cross_attention_widening_factor lowerCAmelCase_ = hidden_act lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_query_residual # masked language modeling attributes lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings # image classification attributes lowerCAmelCase_ = image_size # flow attributes lowerCAmelCase_ = train_size # multimodal autoencoding attributes lowerCAmelCase_ = num_frames lowerCAmelCase_ = audio_samples_per_frame lowerCAmelCase_ = samples_per_patch lowerCAmelCase_ = output_shape class a_ ( a_ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-4 def _lowercase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 4_0 , lowercase_ = 4_0 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ = preprocessor.num_special_tokens_to_add(lowercase_ ) lowerCAmelCase_ = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ = [' '.join(['a'] ) * seq_length] * batch_size lowerCAmelCase_ = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) lowerCAmelCase_ = inputs.pop('input_ids' ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase_ = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) lowerCAmelCase_ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
14
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
14
1
from __future__ import annotations def lowerCamelCase ( a_ , a_ ) -> float: lowerCAmelCase_ = sorted(numsa + numsa ) lowerCAmelCase_ , lowerCAmelCase_ = divmod(len(a_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = [float(x) for x in input("""Enter the elements of first array: """).split()] lowerCamelCase_ = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class a_ ( a_ ): '''simple docstring''' __a: Dict = '''git_vision_model''' def __init__( self , lowercase_=7_6_8 , lowercase_=3_0_7_2 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3 , lowercase_=2_2_4 , lowercase_=1_6 , lowercase_="quick_gelu" , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=0.02 , **lowercase_ , ) -> int: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = hidden_act @classmethod def _lowercase ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": lowerCAmelCase_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class a_ ( a_ ): '''simple docstring''' __a: List[str] = '''git''' def __init__( self , lowercase_=None , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=6 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_4 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=False , lowercase_=1_0_1 , lowercase_=1_0_2 , lowercase_=None , **lowercase_ , ) -> Any: '''simple docstring''' super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ ) if vision_config is None: lowerCAmelCase_ = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) lowerCAmelCase_ = GitVisionConfig(**lowercase_ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = num_image_with_embedding lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.vision_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
14
import baseaa def lowerCamelCase ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase ( a_ ) -> str: return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase_ = """Hello World!""" lowerCamelCase_ = baseaa_encode(test) print(encoded) lowerCamelCase_ = baseaa_decode(encoded) print(decoded)
14
1
from collections import namedtuple lowerCamelCase_ = namedtuple("""from_to""", """from_ to""") lowerCamelCase_ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def lowerCamelCase ( a_ , a_ , a_ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_=False ) -> Tuple: lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCAmelCase_ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCAmelCase_ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase_ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCAmelCase_ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCAmelCase_ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCAmelCase_ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase_ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ = key[key.find('block' ) + len('block' )] lowerCAmelCase_ = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCAmelCase_ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase_ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase_ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase_ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase_ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase_ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase_ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase_ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase_ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('head' ): lowerCAmelCase_ = key.replace('head' , 'classifier' ) lowerCAmelCase_ = value return new_state_dict def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase_ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> Optional[int]: lowerCAmelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = SegformerConfig() lowerCAmelCase_ = False # set attributes based on model_name lowerCAmelCase_ = 'huggingface/label-files' if "segformer" in model_name: lowerCAmelCase_ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCAmelCase_ = 150 lowerCAmelCase_ = 'ade20k-id2label.json' lowerCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase_ = 19 lowerCAmelCase_ = 'cityscapes-id2label.json' lowerCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCAmelCase_ = True lowerCAmelCase_ = model_name[4:6] lowerCAmelCase_ = 1_000 lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = (1, 1_000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 256 elif size == "b2": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ = [64, 128, 320, 512] lowerCAmelCase_ = 768 lowerCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) ) else: lowerCAmelCase_ = torch.load(a_ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCAmelCase_ = rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ = False lowerCAmelCase_ = SegformerForImageClassification(a_ ) else: lowerCAmelCase_ = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCAmelCase_ = model(a_ ) lowerCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase_ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( a_ , a_ ): '''simple docstring''' __a: Optional[Any] = '''nat''' __a: int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=4 , lowercase_=3 , lowercase_=6_4 , lowercase_=[3, 4, 6, 5] , lowercase_=[2, 4, 8, 1_6] , lowercase_=7 , lowercase_=3.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
14
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' __a: Optional[datasets.Features] = None __a: str = "utf-8" __a: Optional[str] = None __a: Optional[str] = None __a: bool = True # deprecated __a: Optional[int] = None # deprecated __a: int = 1_0 << 2_0 # 10MB __a: Optional[bool] = None class a_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __a: Dict = JsonConfig def _lowercase ( self ) -> Any: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) lowerCAmelCase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self , lowercase_ ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): lowerCAmelCase_ = data_files if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = [files] lowerCAmelCase_ = [dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = [files] lowerCAmelCase_ = [dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files} ) ) return splits def _lowercase ( self , lowercase_ ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowerCAmelCase_ = self.config.features.arrow_schema.field(lowercase_ ).type lowerCAmelCase_ = pa_table.append_column(lowercase_ , pa.array([None] * len(lowercase_ ) , type=lowercase_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase_ = table_cast(lowercase_ , self.config.features.arrow_schema ) return pa_table def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCAmelCase_ = json.load(lowercase_ ) # We keep only the field we are interested in lowerCAmelCase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowercase_ , (list, tuple) ): lowerCAmelCase_ = set().union(*[row.keys() for row in dataset] ) lowerCAmelCase_ = {col: [row.get(lowercase_ ) for row in dataset] for col in keys} else: lowerCAmelCase_ = dataset lowerCAmelCase_ = pa.Table.from_pydict(lowercase_ ) yield file_idx, self._cast_table(lowercase_ ) # If the file has one json object per line else: with open(lowercase_ , 'rb' ) as f: lowerCAmelCase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowerCAmelCase_ = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) lowerCAmelCase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: lowerCAmelCase_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowercase_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowerCAmelCase_ = batch.decode(self.config.encoding , errors=lowercase_ ).encode('utf-8' ) try: while True: try: lowerCAmelCase_ = paj.read_json( io.BytesIO(lowercase_ ) , read_options=paj.ReadOptions(block_size=lowercase_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowercase_ , pa.ArrowInvalid ) and "straddling" not in str(lowercase_ ) or block_size > len(lowercase_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(lowercase_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowerCAmelCase_ = json.load(lowercase_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowercase_ , lowercase_ ): # list is the only sequence type supported in JSON try: lowerCAmelCase_ = set().union(*[row.keys() for row in dataset] ) lowerCAmelCase_ = {col: [row.get(lowercase_ ) for row in dataset] for col in keys} lowerCAmelCase_ = pa.Table.from_pydict(lowercase_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(lowercase_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase_ ) batch_idx += 1
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase_ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ lowerCamelCase_ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ lowerCamelCase_ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="auto" , lowercase_=-1 , lowercase_=0.9 , lowercase_=5 , lowercase_=5_0_0 , lowercase_="gpt2-large" , lowercase_=-1 , lowercase_=1_0_2_4 , lowercase_=2_5 , lowercase_=5 , lowercase_=True , lowercase_=2_5 , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
14
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase_ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( a_ ) -> List[str]: if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowerCAmelCase_ = [image] lowerCAmelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCAmelCase_ = torch.stack(a_ ) return image class a_ ( a_ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def _lowercase ( self , lowercase_ ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) lowerCAmelCase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase_ = init_latents.shape lowerCAmelCase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print('add noise to latents at timestep' , lowercase_ ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = init_latents return latents @torch.no_grad() def __call__( self , lowercase_ = None , lowercase_ = 0.8 , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowerCAmelCase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowerCAmelCase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowerCAmelCase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowerCAmelCase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
14
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase_ = get_tests_dir("""fixtures""") lowerCamelCase_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowerCamelCase_ = get_tests_dir("""fixtures/dummy-config.json""") class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = 0 def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ).to_dict() config_dict.pop('feature_extractor_type' ) lowerCAmelCase_ = WavaVecaFeatureExtractor(**lowercase_ ) # save in new folder model_config.save_pretrained(lowercase_ ) config.save_pretrained(lowercase_ ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) # make sure private variable is not incorrectly saved lowerCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa' ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowercase ( self ) -> int: '''simple docstring''' with self.assertRaises(lowercase_ ): lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_ ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' class a_ ( a_ ): '''simple docstring''' __a: str = True try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
14
def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
1
import math lowerCamelCase_ = 1_0 lowerCamelCase_ = 7 lowerCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase ( a_ = 20 ) -> str: lowerCAmelCase_ = math.comb(a_ , a_ ) lowerCAmelCase_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a_ ) lowerCAmelCase_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
14
def lowerCamelCase ( a_ ) -> bool: lowerCAmelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCAmelCase_ = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> bool: visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
14
1
def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Dict: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase_ = mf_knapsack(i - 1 , a_ , a_ , a_ ) else: lowerCAmelCase_ = max( mf_knapsack(i - 1 , a_ , a_ , a_ ) , mf_knapsack(i - 1 , a_ , a_ , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase_ = val return f[i][j] def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> List[str]: lowerCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase_ = dp[i - 1][w_] return dp[n][w_], dp def lowerCamelCase ( a_ , a_ , a_ ) -> Optional[Any]: if not (isinstance(a_ , (list, tuple) ) and isinstance(a_ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowerCAmelCase_ = len(a_ ) if num_items != len(a_ ): lowerCAmelCase_ = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(a_ )} values''' ) raise ValueError(a_ ) for i in range(a_ ): if not isinstance(wt[i] , a_ ): lowerCAmelCase_ = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = knapsack(a_ , a_ , a_ , a_ ) lowerCAmelCase_ = set() _construct_solution(a_ , a_ , a_ , a_ , a_ ) return optimal_val, example_optional_set def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(a_ , a_ , i - 1 , a_ , a_ ) else: optimal_set.add(a_ ) _construct_solution(a_ , a_ , i - 1 , j - wt[i - 1] , a_ ) if __name__ == "__main__": lowerCamelCase_ = [3, 2, 4, 4] lowerCamelCase_ = [4, 3, 2, 3] lowerCamelCase_ = 4 lowerCamelCase_ = 6 lowerCamelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase_ , lowerCamelCase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase_ , lowerCamelCase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class a_ ( a_ , unittest.TestCase ): '''simple docstring''' __a: Any = BartphoTokenizer __a: Union[str, Any] = False __a: List[str] = True def _lowercase ( self ) -> List[Any]: '''simple docstring''' super().setUp() lowerCAmelCase_ = ['▁This', '▁is', '▁a', '▁t', 'est'] lowerCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase_ = {'unk_token': '<unk>'} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) lowerCAmelCase_ = BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , **lowercase_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def _lowercase ( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = 'This is a là test' lowerCAmelCase_ = 'This is a<unk><unk> test' return input_text, output_text def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase_ = 'This is a là test' lowerCAmelCase_ = '▁This ▁is ▁a ▁l à ▁t est'.split() lowerCAmelCase_ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ )
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } lowerCamelCase_ = { """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } lowerCamelCase_ = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class a_ ( a_ ): '''simple docstring''' __a: Any = VOCAB_FILES_NAMES __a: List[str] = PRETRAINED_VOCAB_FILES_MAP __a: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a: Optional[Any] = PRETRAINED_INIT_CONFIGURATION __a: Tuple = RoFormerTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , lowercase_ ) != do_lower_case or pre_tok_state.get('strip_accents' , lowercase_ ) != strip_accents ): lowerCAmelCase_ = getattr(lowercase_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = strip_accents lowerCAmelCase_ = pre_tok_class(**lowercase_ ) lowerCAmelCase_ = do_lower_case def __getstate__( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = BertPreTokenizer() return state def __setstate__( self , lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = d lowerCAmelCase_ = self.__dict__['_tokenizer'].get_vocab() lowerCAmelCase_ = PreTokenizer.custom(JiebaPreTokenizer(lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , **lowercase_ , ) -> str: '''simple docstring''' lowerCAmelCase_ = BertPreTokenizer() return super().save_pretrained(lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(a_ ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.base_model_path lowerCamelCase_ = args.checkpoint_path lowerCamelCase_ = args.dump_path lowerCamelCase_ = args.lora_prefix_unet lowerCamelCase_ = args.lora_prefix_text_encoder lowerCamelCase_ = args.alpha lowerCamelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1