code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _A ( enum.Enum ): lowercase__: Tuple = 0 lowercase__: Dict = 1 lowercase__: str = 2 @add_end_docstrings(__lowercase ) class _A ( __lowercase ): lowercase__: Dict = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : List[Any] , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __snake_case : Dict = None if self.model.config.prefix is not None: __snake_case : List[str] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __snake_case : int = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __snake_case , __snake_case , __snake_case : Optional[int] = self._sanitize_parameters(prefix=__magic_name__ , **self._forward_params ) __snake_case : Any = {**self._preprocess_params, **preprocess_params} __snake_case : Dict = {**self._forward_params, **forward_params} def lowercase__ ( self : Tuple , __magic_name__ : List[str]=None , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : Tuple=None , __magic_name__ : str=None , __magic_name__ : Dict=None , **__magic_name__ : int , ) -> Optional[Any]: """simple docstring""" __snake_case : int = {} if prefix is not None: __snake_case : Union[str, Any] = prefix if prefix: __snake_case : Optional[Any] = self.tokenizer( __magic_name__ , padding=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=self.framework ) __snake_case : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""" ) __snake_case : Any = handle_long_generation preprocess_params.update(__magic_name__ ) __snake_case : str = generate_kwargs __snake_case : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) __snake_case : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) __snake_case : Optional[Any] = ReturnType.TENSORS if return_type is not None: __snake_case : Dict = return_type if clean_up_tokenization_spaces is not None: __snake_case : str = clean_up_tokenization_spaces if stop_sequence is not None: __snake_case : List[str] = self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) if len(__magic_name__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __snake_case : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : Any , *__magic_name__ : Dict , **__magic_name__ : List[str] ) -> Any: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*__magic_name__ , **__magic_name__ ) def __call__( self : Tuple , __magic_name__ : List[str] , **__magic_name__ : Dict ) -> List[Any]: """simple docstring""" return super().__call__(__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[str]="" , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.tokenizer( prefix + prompt_text , padding=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=self.framework ) __snake_case : int = prompt_text if handle_long_generation == "hole": __snake_case : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: __snake_case : Any = generate_kwargs["""max_new_tokens"""] else: __snake_case : int = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) __snake_case : Any = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: __snake_case : Any = inputs["""attention_mask"""][:, -keep_length:] return inputs def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , **__magic_name__ : str ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = model_inputs["""input_ids"""] __snake_case : Any = model_inputs.get("""attention_mask""" , __magic_name__ ) # Allow empty prompts if input_ids.shape[1] == 0: __snake_case : Tuple = None __snake_case : Optional[Any] = None __snake_case : str = 1 else: __snake_case : List[Any] = input_ids.shape[0] __snake_case : Dict = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __snake_case : Union[str, Any] = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: __snake_case : List[Any] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: __snake_case : Optional[Any] = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __snake_case : Any = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __snake_case : List[Any] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ , **__magic_name__ ) __snake_case : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": __snake_case : Dict = generated_sequence.reshape(__magic_name__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __snake_case : int = tf.reshape(__magic_name__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase__ ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=ReturnType.FULL_TEXT , __magic_name__ : Any=True ) -> Any: """simple docstring""" __snake_case : Optional[Any] = model_outputs["""generated_sequence"""][0] __snake_case : Any = model_outputs["""input_ids"""] __snake_case : List[Any] = model_outputs["""prompt_text"""] __snake_case : str = generated_sequence.numpy().tolist() __snake_case : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __snake_case : Optional[Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __snake_case : str = self.tokenizer.decode( __magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __snake_case : Tuple = 0 else: __snake_case : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) ) if return_type == ReturnType.FULL_TEXT: __snake_case : Union[str, Any] = prompt_text + text[prompt_length:] else: __snake_case : int = text[prompt_length:] __snake_case : List[str] = {"""generated_text""": all_text} records.append(__magic_name__ ) return records
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
1
'''simple docstring''' import math def _a ( _lowerCamelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( _lowerCamelCase = 1_0001 ) -> int: """simple docstring""" try: __snake_case : Optional[Any] = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) __snake_case : list[int] = [] __snake_case : Optional[Any] = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
13
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __snake_case : Optional[Any] = mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case : Any = max( mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , mf_knapsack(i - 1 , _lowerCamelCase , _lowerCamelCase , j - wt[i - 1] ) + val[i - 1] , ) __snake_case : int = val return f[i][j] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : int = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __snake_case : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __snake_case : Optional[int] = dp[i - 1][w_] return dp[n][w_], dp def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if not (isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(_lowerCamelCase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) __snake_case : Tuple = len(_lowerCamelCase ) if num_items != len(_lowerCamelCase ): __snake_case : Any = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(_lowerCamelCase )} values''' ) raise ValueError(_lowerCamelCase ) for i in range(_lowerCamelCase ): if not isinstance(wt[i] , _lowerCamelCase ): __snake_case : List[Any] = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_lowerCamelCase ) __snake_case , __snake_case : List[str] = knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : set = set() _construct_solution(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return optimal_val, example_optional_set def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) else: optimal_set.add(_lowerCamelCase ) _construct_solution(_lowerCamelCase , _lowerCamelCase , i - 1 , j - wt[i - 1] , _lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = [3, 2, 4, 4] __UpperCamelCase = [4, 3, 2, 3] __UpperCamelCase = 4 __UpperCamelCase = 6 __UpperCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __UpperCamelCase , __UpperCamelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __UpperCamelCase , __UpperCamelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
13
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCamelCase = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class _A ( __lowercase ): lowercase__: List[Any] = '''ernie_m''' lowercase__: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Union[str, Any] , __magic_name__ : int = 25_00_02 , __magic_name__ : int = 7_68 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : int = 30_72 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 5_14 , __magic_name__ : float = 0.02 , __magic_name__ : int = 1 , __magic_name__ : float = 1E-05 , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=0.0 , **__magic_name__ : int , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = vocab_size __snake_case : Dict = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : Dict = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : str = layer_norm_eps __snake_case : Tuple = classifier_dropout __snake_case : Any = is_decoder __snake_case : Optional[int] = act_dropout
13
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: """simple docstring""" __snake_case : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __snake_case : Any = """""" else: __snake_case : Tuple = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __snake_case : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[ : config.hidden_size, : ] __snake_case : Optional[int] = in_proj_bias[: config.hidden_size] __snake_case : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : Tuple = in_proj_bias[-config.hidden_size :] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Tuple = dct.pop(_lowerCamelCase ) __snake_case : Optional[Any] = val def _a ( ) -> Dict: """simple docstring""" __snake_case : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = ViTConfig() __snake_case : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __snake_case : Dict = True __snake_case : Union[str, Any] = int(vit_name[-12:-10] ) __snake_case : int = int(vit_name[-9:-6] ) else: __snake_case : Union[str, Any] = 1000 __snake_case : List[str] = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : List[str] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : Tuple = int(vit_name[-6:-4] ) __snake_case : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): __snake_case : str = 192 __snake_case : str = 768 __snake_case : Union[str, Any] = 12 __snake_case : int = 3 elif vit_name[9:].startswith("""small""" ): __snake_case : Optional[int] = 384 __snake_case : Optional[Any] = 1536 __snake_case : List[str] = 12 __snake_case : Tuple = 6 else: pass else: if vit_name[4:].startswith("""small""" ): __snake_case : Optional[Any] = 768 __snake_case : Optional[Any] = 2304 __snake_case : Optional[Any] = 8 __snake_case : List[Any] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): __snake_case : Optional[int] = 1024 __snake_case : str = 4096 __snake_case : Optional[Any] = 24 __snake_case : List[str] = 16 elif vit_name[4:].startswith("""huge""" ): __snake_case : List[str] = 1280 __snake_case : List[Any] = 5120 __snake_case : int = 32 __snake_case : Dict = 16 # load original model from timm __snake_case : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __snake_case : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) __snake_case : List[Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": __snake_case : str = ViTModel(_lowerCamelCase ).eval() else: __snake_case : List[Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __snake_case : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: __snake_case : Tuple = ViTImageProcessor(size=config.image_size ) __snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Union[str, Any] = encoding["""pixel_values"""] __snake_case : Optional[int] = model(_lowerCamelCase ) if base_model: __snake_case : Tuple = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1E-3 ) else: __snake_case : List[Any] = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
13
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCamelCase = random.Random() def _a ( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> int: """simple docstring""" if rng is None: __snake_case : List[Any] = global_rng __snake_case : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): def __init__( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=7 , __magic_name__ : Optional[Any]=4_00 , __magic_name__ : Dict=20_00 , __magic_name__ : List[str]=24 , __magic_name__ : List[Any]=24 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[str]=1_60_00 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , ) -> Tuple: """simple docstring""" __snake_case : Any = parent __snake_case : str = batch_size __snake_case : Any = min_seq_length __snake_case : List[str] = max_seq_length __snake_case : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Optional[int] = feature_size __snake_case : Union[str, Any] = num_mel_bins __snake_case : int = padding_value __snake_case : Optional[Any] = sampling_rate __snake_case : int = return_attention_mask __snake_case : str = do_normalize def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : List[Any] , __magic_name__ : int=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" def _flatten(__magic_name__ : Tuple ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: __snake_case : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case : Tuple = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : Optional[int] = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self : int , __magic_name__ : Any ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(__magic_name__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ , axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size __snake_case : List[str] = feature_extractor(__magic_name__ , padding=__magic_name__ , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __snake_case : Tuple = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __snake_case : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test batched __snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features __snake_case : Optional[Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case : List[str] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __snake_case : Optional[int] = np.asarray(__magic_name__ ) __snake_case : Any = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features __snake_case : Any = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Dict = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : Union[str, Any] = [None, 16, None] for max_length, padding in zip(__magic_name__ , __magic_name__ ): __snake_case : List[Any] = feature_extractor( __magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , return_attention_mask=__magic_name__ ) __snake_case : Optional[int] = inputs.input_features __snake_case : Any = inputs.attention_mask __snake_case : Optional[Any] = [np.sum(__magic_name__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : List[Any] = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : Optional[int] = [None, 16, None] for max_length, padding in zip(__magic_name__ , __magic_name__ ): __snake_case : str = feature_extractor( __magic_name__ , max_length=__magic_name__ , padding=__magic_name__ , return_tensors="""np""" , return_attention_mask=__magic_name__ ) __snake_case : int = inputs.input_features __snake_case : Dict = inputs.attention_mask __snake_case : int = [np.sum(__magic_name__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Dict = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Optional[int] = feature_extractor( __magic_name__ , padding="""max_length""" , max_length=4 , truncation=__magic_name__ , return_tensors="""np""" , return_attention_mask=__magic_name__ , ) __snake_case : int = inputs.input_features __snake_case : Dict = inputs.attention_mask __snake_case : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Optional[Any] = feature_extractor( __magic_name__ , padding="""longest""" , max_length=4 , truncation=__magic_name__ , return_tensors="""np""" , return_attention_mask=__magic_name__ , ) __snake_case : List[str] = inputs.input_features __snake_case : List[str] = inputs.attention_mask __snake_case : Tuple = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : int = feature_extractor( __magic_name__ , padding="""longest""" , max_length=16 , truncation=__magic_name__ , return_tensors="""np""" , return_attention_mask=__magic_name__ , ) __snake_case : List[str] = inputs.input_features __snake_case : str = inputs.attention_mask __snake_case : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" import torch __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Optional[Any] = np.random.rand(1_00 , 32 ).astype(np.floataa ) __snake_case : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __snake_case : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : int , __magic_name__ : str ) -> Optional[int]: """simple docstring""" from datasets import load_dataset __snake_case : Any = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case : int = ds.sort("""id""" ).select(range(__magic_name__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on __snake_case : List[Any] = self._load_datasamples(1 ) __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : str = feature_extractor(__magic_name__ , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1E-4 ) )
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Tuple = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : Optional[int] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __snake_case : int = BitConfig( conv_layer=_lowerCamelCase , num_labels=1000 , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if "stem.conv" in name: __snake_case : List[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __snake_case : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __snake_case : Optional[Any] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __snake_case : Dict = """bit.""" + name if "bit" not in name and "classifier" not in name: __snake_case : Optional[int] = """bit.encoder.""" + name return name def _a ( ) -> int: """simple docstring""" __snake_case : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Any: """simple docstring""" __snake_case : Any = get_config(_lowerCamelCase ) # load original model from timm __snake_case : List[Any] = create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model __snake_case : int = timm_model.state_dict() for key in state_dict.copy().keys(): __snake_case : Optional[Any] = state_dict.pop(_lowerCamelCase ) __snake_case : List[Any] = val.squeeze() if """head""" in key else val # load HuggingFace model __snake_case : Dict = BitForImageClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # create image processor __snake_case : Tuple = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) __snake_case : str = transform.transforms __snake_case : Any = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __snake_case : Any = BitImageProcessor( do_resize=_lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __snake_case : Dict = prepare_img() __snake_case : int = transform(_lowerCamelCase ).unsqueeze(0 ) __snake_case : Optional[Any] = processor(_lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): __snake_case : Any = model(_lowerCamelCase ) __snake_case : Optional[int] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __snake_case : Optional[Any] = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[int] = RoFormerTokenizer lowercase__: List[Any] = RoFormerTokenizerFast lowercase__: Any = True lowercase__: Optional[int] = True def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() def lowercase__ ( self : str , **__magic_name__ : Any ) -> List[Any]: """simple docstring""" return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def lowercase__ ( self : Dict , **__magic_name__ : Optional[Any] ) -> int: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = """永和服装饰品有限公司,今天天气非常好""" __snake_case : str = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizer() __snake_case , __snake_case : List[str] = self.get_chinese_input_output_texts() __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) __snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] __snake_case : Any = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : Tuple = self.get_rust_tokenizer() __snake_case , __snake_case : int = self.get_chinese_input_output_texts() __snake_case : Union[str, Any] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) __snake_case : Dict = tokens + [tokenizer.unk_token] __snake_case : str = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : str ) -> Dict: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" pass
13
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _A ( __lowercase , __lowercase ): lowercase__: int = 1 @register_to_config def __init__( self : Dict , __magic_name__ : int = 10_00 , __magic_name__ : Optional[Union[np.ndarray, List[float]]] = None ) -> int: """simple docstring""" self.set_timesteps(__magic_name__ ) # standard deviation of the initial noise distribution __snake_case : List[str] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __snake_case : int = 4 # running values __snake_case : Any = [] def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : Union[str, torch.device] = None ) -> Union[str, Any]: """simple docstring""" __snake_case : str = num_inference_steps __snake_case : List[str] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __snake_case : List[Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __snake_case : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __snake_case : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 __snake_case : List[str] = (1.0 - self.betas**2) ** 0.5 __snake_case : Any = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __snake_case : List[Any] = timesteps.to(__magic_name__ ) __snake_case : str = [] def lowercase__ ( self : Tuple , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __snake_case : Optional[Any] = (self.timesteps == timestep).nonzero().item() __snake_case : List[str] = timestep_index + 1 __snake_case : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__magic_name__ ) if len(self.ets ) == 1: __snake_case : Optional[Any] = self.ets[-1] elif len(self.ets ) == 2: __snake_case : Optional[Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __snake_case : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __snake_case : Optional[int] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __snake_case : Dict = self._get_prev_sample(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : torch.FloatTensor , *__magic_name__ : Any , **__magic_name__ : Tuple ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.alphas[timestep_index] __snake_case : int = self.betas[timestep_index] __snake_case : Union[str, Any] = self.alphas[prev_timestep_index] __snake_case : str = self.betas[prev_timestep_index] __snake_case : Dict = (sample - sigma * ets) / max(__magic_name__ , 1E-8 ) __snake_case : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.config.num_train_timesteps
13
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = TransfoXLTokenizer lowercase__: str = False lowercase__: List[str] = False def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" super().setUp() __snake_case : Any = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase__ ( self : List[str] , **__magic_name__ : str ) -> List[Any]: """simple docstring""" __snake_case : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> int: """simple docstring""" __snake_case : List[str] = """<unk> UNwanted , running""" __snake_case : Optional[Any] = """<unk> unwanted, running""" return input_text, output_text def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__magic_name__ ) __snake_case : Optional[int] = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__magic_name__ , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [0, 4, 8, 7] ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : Tuple = TransfoXLTokenizer(lower_case=__magic_name__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : str = TransfoXLTokenizer(lower_case=__magic_name__ ) __snake_case : int = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __snake_case : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.convert_tokens_to_string(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : int = self.get_tokenizer() __snake_case : List[Any] = len(__magic_name__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__magic_name__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
13
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : Optional[int] = generate_pascal_triangle(_lowerCamelCase ) for row_idx in range(_lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __snake_case : list[list[int]] = [] for current_row_idx in range(_lowerCamelCase ): __snake_case : List[str] = populate_current_row(_lowerCamelCase , _lowerCamelCase ) triangle.append(_lowerCamelCase ) return triangle def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[int]: """simple docstring""" __snake_case : Optional[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __snake_case , __snake_case : List[str] = 1, 1 for current_col_idx in range(1 , _lowerCamelCase ): calculate_current_element( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return current_row def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] __snake_case : Optional[Any] = triangle[current_row_idx - 1][current_col_idx] __snake_case : str = above_to_left_elt + above_to_right_elt def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __snake_case : list[list[int]] = [[1]] for row_index in range(1 , _lowerCamelCase ): __snake_case : Optional[int] = [0] + result[-1] + [0] __snake_case : Tuple = row_index + 1 # Calculate the number of distinct elements in a row __snake_case : Tuple = sum(divmod(_lowerCamelCase , 2 ) ) __snake_case : Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __snake_case : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __snake_case : Dict = row_first_half + row_second_half result.append(_lowerCamelCase ) return result def _a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: __snake_case : Tuple = F'''{func.__name__}({value})''' __snake_case : str = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : int = [0] * len(_lowerCamelCase ) __snake_case : Optional[int] = [] __snake_case : Any = [] __snake_case : Tuple = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: __snake_case : str = queue.pop(0 ) cnt += 1 topo.append(_lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) if cnt != len(_lowerCamelCase ): print("""Cycle exists""" ) else: print(_lowerCamelCase ) # Adjacency List of Graph __UpperCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = min(_lowerCamelCase ) # min() finds the minimum value __snake_case : Optional[Any] = max(_lowerCamelCase ) # max() finds the maximum value __snake_case : List[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case : Optional[int] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case : List[str] = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 __snake_case : str = count + min_val i += 1 def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
13
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __snake_case : Any = DetaConfig( backbone_config=_lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels __snake_case : Any = """huggingface/label-files""" if "o365" in model_name: __snake_case : str = 366 __snake_case : Union[str, Any] = """object365-id2label.json""" else: __snake_case : str = 91 __snake_case : Any = """coco-detection-id2label.json""" __snake_case : Dict = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __snake_case : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : str = idalabel __snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} return config def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = dct.pop(_lowerCamelCase ) __snake_case : Tuple = val def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : int = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __snake_case : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : List[str] = in_proj_weight[:dim, :] __snake_case : int = in_proj_bias[: dim] __snake_case : Dict = in_proj_weight[ dim : dim * 2, : ] __snake_case : Optional[Any] = in_proj_bias[ dim : dim * 2 ] __snake_case : List[str] = in_proj_weight[ -dim :, : ] __snake_case : Optional[int] = in_proj_bias[-dim :] # fmt: on def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __snake_case : List[Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case : str = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Optional[Any] = in_proj_weight[:hidden_size, :] __snake_case : Tuple = in_proj_bias[:hidden_size] __snake_case : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] __snake_case : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Optional[Any] = in_proj_weight[-hidden_size:, :] __snake_case : Optional[int] = in_proj_bias[-hidden_size:] def _a ( ) -> Any: """simple docstring""" __snake_case : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __snake_case : List[Any] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __snake_case : Optional[int] = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) __snake_case : str = torch.load(_lowerCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys __snake_case : List[str] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __snake_case : List[str] = state_dict.pop(_lowerCamelCase ) __snake_case : Tuple = val if "input_proj" in key: __snake_case : List[str] = state_dict.pop(_lowerCamelCase ) __snake_case : Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __snake_case : int = state_dict.pop(_lowerCamelCase ) __snake_case : Union[str, Any] = val # finally, create HuggingFace model and load state dict __snake_case : Dict = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(_lowerCamelCase ) # load image processor __snake_case : str = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = processor(images=_lowerCamelCase , return_tensors="""pt""" ) __snake_case : Union[str, Any] = encoding["""pixel_values"""] __snake_case : List[str] = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __snake_case : Tuple = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __snake_case : Optional[int] = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __snake_case : Dict = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __snake_case : List[str] = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
1
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata __UpperCamelCase = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class _A ( tr.AbstractTransform ): def __init__( self : List[str] , __magic_name__ : str = " " ) -> Tuple: """simple docstring""" __snake_case : List[Any] = sentence_delimiter def lowercase__ ( self : Optional[int] , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" return list(__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = [] for sent_idx, sentence in enumerate(__magic_name__ ): chars.extend(self.process_string(__magic_name__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__magic_name__ ) - 1: chars.append(self.sentence_delimiter ) return chars __UpperCamelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __UpperCamelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __UpperCamelCase = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __UpperCamelCase = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" __UpperCamelCase = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[str]=False ) -> Optional[Any]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , )["wer"] __snake_case : List[str] = 0 __snake_case : Any = 0 for prediction, reference in zip(__magic_name__ , __magic_name__ ): __snake_case : Union[str, Any] = jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = AlbertTokenizer lowercase__: int = AlbertTokenizerFast lowercase__: str = True lowercase__: List[Any] = True lowercase__: Optional[Any] = True def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[Any] = AlbertTokenizer(__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = """this is a test""" __snake_case : List[str] = """this is a test""" return input_text, output_text def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = """<pad>""" __snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__magic_name__ ) , 3_00_00 ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[Any] = """I was born in 92000, and this is falsé.""" __snake_case : str = tokenizer.tokenize(__magic_name__ ) __snake_case : Tuple = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(__magic_name__ ) __snake_case : Optional[Any] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Dict = AlbertTokenizer(__magic_name__ , keep_accents=__magic_name__ ) __snake_case : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [48, 25, 21, 12_89] ) __snake_case : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __snake_case : List[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __snake_case : str = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = AlbertTokenizer(__magic_name__ ) __snake_case : List[Any] = tokenizer.encode("""sequence builders""" ) __snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) __snake_case : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
1
'''simple docstring''' def _a ( _lowerCamelCase = 100_0000 ) -> int: """simple docstring""" __snake_case : List[str] = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) __snake_case : Tuple = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
13
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } __UpperCamelCase = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } __UpperCamelCase = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = set() __snake_case : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : Tuple = char __snake_case : Optional[Any] = set(_lowerCamelCase ) return pairs class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase__: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Any="</s>" , __magic_name__ : Dict="<s>" , __magic_name__ : Union[str, Any]="<unk>" , __magic_name__ : Union[str, Any]="<pad>" , __magic_name__ : List[str]="<mask>" , **__magic_name__ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , **__magic_name__ , ) __snake_case : List[str] = vocab_file __snake_case : Any = merges_file __snake_case : List[Any] = {} __snake_case : int = 0 __snake_case : Optional[int] = 1 __snake_case : int = 2 __snake_case : Any = 3 self.add_from_file(__magic_name__ ) __snake_case : Optional[int] = {v: k for k, v in self.encoder.items()} with open(__magic_name__ , encoding="""utf-8""" ) as merges_handle: __snake_case : Any = merges_handle.read().split("""\n""" )[:-1] __snake_case : Tuple = [tuple(merge.split()[:-1] ) for merge in merges] __snake_case : Optional[int] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : str = {} def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Any = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] def lowercase__ ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : List[Any] = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : int , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] __snake_case : Optional[Any] = tuple(__magic_name__ ) __snake_case : Any = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __snake_case : str = get_pairs(__magic_name__ ) if not pairs: return token while True: __snake_case : Union[str, Any] = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case : Tuple = bigram __snake_case : Optional[int] = [] __snake_case : Dict = 0 while i < len(__magic_name__ ): try: __snake_case : int = word.index(__magic_name__ , __magic_name__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Union[str, Any] = j if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : Union[str, Any] = tuple(__magic_name__ ) __snake_case : Tuple = new_word if len(__magic_name__ ) == 1: break else: __snake_case : Tuple = get_pairs(__magic_name__ ) __snake_case : Optional[Any] = """@@ """.join(__magic_name__ ) __snake_case : Optional[Any] = word[:-4] __snake_case : int = word return word def lowercase__ ( self : List[str] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = [] __snake_case : int = re.findall(r"""\S+\n?""" , __magic_name__ ) for token in words: split_tokens.extend(list(self.bpe(__magic_name__ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" return self.decoder.get(__magic_name__ , self.unk_token ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : str = """ """.join(__magic_name__ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : str = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : List[str] = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(__magic_name__ ): copyfile(self.merges_file , __magic_name__ ) return out_vocab_file, out_merge_file def lowercase__ ( self : str , __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): try: with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__magic_name__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return __snake_case : int = f.readlines() for lineTmp in lines: __snake_case : Any = lineTmp.strip() __snake_case : int = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) __snake_case : Tuple = line[:idx] __snake_case : Dict = len(self.encoder )
13
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
1
'''simple docstring''' import pprint import requests __UpperCamelCase = "https://zenquotes.io/api" def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __UpperCamelCase = random_quotes() pprint.pprint(response)
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( __lowercase ): lowercase__: Optional[int] = ['''pixel_values'''] def __init__( self : Tuple , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = True , **__magic_name__ : int , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : int = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Dict = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name="""crop_size""" ) __snake_case : Dict = do_resize __snake_case : Tuple = size __snake_case : Union[str, Any] = resample __snake_case : Optional[Any] = do_center_crop __snake_case : List[str] = crop_size __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : int = do_normalize __snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : List[str] = do_convert_rgb def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: """simple docstring""" __snake_case : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : Dict = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray: """simple docstring""" __snake_case : Any = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image: """simple docstring""" __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : Union[str, Any] = size if size is not None else self.size __snake_case : Tuple = get_size_dict(__magic_name__ , param_name="""size""" , default_to_square=__magic_name__ ) __snake_case : Optional[Any] = resample if resample is not None else self.resample __snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : List[str] = crop_size if crop_size is not None else self.crop_size __snake_case : Union[str, Any] = get_size_dict(__magic_name__ , param_name="""crop_size""" , default_to_square=__magic_name__ ) __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean __snake_case : Any = image_std if image_std is not None else self.image_std __snake_case : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : int = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. __snake_case : List[str] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: __snake_case : Optional[int] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: __snake_case : Tuple = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : int = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
13
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : Union[str, Any] , *__magic_name__ : List[str] , **__magic_name__ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
13
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _A ( __lowercase , __lowercase ): lowercase__: int = '''bit''' lowercase__: Union[str, Any] = ['''preactivation''', '''bottleneck'''] lowercase__: Any = ['''SAME''', '''VALID'''] def __init__( self : Any , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=64 , __magic_name__ : str=[2_56, 5_12, 10_24, 20_48] , __magic_name__ : Optional[int]=[3, 4, 6, 3] , __magic_name__ : Optional[int]="preactivation" , __magic_name__ : int="relu" , __magic_name__ : List[str]=None , __magic_name__ : List[str]=32 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[str]=False , __magic_name__ : List[str]=32 , __magic_name__ : Tuple=1 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=None , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" super().__init__(**__magic_name__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __snake_case : Union[str, Any] = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __snake_case : Tuple = num_channels __snake_case : Tuple = embedding_size __snake_case : Optional[int] = hidden_sizes __snake_case : Dict = depths __snake_case : Union[str, Any] = layer_type __snake_case : int = hidden_act __snake_case : Tuple = global_padding __snake_case : List[Any] = num_groups __snake_case : Optional[Any] = drop_path_rate __snake_case : Optional[int] = embedding_dynamic_padding __snake_case : Optional[int] = output_stride __snake_case : Optional[Any] = width_factor __snake_case : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )] __snake_case , __snake_case : Optional[int] = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
13
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __snake_case : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _A ( __lowercase ): def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : Any = tempfile.mkdtemp() __snake_case : Dict = 8 # DPR tok __snake_case : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __snake_case : Tuple = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) __snake_case : Dict = os.path.join(__magic_name__ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok __snake_case : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __snake_case : int = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __snake_case : Tuple = {"""unk_token""": """<unk>"""} __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) __snake_case : Optional[int] = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Dict = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowercase__ ( self : Tuple ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def lowercase__ ( self : Optional[int] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = os.path.join(self.tmpdirname , """rag_tokenizer""" ) __snake_case : Union[str, Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __snake_case : int = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__magic_name__ ) rag_tokenizer.save_pretrained(__magic_name__ ) __snake_case : Tuple = RagTokenizer.from_pretrained(__magic_name__ , config=__magic_name__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __magic_name__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __magic_name__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : List[str] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) __snake_case : Dict = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] __snake_case : Union[str, Any] = tokenizer(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) __snake_case : Union[str, Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] __snake_case : Union[str, Any] = tokenizer(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
13
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _a ( _lowerCamelCase ) -> int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) __snake_case : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class _A ( __lowercase ): lowercase__: Optional[Any] = '''sigmoid''' lowercase__: Tuple = '''softmax''' lowercase__: Any = '''none''' @add_end_docstrings( __lowercase , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class _A ( __lowercase ): lowercase__: Union[str, Any] = False lowercase__: List[str] = ClassificationFunction.NONE def __init__( self : int , **__magic_name__ : int ) -> List[str]: """simple docstring""" super().__init__(**__magic_name__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase__ ( self : Dict , __magic_name__ : Dict=None , __magic_name__ : Tuple=None , __magic_name__ : List[str]="" , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = tokenizer_kwargs __snake_case : Union[str, Any] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __snake_case : Tuple = self.model.config.return_all_scores if isinstance(__magic_name__ , __magic_name__ ) or top_k is None: __snake_case : Optional[Any] = top_k __snake_case : Tuple = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __magic_name__ , ) if return_all_scores: __snake_case : Any = None else: __snake_case : Optional[Any] = 1 if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Any = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __snake_case : List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : List[str] , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : List[Any] = super().__call__(*__magic_name__ , **__magic_name__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __snake_case : str = """top_k""" not in kwargs if isinstance(args[0] , __magic_name__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase__ ( self : str , __magic_name__ : int , **__magic_name__ : List[str] ) -> Dict[str, GenericTensor]: """simple docstring""" __snake_case : str = self.framework if isinstance(__magic_name__ , __magic_name__ ): return self.tokenizer(**__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) == 1 and isinstance(inputs[0] , __magic_name__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__magic_name__ , **__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : str ) -> str: """simple docstring""" return self.model(**__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : Tuple=1 , __magic_name__ : int=True ) -> Dict: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __snake_case : Optional[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __snake_case : int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __snake_case : Optional[int] = self.model.config.function_to_apply else: __snake_case : Dict = ClassificationFunction.NONE __snake_case : int = model_outputs["""logits"""][0] __snake_case : List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __snake_case : Optional[int] = sigmoid(__magic_name__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __snake_case : Optional[Any] = softmax(__magic_name__ ) elif function_to_apply == ClassificationFunction.NONE: __snake_case : List[str] = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __snake_case : Optional[int] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__magic_name__ ) ] if not _legacy: dict_scores.sort(key=lambda __magic_name__ : x["score"] , reverse=__magic_name__ ) if top_k is not None: __snake_case : str = dict_scores[:top_k] return dict_scores
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): lowercase__: Tuple = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase__: List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : Union[str, Any] = AudioClassificationPipeline(model=__magic_name__ , feature_extractor=__magic_name__ ) # test with a raw waveform __snake_case : Optional[Any] = np.zeros((3_40_00,) ) __snake_case : int = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Optional[int] = examples __snake_case : Optional[Any] = audio_classifier(__magic_name__ ) # by default a model is initialized with num_labels=2 self.assertEqual( __magic_name__ , [ {"""score""": ANY(__magic_name__ ), """label""": ANY(__magic_name__ )}, {"""score""": ANY(__magic_name__ ), """label""": ANY(__magic_name__ )}, ] , ) __snake_case : Union[str, Any] = audio_classifier(__magic_name__ , top_k=1 ) self.assertEqual( __magic_name__ , [ {"""score""": ANY(__magic_name__ ), """label""": ANY(__magic_name__ )}, ] , ) self.run_torchaudio(__magic_name__ ) @require_torchaudio def lowercase__ ( self : List[str] , __magic_name__ : str ) -> Tuple: """simple docstring""" import datasets # test with a local file __snake_case : List[str] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) __snake_case : List[Any] = dataset[0]["""audio"""]["""array"""] __snake_case : Union[str, Any] = audio_classifier(__magic_name__ ) self.assertEqual( __magic_name__ , [ {"""score""": ANY(__magic_name__ ), """label""": ANY(__magic_name__ )}, {"""score""": ANY(__magic_name__ ), """label""": ANY(__magic_name__ )}, ] , ) @require_torch def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Any = """anton-l/wav2vec2-random-tiny-classifier""" __snake_case : Optional[Any] = pipeline("""audio-classification""" , model=__magic_name__ ) __snake_case : Optional[int] = np.ones((80_00,) ) __snake_case : str = audio_classifier(__magic_name__ , top_k=4 ) __snake_case : List[Any] = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] __snake_case : List[str] = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(__magic_name__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) __snake_case : Tuple = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} __snake_case : Optional[Any] = audio_classifier(__magic_name__ , top_k=4 ) self.assertIn(nested_simplify(__magic_name__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" import datasets __snake_case : int = """superb/wav2vec2-base-superb-ks""" __snake_case : Tuple = pipeline("""audio-classification""" , model=__magic_name__ ) __snake_case : List[Any] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) __snake_case : Any = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) __snake_case : Tuple = audio_classifier(__magic_name__ , top_k=4 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass
13
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
1
'''simple docstring''' import socket def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case : Any = socket.gethostname() __snake_case : Any = 1_2312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: __snake_case : Union[str, Any] = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
13
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( __lowercase ): def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """num_attention_heads""" ) ) class _A : def __init__( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=13 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[int]=6_40 , __magic_name__ : Dict=4 , __magic_name__ : Tuple="silu" , __magic_name__ : Optional[int]=3 , __magic_name__ : Any=32 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : Any=True , __magic_name__ : str=10 , __magic_name__ : Tuple=None , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = parent __snake_case : List[str] = batch_size __snake_case : Any = image_size __snake_case : List[Any] = patch_size __snake_case : Union[str, Any] = num_channels __snake_case : Dict = last_hidden_size __snake_case : Dict = num_attention_heads __snake_case : Any = hidden_act __snake_case : int = conv_kernel_size __snake_case : Tuple = output_stride __snake_case : str = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : Any = use_labels __snake_case : str = is_training __snake_case : int = num_labels __snake_case : int = initializer_range __snake_case : int = scope def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Dict ) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = MobileViTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : Optional[Any] = MobileViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Tuple = self.num_labels __snake_case : str = MobileViTForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Any = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase__: Optional[int] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__: Union[str, Any] = False lowercase__: Optional[int] = False lowercase__: int = False lowercase__: int = False def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Dict = MobileViTModelTester(self ) __snake_case : Union[str, Any] = MobileViTConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def lowercase__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(__magic_name__ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[int] ): __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : Union[str, Any] = 5 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Union[str, Any] = 2 for i in range(len(__magic_name__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = MobileViTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(__magic_name__ ) __snake_case : Tuple = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Optional[int] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : int = model.to(__magic_name__ ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Union[str, Any] = prepare_img() __snake_case : int = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) __snake_case : Optional[int] = outputs.logits # verify the logits __snake_case : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __magic_name__ ) __snake_case : Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Tuple = model.to(__magic_name__ ) __snake_case : Any = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : List[str] = prepare_img() __snake_case : List[str] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : int = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(50, 60)] ) __snake_case : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) __snake_case : str = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) __snake_case : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
13
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = IFInpaintingSuperResolutionPipeline lowercase__: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowercase__: List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : Any = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = nn.functional.normalize(_lowerCamelCase ) __snake_case : Tuple = nn.functional.normalize(_lowerCamelCase ) return torch.mm(_lowerCamelCase , normalized_text_embeds.t() ) class _A ( __lowercase ): lowercase__: Optional[int] = CLIPConfig lowercase__: Optional[Any] = ['''CLIPEncoderLayer'''] def __init__( self : Dict , __magic_name__ : CLIPConfig ) -> Dict: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : List[Any] = CLIPVisionModel(config.vision_config ) __snake_case : Tuple = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__magic_name__ ) __snake_case : str = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__magic_name__ ) __snake_case : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__magic_name__ ) __snake_case : Union[str, Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__magic_name__ ) __snake_case : Tuple = nn.Parameter(torch.ones(3 ) , requires_grad=__magic_name__ ) @torch.no_grad() def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Dict = self.vision_model(__magic_name__ )[1] # pooled_output __snake_case : Union[str, Any] = self.visual_projection(__magic_name__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : int = cosine_distance(__magic_name__ , self.special_care_embeds ).cpu().float().numpy() __snake_case : str = cosine_distance(__magic_name__ , self.concept_embeds ).cpu().float().numpy() __snake_case : Tuple = [] __snake_case : Optional[int] = image_embeds.shape[0] for i in range(__magic_name__ ): __snake_case : Any = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : Tuple = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __snake_case : Optional[int] = special_cos_dist[i][concept_idx] __snake_case : int = self.special_care_embeds_weights[concept_idx].item() __snake_case : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __snake_case : Optional[Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __snake_case : Tuple = cos_dist[i][concept_idx] __snake_case : Optional[int] = self.concept_embeds_weights[concept_idx].item() __snake_case : List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__magic_name__ ) result.append(__magic_name__ ) __snake_case : Any = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.vision_model(__magic_name__ )[1] # pooled_output __snake_case : int = self.visual_projection(__magic_name__ ) __snake_case : Dict = cosine_distance(__magic_name__ , self.special_care_embeds ) __snake_case : Any = cosine_distance(__magic_name__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __snake_case : List[Any] = 0.0 __snake_case : Optional[int] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __snake_case : Union[str, Any] = torch.any(special_scores > 0 , dim=1 ) __snake_case : Optional[Any] = special_care * 0.01 __snake_case : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __snake_case : str = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __snake_case : int = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
13
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Any = emb.weight.shape __snake_case : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" __snake_case : List[str] = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Optional[int] = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : List[str] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Optional[Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Dict = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : List[str] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : Tuple = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : List[str] = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> str: """simple docstring""" __snake_case : int = [] __snake_case : Any = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : List[Any] = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Any = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : Dict = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : str = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Optional[int] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : Tuple = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : int = shard_file # Add the metadata __snake_case : int = {"""total_size""": total_size} __snake_case : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : str = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Any = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : str = 16 elif accelerator.mixed_precision != "no": __snake_case : int = 8 else: __snake_case : List[str] = None return tokenizer.pad( _lowerCamelCase , padding="""longest""" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __snake_case : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase ) __snake_case : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : List[str] = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : List[Any] = int(config["""seed"""] ) __snake_case : int = int(config["""batch_size"""] ) __snake_case : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __snake_case : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE __snake_case : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) __snake_case , __snake_case : Optional[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __snake_case : str = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler __snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : int = model(**_lowerCamelCase ) __snake_case : Optional[int] = outputs.loss __snake_case : str = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Dict = model(**_lowerCamelCase ) __snake_case : int = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __snake_case : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) def _a ( ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __snake_case : str = parser.parse_args() __snake_case : List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
13
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = FunnelConfig.from_json_file(_lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case : int = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _A ( SCREAMING_SNAKE_CASE_ ): lowercase__: List[str] = '''autoformer''' lowercase__: Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "student_t" , __magic_name__ : str = "nll" , __magic_name__ : int = 1 , __magic_name__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , __magic_name__ : bool = True , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : Optional[List[int]] = None , __magic_name__ : Optional[List[int]] = None , __magic_name__ : int = 64 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 32 , __magic_name__ : int = 32 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 1_00 , __magic_name__ : float = 0.02 , __magic_name__ : bool = True , __magic_name__ : int=True , __magic_name__ : int = 10 , __magic_name__ : int = 25 , __magic_name__ : int = 3 , **__magic_name__ : int , ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = prediction_length __snake_case : int = context_length if context_length is not None else prediction_length __snake_case : Any = distribution_output __snake_case : List[str] = loss __snake_case : List[Any] = input_size __snake_case : List[str] = num_time_features __snake_case : int = lags_sequence __snake_case : List[str] = scaling __snake_case : Optional[int] = num_dynamic_real_features __snake_case : Tuple = num_static_real_features __snake_case : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __snake_case : List[Any] = cardinality else: __snake_case : List[Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __snake_case : int = embedding_dimension else: __snake_case : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case : Any = num_parallel_samples # Transformer architecture configuration __snake_case : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case : Optional[int] = d_model __snake_case : List[Any] = encoder_attention_heads __snake_case : List[Any] = decoder_attention_heads __snake_case : Any = encoder_ffn_dim __snake_case : Optional[int] = decoder_ffn_dim __snake_case : Tuple = encoder_layers __snake_case : Any = decoder_layers __snake_case : List[str] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = activation_dropout __snake_case : Optional[Any] = encoder_layerdrop __snake_case : List[Any] = decoder_layerdrop __snake_case : Optional[Any] = activation_function __snake_case : Tuple = init_std __snake_case : Optional[int] = use_cache # Autoformer __snake_case : List[str] = label_length __snake_case : Optional[int] = moving_average __snake_case : List[str] = autocorrelation_factor super().__init__(is_encoder_decoder=__a , **__a ) @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : list[list[str]] = [[] for _ in range(lowercase__ )] __snake_case : List[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(lowercase__ ) <= key: return input_string for position, character in enumerate(lowercase__ ): __snake_case : Dict = position % (lowest * 2) # puts it in bounds __snake_case : Dict = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowercase__ ) __snake_case : List[str] = ["""""".join(lowercase__ ) for row in temp_grid] __snake_case : Dict = """""".join(lowercase__ ) return output_string def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string __snake_case : list[list[str]] = [[] for _ in range(lowercase__ )] # generates template for position in range(len(lowercase__ ) ): __snake_case : List[str] = position % (lowest * 2) # puts it in bounds __snake_case : Optional[int] = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __snake_case : int = 0 for row in temp_grid: # fills in the characters __snake_case : List[Any] = input_string[counter : counter + len(lowercase__ )] grid.append(list(lowercase__ ) ) counter += len(lowercase__ ) __snake_case : str = """""" # reads as zigzag for position in range(len(lowercase__ ) ): __snake_case : List[str] = position % (lowest * 2) # puts it in bounds __snake_case : List[Any] = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _a ( _lowerCamelCase ) -> dict[int, str]: """simple docstring""" __snake_case : Any = {} for key_guess in range(1 , len(lowercase__ ) ): # tries every key __snake_case : List[str] = decrypt(lowercase__ , lowercase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _UpperCAmelCase , unittest.TestCase ): lowercase__: Optional[int] = MgpstrTokenizer lowercase__: Optional[int] = False lowercase__: Tuple = {} lowercase__: Dict = False def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # fmt: off __snake_case : Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __snake_case : str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def lowercase__ ( self : Any , **__magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : str = '''tester''' __snake_case : Any = '''tester''' return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[Any] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Tuple = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) __snake_case : List[str] = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : int = self.get_input_output_texts(_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) __snake_case : List[str] = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowercase__ ( self : str ) -> str: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict=3 , __magic_name__ : str=32 , __magic_name__ : List[str]=3 , __magic_name__ : Dict=10 , __magic_name__ : Any=[10, 20, 30, 40] , __magic_name__ : List[Any]=[1, 1, 2, 1] , __magic_name__ : List[Any]=True , __magic_name__ : str=True , __magic_name__ : Tuple="relu" , __magic_name__ : List[str]=3 , __magic_name__ : Optional[Any]=None , ) -> Tuple: """simple docstring""" __snake_case : List[str] = parent __snake_case : Any = batch_size __snake_case : Optional[Any] = image_size __snake_case : List[str] = num_channels __snake_case : Optional[Any] = embeddings_size __snake_case : Union[str, Any] = hidden_sizes __snake_case : List[str] = depths __snake_case : Any = is_training __snake_case : Optional[Any] = use_labels __snake_case : str = hidden_act __snake_case : Tuple = num_labels __snake_case : Any = scope __snake_case : Tuple = len(__snake_case ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Dict: """simple docstring""" __snake_case : Any = RegNetModel(config=__snake_case ) model.to(__snake_case ) model.eval() __snake_case : str = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : Dict = RegNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __snake_case : Union[str, Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : int = config_and_inputs __snake_case : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( A__ , A__ , unittest.TestCase ): lowercase__: str = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase__: str = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) lowercase__: Tuple = False lowercase__: Optional[Any] = False lowercase__: Any = False lowercase__: str = False def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = RegNetModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__snake_case ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(config=__snake_case ) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str ): __snake_case : Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) __snake_case : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : int = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Optional[Any] = layer_type __snake_case : Dict = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = RegNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _a ( ) -> Any: """simple docstring""" __snake_case : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) __snake_case : Tuple = self.default_image_processor __snake_case : Optional[Any] = prepare_img() __snake_case : Optional[Any] = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(**__snake_case ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) __snake_case : str = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __UpperCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class _A ( datasets.BuilderConfig ): lowercase__: int = 10000 lowercase__: Tuple = None lowercase__: int = None class _A ( datasets.ArrowBasedBuilder ): lowercase__: Dict = ParquetConfig def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case : List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : Optional[int] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __snake_case : str = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : Optional[int] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , """rb""" ) as f: __snake_case : Dict = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : Tuple , __magic_name__ : pa.Table ) -> Dict: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : Optional[Any] = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , """rb""" ) as f: __snake_case : List[str] = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Any = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( lowercase__ , unittest.TestCase ): lowercase__: int = DanceDiffusionPipeline lowercase__: Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__: Tuple = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } lowercase__: Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__: List[Any] = False lowercase__: Dict = False def lowercase__ ( self : int ) -> str: """simple docstring""" torch.manual_seed(0 ) __snake_case : Dict = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_a , use_timestep_embedding=_a , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) __snake_case : List[Any] = IPNDMScheduler() __snake_case : str = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=0 ) -> Optional[int]: """simple docstring""" if str(_a ).startswith("""mps""" ): __snake_case : List[Any] = torch.manual_seed(_a ) else: __snake_case : Any = torch.Generator(device=_a ).manual_seed(_a ) __snake_case : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Dict = self.get_dummy_components() __snake_case : Any = DanceDiffusionPipeline(**_a ) __snake_case : List[str] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __snake_case : Dict = self.get_dummy_inputs(_a ) __snake_case : List[Any] = pipe(**_a ) __snake_case : Tuple = output.audios __snake_case : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __snake_case : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return super().test_save_load_local() @skip_mps def lowercase__ ( self : List[str] ) -> int: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return super().test_attention_slicing_forward_pass() def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Tuple = torch_device __snake_case : str = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __snake_case : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __snake_case : int = torch.manual_seed(0 ) __snake_case : Union[str, Any] = pipe(generator=_a , num_inference_steps=1_00 , audio_length_in_s=4.096 ) __snake_case : Tuple = output.audios __snake_case : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : Any = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : List[str] = torch_device __snake_case : Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) __snake_case : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe(generator=_a , num_inference_steps=1_00 , audio_length_in_s=4.096 ) __snake_case : Tuple = output.audios __snake_case : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : Any = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' def _a ( _lowerCamelCase = 1000 ) -> int: """simple docstring""" __snake_case : Optional[Any] = 3 __snake_case : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' __UpperCamelCase = 8.31_44_62 # Unit - J mol-1 K-1 def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" if (ksize % 2) == 0: __snake_case : Tuple = ksize + 1 __snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center __snake_case : int = x - ksize // 2 __snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant __snake_case : List[str] = theta / 180 * np.pi __snake_case : List[Any] = np.cos(_theta ) __snake_case : Dict = np.sin(_theta ) # get kernel x __snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y __snake_case : str = -sin_theta * px + cos_theta * py # fill kernel __snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase = imread("../image_data/lena.jpg") # turn image in gray scale value __UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase = out / out.max() * 255 __UpperCamelCase = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=3 , __magic_name__ : str=64 , __magic_name__ : Optional[int]=None ) -> List[Any]: """simple docstring""" __snake_case : Tuple = np.random.default_rng(_a ) __snake_case : Union[str, Any] = length __snake_case : List[str] = rng.normal(size=(length,) ).astype(np.floataa ) __snake_case : List[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ) -> int: """simple docstring""" return self.length def __getitem__( self : List[str] , __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self : Optional[Any] , __magic_name__ : Optional[Any]=0 , __magic_name__ : Any=0 , __magic_name__ : Tuple=False ) -> Tuple: """simple docstring""" super().__init__() __snake_case : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case : Tuple = True def lowercase__ ( self : str , __magic_name__ : List[Any]=None ) -> Dict: """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case : Dict = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self : List[str] , __magic_name__ : List[str]=0 , __magic_name__ : Dict=0 , __magic_name__ : List[str]=False ) -> int: """simple docstring""" super().__init__() __snake_case : Tuple = torch.nn.Parameter(torch.tensor(_a ).float() ) __snake_case : Dict = torch.nn.Parameter(torch.tensor(_a ).float() ) __snake_case : str = True def lowercase__ ( self : List[Any] , __magic_name__ : str=None ) -> Optional[int]: """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case : Any = False return x * self.a + self.b def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> List[str]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : Dict = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __snake_case : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __snake_case : List[Any] = datasets["""train"""].unique("""label""" ) __snake_case : Any = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : List[str] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __snake_case : Union[str, Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case : int = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __snake_case : Tuple = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __snake_case : Dict = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCamelCase = "\\n\n" __UpperCamelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" __UpperCamelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] = 16 , __magic_name__ : Tuple = True , __magic_name__ : List[str]=None ) -> Optional[int]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __snake_case : str = """cuda""" else: __snake_case : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(lowercase_ ) __snake_case : List[str] = model.to(lowercase_ ) __snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __snake_case : Tuple = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __snake_case : Tuple = model.config.max_length - 1 else: __snake_case : Optional[Any] = model.config.max_length __snake_case : Tuple = tokenizer( lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors="""pt""" , return_attention_mask=lowercase_ , ).to(lowercase_ ) __snake_case : Optional[Any] = encodings["""input_ids"""] __snake_case : Dict = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __snake_case : List[str] = [] __snake_case : List[str] = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(lowercase_ ) , lowercase_ ) ): __snake_case : str = min(start_index + batch_size , len(lowercase_ ) ) __snake_case : Optional[Any] = encoded_texts[start_index:end_index] __snake_case : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: __snake_case : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase_ ) __snake_case : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __snake_case : Any = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase_ ), attn_mask] , dim=1 ) __snake_case : List[str] = encoded_batch with torch.no_grad(): __snake_case : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ ).logits __snake_case : List[Any] = out_logits[..., :-1, :].contiguous() __snake_case : List[Any] = labels[..., 1:].contiguous() __snake_case : Optional[Any] = attn_mask[..., 1:].contiguous() __snake_case : int = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase_ )}
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(__a , x % y ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(__a , __a ) def _a ( _lowerCamelCase = 20 ) -> int: """simple docstring""" __snake_case : str = 1 for i in range(1 , n + 1 ): __snake_case : Tuple = lcm(__a , __a ) return g if __name__ == "__main__": print(f"""{solution() = }""")
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCamelCase = random.Random() def _a ( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: __snake_case : Dict = global_rng __snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): def __init__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : List[str]=7 , __magic_name__ : List[str]=4_00 , __magic_name__ : List[Any]=20_00 , __magic_name__ : int=24 , __magic_name__ : List[str]=24 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : List[str]=1_60_00 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , ) -> int: """simple docstring""" __snake_case : List[str] = parent __snake_case : Dict = batch_size __snake_case : List[str] = min_seq_length __snake_case : str = max_seq_length __snake_case : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Optional[Any] = feature_size __snake_case : Tuple = num_mel_bins __snake_case : Union[str, Any] = padding_value __snake_case : str = sampling_rate __snake_case : Tuple = return_attention_mask __snake_case : List[Any] = do_normalize def lowercase__ ( self : List[str] ) -> int: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : int , __magic_name__ : str=False , __magic_name__ : Tuple=False ) -> int: """simple docstring""" def _flatten(__magic_name__ : List[Any] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: __snake_case : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case : str = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase__: Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self : Tuple , __magic_name__ : str ) -> str: """simple docstring""" self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : List[str] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __snake_case : Dict = feature_extractor(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __snake_case : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __snake_case : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched __snake_case : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features __snake_case : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __snake_case : Dict = np.asarray(__UpperCAmelCase ) __snake_case : Any = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features __snake_case : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Tuple = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : Tuple = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __snake_case : Optional[int] = feature_extractor( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) __snake_case : int = inputs.input_features __snake_case : int = inputs.attention_mask __snake_case : str = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : int = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : str = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __snake_case : List[str] = feature_extractor( __UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase ) __snake_case : Tuple = inputs.input_features __snake_case : str = inputs.attention_mask __snake_case : Any = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Any = feature_extractor( __UpperCAmelCase , padding="""max_length""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : List[Any] = inputs.input_features __snake_case : Any = inputs.attention_mask __snake_case : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Dict = feature_extractor( __UpperCAmelCase , padding="""longest""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : Dict = inputs.input_features __snake_case : List[str] = inputs.attention_mask __snake_case : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Any = feature_extractor( __UpperCAmelCase , padding="""longest""" , max_length=16 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : List[str] = inputs.input_features __snake_case : Tuple = inputs.attention_mask __snake_case : List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" import torch __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : List[str] = np.random.rand(1_00 , 32 ).astype(np.floataa ) __snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __snake_case : List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" from datasets import load_dataset __snake_case : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case : List[Any] = ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Any = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on __snake_case : Tuple = self._load_datasamples(1 ) __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __UpperCAmelCase , atol=1E-4 ) )
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" if isinstance(a_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(a_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(a_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _A ( __lowercase ): lowercase__: List[Any] = ['''pixel_values'''] def __init__( self : List[str] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : str , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase__ ) __snake_case : Dict = size if size is not None else {"shortest_edge": 2_24} __snake_case : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __snake_case : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __snake_case : List[str] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) __snake_case : List[str] = do_resize __snake_case : Optional[int] = size __snake_case : List[str] = do_center_crop __snake_case : str = crop_size __snake_case : Tuple = resample __snake_case : List[str] = do_rescale __snake_case : Dict = rescale_factor __snake_case : Tuple = do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray: """simple docstring""" __snake_case : List[str] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" in size: __snake_case : Optional[int] = get_resize_output_image_size(lowerCAmelCase__ , size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ ) elif "height" in size and "width" in size: __snake_case : Tuple = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" __snake_case : Optional[int] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> str: """simple docstring""" return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase__ ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __snake_case : int = to_numpy_array(lowerCAmelCase__ ) if do_resize: __snake_case : int = self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) if do_center_crop: __snake_case : Tuple = self.center_crop(lowerCAmelCase__ , size=lowerCAmelCase__ ) if do_rescale: __snake_case : int = self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) if do_normalize: __snake_case : str = self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) __snake_case : List[str] = to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) return image def lowercase__ ( self : Tuple , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Dict , ) -> PIL.Image.Image: """simple docstring""" __snake_case : List[str] = do_resize if do_resize is not None else self.do_resize __snake_case : Optional[int] = resample if resample is not None else self.resample __snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : str = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Any = do_normalize if do_normalize is not None else self.do_normalize __snake_case : str = image_mean if image_mean is not None else self.image_mean __snake_case : Tuple = image_std if image_std is not None else self.image_std __snake_case : List[Any] = size if size is not None else self.size __snake_case : str = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __snake_case : Tuple = crop_size if crop_size is not None else self.crop_size __snake_case : Optional[Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __snake_case : Any = make_batched(lowerCAmelCase__ ) __snake_case : List[Any] = [ [ self._preprocess_image( image=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , do_center_crop=lowerCAmelCase__ , crop_size=lowerCAmelCase__ , do_rescale=lowerCAmelCase__ , rescale_factor=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , ) for img in video ] for video in videos ] __snake_case : Dict = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import math def _a ( _lowerCamelCase ) -> list: """simple docstring""" __snake_case : str = [True] * n __snake_case : Any = False __snake_case : str = False __snake_case : Tuple = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __snake_case : Optional[int] = i * 2 while index < n: __snake_case : Optional[int] = False __snake_case : Optional[Any] = index + i __snake_case : Dict = [2] for i in range(3 , _UpperCamelCase , 2 ): if is_prime[i]: primes.append(_UpperCamelCase ) return primes def _a ( _lowerCamelCase = 9999_6666_3333 ) -> int: """simple docstring""" __snake_case : Union[str, Any] = math.floor(math.sqrt(_UpperCamelCase ) ) + 100 __snake_case : Union[str, Any] = prime_sieve(_UpperCamelCase ) __snake_case : List[str] = 0 __snake_case : str = 0 __snake_case : List[str] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : Union[str, Any] = primes[prime_index + 1] __snake_case : int = last_prime**2 __snake_case : Dict = next_prime**2 # Get numbers divisible by lps(current) __snake_case : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : Any = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : Any = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : int = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
import math def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(a__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __UpperCamelCase = '''Enter the base and the power separated by a comma: ''' __UpperCamelCase = map(int, input(prompt).split(",")) __UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. __UpperCamelCase = res(xa, ya) __UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import math def _a ( _lowerCamelCase = 100 ) -> Dict: """simple docstring""" __snake_case : Tuple = sum(i * i for i in range(1 , n + 1 ) ) __snake_case : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) if n == 0: return 0 __snake_case : Dict = float("""-inf""" ) for i in range(1 , n + 1 ): __snake_case : Optional[int] = max( UpperCAmelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCAmelCase__ ) ) return max_revue def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Any = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __snake_case : Any = float("""-inf""" ) for i in range(1 , n + 1 ): __snake_case : List[str] = max( UpperCAmelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCAmelCase__ , UpperCAmelCase__ ) , ) __snake_case : Optional[Any] = max_revenue return max_rev[n] def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __snake_case : int = [float("""-inf""" ) for _ in range(n + 1 )] __snake_case : Optional[Any] = 0 for i in range(1 , n + 1 ): __snake_case : Optional[int] = max_rev[i] for j in range(1 , i + 1 ): __snake_case : int = max(UpperCAmelCase__ , prices[j - 1] + max_rev[i - j] ) __snake_case : Union[str, Any] = max_revenue_i return max_rev[n] def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" if n < 0: __snake_case : str = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(UpperCAmelCase__ ) if n > len(UpperCAmelCase__ ): __snake_case : int = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(UpperCAmelCase__ )}''' ) raise ValueError(UpperCAmelCase__ ) def _a ( ) -> Dict: """simple docstring""" __snake_case : Tuple = [6, 10, 12, 15, 20, 23] __snake_case : Optional[Any] = len(UpperCAmelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __snake_case : Optional[Any] = 36 __snake_case : Dict = top_down_cut_rod(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : int = bottom_up_cut_rod(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : int = naive_cut_rod_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCamelCase = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: List[Any] = '''albert''' def __init__( self : Any , __magic_name__ : Dict=3_00_00 , __magic_name__ : int=1_28 , __magic_name__ : Tuple=40_96 , __magic_name__ : List[str]=12 , __magic_name__ : List[Any]=1 , __magic_name__ : List[Any]=64 , __magic_name__ : Union[str, Any]=1_63_84 , __magic_name__ : str=1 , __magic_name__ : Union[str, Any]="gelu_new" , __magic_name__ : List[str]=0 , __magic_name__ : str=0 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.02 , __magic_name__ : List[Any]=1E-12 , __magic_name__ : List[Any]=0.1 , __magic_name__ : int="absolute" , __magic_name__ : Optional[int]=0 , __magic_name__ : List[str]=2 , __magic_name__ : int=3 , **__magic_name__ : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __snake_case : List[Any] = vocab_size __snake_case : Tuple = embedding_size __snake_case : List[str] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Any = num_hidden_groups __snake_case : Optional[int] = num_attention_heads __snake_case : Tuple = inner_group_num __snake_case : Tuple = hidden_act __snake_case : int = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Dict = initializer_range __snake_case : Dict = layer_norm_eps __snake_case : int = classifier_dropout_prob __snake_case : Optional[Any] = position_embedding_type class _A ( __lowercase ): @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ) -> int: """simple docstring""" __snake_case : Any = tau * frequency / samplerate __snake_case : List[str] = sin(__lowerCamelCase ) __snake_case : Any = cos(__lowerCamelCase ) __snake_case : Dict = _sin / (2 * q_factor) __snake_case : List[str] = (1 - _cos) / 2 __snake_case : Optional[Any] = 1 - _cos __snake_case : Tuple = 1 + alpha __snake_case : List[str] = -2 * _cos __snake_case : Tuple = 1 - alpha __snake_case : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = tau * frequency / samplerate __snake_case : List[Any] = sin(__lowerCamelCase ) __snake_case : Tuple = cos(__lowerCamelCase ) __snake_case : Union[str, Any] = _sin / (2 * q_factor) __snake_case : Tuple = (1 + _cos) / 2 __snake_case : Optional[Any] = -1 - _cos __snake_case : Dict = 1 + alpha __snake_case : Tuple = -2 * _cos __snake_case : Union[str, Any] = 1 - alpha __snake_case : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = tau * frequency / samplerate __snake_case : List[str] = sin(__lowerCamelCase ) __snake_case : str = cos(__lowerCamelCase ) __snake_case : Dict = _sin / (2 * q_factor) __snake_case : str = _sin / 2 __snake_case : Any = 0 __snake_case : int = -ba __snake_case : int = 1 + alpha __snake_case : Tuple = -2 * _cos __snake_case : str = 1 - alpha __snake_case : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = tau * frequency / samplerate __snake_case : Any = sin(__lowerCamelCase ) __snake_case : int = cos(__lowerCamelCase ) __snake_case : Any = _sin / (2 * q_factor) __snake_case : Any = 1 - alpha __snake_case : Union[str, Any] = -2 * _cos __snake_case : Dict = 1 + alpha __snake_case : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ) -> List[Any]: """simple docstring""" __snake_case : Any = tau * frequency / samplerate __snake_case : Optional[Any] = sin(__lowerCamelCase ) __snake_case : Any = cos(__lowerCamelCase ) __snake_case : Optional[int] = _sin / (2 * q_factor) __snake_case : Optional[Any] = 10 ** (gain_db / 40) __snake_case : str = 1 + alpha * big_a __snake_case : Dict = -2 * _cos __snake_case : Optional[Any] = 1 - alpha * big_a __snake_case : List[str] = 1 + alpha / big_a __snake_case : List[Any] = -2 * _cos __snake_case : Optional[int] = 1 - alpha / big_a __snake_case : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = tau * frequency / samplerate __snake_case : Optional[int] = sin(__lowerCamelCase ) __snake_case : Any = cos(__lowerCamelCase ) __snake_case : List[Any] = _sin / (2 * q_factor) __snake_case : Optional[Any] = 10 ** (gain_db / 40) __snake_case : Optional[int] = (big_a + 1) - (big_a - 1) * _cos __snake_case : Tuple = (big_a + 1) + (big_a - 1) * _cos __snake_case : int = (big_a - 1) - (big_a + 1) * _cos __snake_case : str = (big_a - 1) + (big_a + 1) * _cos __snake_case : Dict = 2 * sqrt(__lowerCamelCase ) * alpha __snake_case : List[str] = big_a * (pmc + aaa) __snake_case : Any = 2 * big_a * mpc __snake_case : List[str] = big_a * (pmc - aaa) __snake_case : Dict = ppmc + aaa __snake_case : Optional[Any] = -2 * pmpc __snake_case : Union[str, Any] = ppmc - aaa __snake_case : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 / sqrt(2 ) , ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = tau * frequency / samplerate __snake_case : List[Any] = sin(__lowerCamelCase ) __snake_case : List[Any] = cos(__lowerCamelCase ) __snake_case : str = _sin / (2 * q_factor) __snake_case : Optional[Any] = 10 ** (gain_db / 40) __snake_case : Any = (big_a + 1) - (big_a - 1) * _cos __snake_case : Optional[int] = (big_a + 1) + (big_a - 1) * _cos __snake_case : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos __snake_case : Any = (big_a - 1) + (big_a + 1) * _cos __snake_case : int = 2 * sqrt(__lowerCamelCase ) * alpha __snake_case : Dict = big_a * (ppmc + aaa) __snake_case : Optional[int] = -2 * big_a * pmpc __snake_case : Union[str, Any] = big_a * (ppmc - aaa) __snake_case : Optional[Any] = pmc + aaa __snake_case : Any = 2 * mpc __snake_case : List[str] = pmc - aaa __snake_case : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __snake_case ): lowercase__: Union[str, Any] = ['''image_processor''', '''tokenizer'''] lowercase__: int = '''CLIPImageProcessor''' lowercase__: List[str] = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : List[str] , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , **__magic_name__ : List[str] ) -> int: """simple docstring""" __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) __snake_case : Union[str, Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_ , a_ ) def __call__( self : Tuple , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None , **__magic_name__ : int ) -> Any: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowercase__ ( self : str , *__magic_name__ : Tuple , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def lowercase__ ( self : Optional[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowercase__: int = LDMTextToImagePipeline lowercase__: Tuple = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } lowercase__: Any = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowercase__: Dict = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__: Optional[Any] = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __snake_case : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) __snake_case : Dict = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __snake_case : Dict = CLIPTextModel(snake_case__ ) __snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __snake_case : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowercase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=0 ) -> int: """simple docstring""" if str(snake_case__ ).startswith("""mps""" ): __snake_case : Optional[Any] = torch.manual_seed(snake_case__ ) else: __snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) __snake_case : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : Optional[Any] = LDMTextToImagePipeline(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __snake_case : Dict = self.get_dummy_inputs(snake_case__ ) __snake_case : int = pipe(**snake_case__ ).images __snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __snake_case : Any = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : str=torch.floataa , __magic_name__ : Any=0 ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.manual_seed(snake_case__ ) __snake_case : Dict = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) __snake_case : List[str] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) __snake_case : str = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __snake_case : str = self.get_inputs(snake_case__ ) __snake_case : str = pipe(**snake_case__ ).images __snake_case : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_56, 2_56, 3) __snake_case : List[str] = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __snake_case : int = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[str]=torch.floataa , __magic_name__ : Optional[Any]=0 ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = torch.manual_seed(snake_case__ ) __snake_case : Union[str, Any] = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) ) __snake_case : List[str] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) __snake_case : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case : Tuple = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __snake_case : Any = self.get_inputs(snake_case__ ) __snake_case : Union[str, Any] = pipe(**snake_case__ ).images[0] __snake_case : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __snake_case : Optional[int] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( __lowercase , unittest.TestCase ): lowercase__: Tuple = VideoToVideoSDPipeline lowercase__: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} lowercase__: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} lowercase__: Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} lowercase__: int = False # No `output_type`. lowercase__: Any = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __snake_case : List[Any] = CLIPTextModel(__UpperCAmelCase ) __snake_case : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[Any]=0 ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith("""mps""" ): __snake_case : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : int = self.get_dummy_components() __snake_case : List[Any] = VideoToVideoSDPipeline(**__UpperCAmelCase ) __snake_case : int = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __snake_case : str = self.get_dummy_inputs(__UpperCAmelCase ) __snake_case : Tuple = """np""" __snake_case : Any = sd_pipe(**__UpperCAmelCase ).frames __snake_case : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case : List[str] = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> str: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Tuple = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case : Tuple = torch.randn((1, 10, 3, 10_24, 5_76) , generator=__UpperCAmelCase ) __snake_case : Any = video.to("""cuda""" ) __snake_case : Optional[Any] = """Spiderman is surfing""" __snake_case : Optional[int] = pipe(__UpperCAmelCase , video=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=3 , output_type="""pt""" ).frames __snake_case : Any = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __UpperCamelCase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __UpperCamelCase = '''▁''' class _A ( _UpperCAmelCase ): lowercase__: int = VOCAB_FILES_NAMES lowercase__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , __magic_name__ : int , __magic_name__ : Tuple=True , __magic_name__ : Any=True , __magic_name__ : Dict=False , __magic_name__ : int="[CLS]" , __magic_name__ : str="[SEP]" , __magic_name__ : Any="<unk>" , __magic_name__ : List[Any]="[SEP]" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : List[str]="[CLS]" , __magic_name__ : int="[MASK]" , __magic_name__ : int = None , **__magic_name__ : Tuple , ) -> str: """simple docstring""" __snake_case : Any = ( AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ , normalized=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token ) __snake_case : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case : str = do_lower_case __snake_case : Any = remove_space __snake_case : str = keep_accents __snake_case : Union[str, Any] = vocab_file __snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return len(self.sp_model ) def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" __snake_case : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" if self.remove_space: __snake_case : Tuple = """ """.join(inputs.strip().split() ) else: __snake_case : List[str] = inputs __snake_case : List[Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __snake_case : List[Any] = unicodedata.normalize("""NFKD""" , SCREAMING_SNAKE_CASE_ ) __snake_case : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE_ )] ) if self.do_lower_case: __snake_case : Any = outputs.lower() return outputs def lowercase__ ( self : Tuple , __magic_name__ : Any ) -> str: """simple docstring""" __snake_case : List[Any] = self.preprocess_text(SCREAMING_SNAKE_CASE_ ) __snake_case : Tuple = self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) __snake_case : str = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __snake_case : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __snake_case : List[Any] = cur_pieces[1:] else: __snake_case : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE_ ) else: new_pieces.append(SCREAMING_SNAKE_CASE_ ) return new_pieces def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> int: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : List[Any] , __magic_name__ : Dict ) -> Any: """simple docstring""" __snake_case : Any = [] __snake_case : Optional[int] = """""" __snake_case : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case : Dict = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __snake_case : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def lowercase__ ( self : Any , __magic_name__ : str , __magic_name__ : Union[str, Any] = None ) -> int: """simple docstring""" __snake_case : List[Any] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : List[str] = None , __magic_name__ : Dict = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : int = None ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = None ) -> Union[str, Any]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : str = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: __snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' import qiskit def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = qiskit.Aer.get_backend("""aer_simulator""" ) __snake_case : Dict = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __snake_case : List[str] = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": __UpperCamelCase = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" __snake_case : int = jnp.ones((batch_size, length) ) / length return scores def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : List[Any] = None __snake_case : Tuple = 20 __snake_case : int = self._get_uniform_logits(batch_size=2 , length=__lowerCAmelCase ) # tweak scores to not be uniform anymore __snake_case : str = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __snake_case : str = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __snake_case : List[str] = jax.nn.softmax(__lowerCAmelCase , axis=-1 ) __snake_case : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : List[str] = FlaxTemperatureLogitsWarper(temperature=1.3 ) __snake_case : Dict = jax.nn.softmax(temp_dist_warper_sharper(__lowerCAmelCase , scores.copy() , cur_len=__lowerCAmelCase ) , axis=-1 ) __snake_case : str = jax.nn.softmax(temp_dist_warper_smoother(__lowerCAmelCase , scores.copy() , cur_len=__lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = None __snake_case : Any = 10 __snake_case : Optional[int] = 2 # create ramp distribution __snake_case : str = np.broadcast_to(np.arange(__lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() __snake_case : int = ramp_logits[1:, : vocab_size // 2] + vocab_size __snake_case : Optional[int] = FlaxTopKLogitsWarper(3 ) __snake_case : Any = top_k_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __snake_case : Optional[int] = 5 __snake_case : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __snake_case : Tuple = np.broadcast_to(np.arange(__lowerCAmelCase )[None, :] , (batch_size, length) ).copy() __snake_case : List[Any] = top_k_warp_safety_check(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Union[str, Any] = None __snake_case : Optional[int] = 10 __snake_case : List[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __snake_case : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __snake_case : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) __snake_case : Any = np.exp(top_p_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __snake_case : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits __snake_case : List[Any] = np.broadcast_to(np.arange(__lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __snake_case : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __snake_case : Tuple = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __snake_case : Any = top_p_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = 20 __snake_case : Any = 4 __snake_case : Optional[Any] = 0 __snake_case : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowerCAmelCase ) # check that min length is applied at length 5 __snake_case : Optional[int] = ids_tensor((batch_size, 20) , vocab_size=20 ) __snake_case : Optional[int] = 5 __snake_case : Any = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : str = min_dist_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __snake_case : Union[str, Any] = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : Any = 15 __snake_case : Dict = min_dist_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertFalse(jnp.isinf(__lowerCAmelCase ).any() ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = 20 __snake_case : Optional[int] = 4 __snake_case : Optional[int] = 0 __snake_case : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score __snake_case : Any = ids_tensor((batch_size, 1) , vocab_size=20 ) __snake_case : List[str] = 1 __snake_case : int = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : List[Any] = logits_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __snake_case : int = 3 __snake_case : int = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : str = logits_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertFalse(jnp.isinf(__lowerCAmelCase ).any() ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : List[str] = 20 __snake_case : Optional[Any] = 4 __snake_case : Union[str, Any] = 0 __snake_case : List[str] = 5 __snake_case : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached __snake_case : Union[str, Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) __snake_case : Union[str, Any] = 4 __snake_case : int = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : int = logits_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __snake_case : Tuple = 3 __snake_case : int = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : Tuple = logits_processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) self.assertFalse(jnp.isinf(__lowerCAmelCase ).any() ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : str = 4 __snake_case : List[Any] = 10 __snake_case : List[Any] = 15 __snake_case : List[Any] = 2 __snake_case : List[Any] = 1 __snake_case : List[Any] = 15 # dummy input_ids and scores __snake_case : Optional[int] = ids_tensor((batch_size, sequence_length) , __lowerCAmelCase ) __snake_case : Tuple = input_ids.copy() __snake_case : Optional[int] = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : int = scores.copy() # instantiate all dist processors __snake_case : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : Any = FlaxTopKLogitsWarper(3 ) __snake_case : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowerCAmelCase ) __snake_case : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowerCAmelCase ) __snake_case : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __snake_case : int = 10 # no processor list __snake_case : List[Any] = temp_dist_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Dict = top_k_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : List[Any] = top_p_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : List[Any] = min_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Any = bos_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Dict = eos_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) # with processor list __snake_case : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : Union[str, Any] = processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Tuple = 4 __snake_case : Optional[int] = 10 __snake_case : Optional[int] = 15 __snake_case : str = 2 __snake_case : List[Any] = 1 __snake_case : Tuple = 15 # dummy input_ids and scores __snake_case : int = ids_tensor((batch_size, sequence_length) , __lowerCAmelCase ) __snake_case : Any = input_ids.copy() __snake_case : Union[str, Any] = self._get_uniform_logits(__lowerCAmelCase , __lowerCAmelCase ) __snake_case : Optional[Any] = scores.copy() # instantiate all dist processors __snake_case : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : List[str] = FlaxTopKLogitsWarper(3 ) __snake_case : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowerCAmelCase ) __snake_case : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowerCAmelCase ) __snake_case : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __snake_case : int = 10 # no processor list def run_no_processor_list(__magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : List[str] ): __snake_case : Dict = temp_dist_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Tuple = top_k_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : List[str] = top_p_warp(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Any = min_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Any = bos_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) __snake_case : Tuple = eos_dist_proc(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) return scores # with processor list def run_processor_list(__magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ): __snake_case : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : List[Any] = processor(__lowerCAmelCase , __lowerCAmelCase , cur_len=__lowerCAmelCase ) return scores __snake_case : List[Any] = jax.jit(__lowerCAmelCase ) __snake_case : int = jax.jit(__lowerCAmelCase ) __snake_case : Tuple = jitted_run_no_processor_list(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case : int = jitted_run_processor_list(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "spm_char.model"} __UpperCamelCase = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __UpperCamelCase = { "microsoft/speecht5_asr": 1024, "microsoft/speecht5_tts": 1024, "microsoft/speecht5_vc": 1024, } class _A ( SCREAMING_SNAKE_CASE__ ): lowercase__: Dict = VOCAB_FILES_NAMES lowercase__: str = PRETRAINED_VOCAB_FILES_MAP lowercase__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Tuple = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str="<s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : int="<unk>" , __magic_name__ : Union[str, Any]="<pad>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> int: """simple docstring""" __snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case : List[str] = vocab_file __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" return self.sp_model.get_piece_size() def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Union[str, Any] , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" __snake_case : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : int = {} __snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" return self.sp_model.encode(a_ , out_type=a_ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" return self.sp_model.piece_to_id(a_ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Dict = self.sp_model.IdToPiece(a_ ) return token def lowercase__ ( self : int , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple=None ) -> Dict: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> Any: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) __snake_case : Any = [1] if token_ids_a is None: return ([0] * len(a_ )) + suffix_ones return ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> List[str]: """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : Dict = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , """wb""" ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' import json import sys def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.load(lowerCAmelCase__ ) __snake_case : Optional[Any] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCAmelCase__ ): __snake_case : Any = results[benchmark_name] __snake_case : Optional[Any] = benchmark_name.split("""/""" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) __snake_case : List[str] = """| metric |""" __snake_case : Any = """|--------|""" __snake_case : Dict = """| new / old (diff) |""" for metric_name in sorted(lowerCAmelCase__ ): __snake_case : Optional[Any] = benchmark_res[metric_name] __snake_case : Optional[int] = metric_vals["""new"""] __snake_case : str = metric_vals.get("""old""" , lowerCAmelCase__ ) __snake_case : List[Any] = metric_vals.get("""diff""" , lowerCAmelCase__ ) __snake_case : List[str] = F''' {new_val:f}''' if isinstance(lowerCAmelCase__ , (int, float) ) else """None""" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCAmelCase__ ) ) if __name__ == "__main__": __UpperCamelCase = sys.argv[1] __UpperCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __UpperCamelCase = logging.get_logger(__name__) @dataclass class _A ( __lowercase ): lowercase__: Optional[Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Union[str, Any] , **__magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __snake_case : Optional[Any] = deprecated_arg[3:] setattr(self , _snake_case , not kwargs.pop(_snake_case ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __snake_case : str = kwargs.pop("""torchscript""" , self.torchscript ) __snake_case : Optional[int] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) __snake_case : List[str] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**_snake_case ) lowercase__: Union[str, Any] = field(default=__lowercase , metadata={'''help''': '''Trace the models using torchscript'''} ) lowercase__: Union[str, Any] = field(default=__lowercase , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) lowercase__: Dict = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def lowercase__ ( self : Optional[int] ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: __snake_case : Optional[Any] = torch.device("""cpu""" ) __snake_case : Any = 0 elif is_torch_tpu_available(): __snake_case : Any = xm.xla_device() __snake_case : Tuple = 0 else: __snake_case : Optional[int] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __snake_case : Tuple = torch.cuda.device_count() return device, n_gpu @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def lowercase__ ( self : str ) -> int: """simple docstring""" requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowercase__ ( self : Optional[int] ) -> "torch.device": """simple docstring""" requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" return self.n_gpu > 0
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _A ( __snake_case ): lowercase__: torch.FloatTensor class _A ( nn.Module ): def __init__( self : Optional[Any] , __magic_name__ : List[str]=3 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[Any]=("DownEncoderBlock2D",) , __magic_name__ : Tuple=(64,) , __magic_name__ : List[str]=2 , __magic_name__ : Any=32 , __magic_name__ : Optional[int]="silu" , __magic_name__ : str=True , ) -> int: """simple docstring""" super().__init__() __snake_case : Optional[int] = layers_per_block __snake_case : Any = torch.nn.Convad( __magic_name__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __snake_case : Tuple = None __snake_case : int = nn.ModuleList([] ) # down __snake_case : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(__magic_name__ ): __snake_case : Tuple = output_channel __snake_case : Any = block_out_channels[i] __snake_case : List[Any] = i == len(__magic_name__ ) - 1 __snake_case : Optional[int] = get_down_block( __magic_name__ , num_layers=self.layers_per_block , in_channels=__magic_name__ , out_channels=__magic_name__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__magic_name__ , resnet_groups=__magic_name__ , attention_head_dim=__magic_name__ , temb_channels=__magic_name__ , ) self.down_blocks.append(__magic_name__ ) # mid __snake_case : List[str] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__magic_name__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__magic_name__ , temb_channels=__magic_name__ , ) # out __snake_case : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__magic_name__ , eps=1E-6 ) __snake_case : List[str] = nn.SiLU() __snake_case : Optional[int] = 2 * out_channels if double_z else out_channels __snake_case : List[Any] = nn.Convad(block_out_channels[-1] , __magic_name__ , 3 , padding=1 ) __snake_case : Union[str, Any] = False def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Dict: """simple docstring""" __snake_case : Dict = x __snake_case : List[str] = self.conv_in(__magic_name__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ : str ): def custom_forward(*__magic_name__ : Optional[Any] ): return module(*__magic_name__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: __snake_case : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(__magic_name__ ) , __magic_name__ , use_reentrant=__magic_name__ ) # middle __snake_case : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , use_reentrant=__magic_name__ ) else: for down_block in self.down_blocks: __snake_case : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__magic_name__ ) , __magic_name__ ) # middle __snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __magic_name__ ) else: # down for down_block in self.down_blocks: __snake_case : Optional[Any] = down_block(__magic_name__ ) # middle __snake_case : Dict = self.mid_block(__magic_name__ ) # post-process __snake_case : Optional[Any] = self.conv_norm_out(__magic_name__ ) __snake_case : Tuple = self.conv_act(__magic_name__ ) __snake_case : int = self.conv_out(__magic_name__ ) return sample class _A ( nn.Module ): def __init__( self : List[Any] , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=3 , __magic_name__ : Tuple=("UpDecoderBlock2D",) , __magic_name__ : Optional[int]=(64,) , __magic_name__ : int=2 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]="silu" , __magic_name__ : List[Any]="group" , ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : str = layers_per_block __snake_case : List[str] = nn.Convad( __magic_name__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __snake_case : Dict = None __snake_case : int = nn.ModuleList([] ) __snake_case : Any = in_channels if norm_type == """spatial""" else None # mid __snake_case : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__magic_name__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__magic_name__ , temb_channels=__magic_name__ , ) # up __snake_case : Optional[Any] = list(reversed(__magic_name__ ) ) __snake_case : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__magic_name__ ): __snake_case : Any = output_channel __snake_case : List[str] = reversed_block_out_channels[i] __snake_case : Optional[int] = i == len(__magic_name__ ) - 1 __snake_case : int = get_up_block( __magic_name__ , num_layers=self.layers_per_block + 1 , in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__magic_name__ , resnet_groups=__magic_name__ , attention_head_dim=__magic_name__ , temb_channels=__magic_name__ , resnet_time_scale_shift=__magic_name__ , ) self.up_blocks.append(__magic_name__ ) __snake_case : Optional[int] = output_channel # out if norm_type == "spatial": __snake_case : str = SpatialNorm(block_out_channels[0] , __magic_name__ ) else: __snake_case : Dict = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__magic_name__ , eps=1E-6 ) __snake_case : str = nn.SiLU() __snake_case : Dict = nn.Convad(block_out_channels[0] , __magic_name__ , 3 , padding=1 ) __snake_case : str = False def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = z __snake_case : Union[str, Any] = self.conv_in(__magic_name__ ) __snake_case : str = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ : Dict ): def custom_forward(*__magic_name__ : List[Any] ): return module(*__magic_name__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle __snake_case : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , __magic_name__ , use_reentrant=__magic_name__ ) __snake_case : Union[str, Any] = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: __snake_case : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__magic_name__ ) , __magic_name__ , __magic_name__ , use_reentrant=__magic_name__ ) else: # middle __snake_case : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: __snake_case : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__magic_name__ ) , __magic_name__ , __magic_name__ ) else: # middle __snake_case : Dict = self.mid_block(__magic_name__ , __magic_name__ ) __snake_case : List[str] = sample.to(__magic_name__ ) # up for up_block in self.up_blocks: __snake_case : Union[str, Any] = up_block(__magic_name__ , __magic_name__ ) # post-process if latent_embeds is None: __snake_case : Any = self.conv_norm_out(__magic_name__ ) else: __snake_case : int = self.conv_norm_out(__magic_name__ , __magic_name__ ) __snake_case : Tuple = self.conv_act(__magic_name__ ) __snake_case : Dict = self.conv_out(__magic_name__ ) return sample class _A ( nn.Module ): def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Dict=None , __magic_name__ : str="random" , __magic_name__ : Optional[int]=False , __magic_name__ : int=True ) -> Any: """simple docstring""" super().__init__() __snake_case : List[Any] = n_e __snake_case : int = vq_embed_dim __snake_case : Optional[Any] = beta __snake_case : Optional[int] = legacy __snake_case : Tuple = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __snake_case : Any = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) __snake_case : List[str] = self.used.shape[0] __snake_case : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __snake_case : Tuple = self.re_embed __snake_case : Dict = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: __snake_case : Tuple = n_e __snake_case : int = sane_index_shape def lowercase__ ( self : Optional[Any] , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = inds.shape assert len(__magic_name__ ) > 1 __snake_case : Any = inds.reshape(ishape[0] , -1 ) __snake_case : str = self.used.to(__magic_name__ ) __snake_case : Any = (inds[:, :, None] == used[None, None, ...]).long() __snake_case : Optional[int] = match.argmax(-1 ) __snake_case : int = match.sum(2 ) < 1 if self.unknown_index == "random": __snake_case : List[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __snake_case : str = self.unknown_index return new.reshape(__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : List[str] ) -> Any: """simple docstring""" __snake_case : Dict = inds.shape assert len(__magic_name__ ) > 1 __snake_case : str = inds.reshape(ishape[0] , -1 ) __snake_case : str = self.used.to(__magic_name__ ) if self.re_embed > self.used.shape[0]: # extra token __snake_case : List[str] = 0 # simply set to zero __snake_case : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __magic_name__ ) return back.reshape(__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" __snake_case : int = z.permute(0 , 2 , 3 , 1 ).contiguous() __snake_case : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __snake_case : Tuple = torch.argmin(torch.cdist(__magic_name__ , self.embedding.weight ) , dim=1 ) __snake_case : Any = self.embedding(__magic_name__ ).view(z.shape ) __snake_case : Union[str, Any] = None __snake_case : Tuple = None # compute loss for embedding if not self.legacy: __snake_case : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __snake_case : Dict = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __snake_case : Optional[Any] = z + (z_q - z).detach() # reshape back to match original input shape __snake_case : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __snake_case : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __snake_case : List[str] = self.remap_to_used(__magic_name__ ) __snake_case : List[Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __snake_case : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if self.remap is not None: __snake_case : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis __snake_case : List[Any] = self.unmap_to_all(__magic_name__ ) __snake_case : str = indices.reshape(-1 ) # flatten again # get quantized latent vectors __snake_case : Any = self.embedding(__magic_name__ ) if shape is not None: __snake_case : Tuple = z_q.view(__magic_name__ ) # reshape back to match original input shape __snake_case : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _A ( __snake_case ): def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = parameters __snake_case , __snake_case : Optional[int] = torch.chunk(__magic_name__ , 2 , dim=1 ) __snake_case : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) __snake_case : Tuple = deterministic __snake_case : Any = torch.exp(0.5 * self.logvar ) __snake_case : str = torch.exp(self.logvar ) if self.deterministic: __snake_case : Tuple = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] = None ) -> torch.FloatTensor: """simple docstring""" __snake_case : Tuple = randn_tensor( self.mean.shape , generator=__magic_name__ , device=self.parameters.device , dtype=self.parameters.dtype ) __snake_case : List[str] = self.mean + self.std * sample return x def lowercase__ ( self : int , __magic_name__ : List[Any]=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : List[Any]=[1, 2, 3] ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) __snake_case : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" return self.mean
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Any = FunnelConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case : int = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _A ( SCREAMING_SNAKE_CASE__ ): def lowercase__ ( self : Dict , __magic_name__ : Optional[int] ) -> float: """simple docstring""" return 0.0 def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __snake_case : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = 512 __snake_case : List[str] = [1] + [0] * (size - 1) __snake_case : Tuple = [filter_type.process(_a ) for item in inputs] __snake_case : Any = [0] * (samplerate - size) # zero-padding outputs += filler __snake_case : int = np.abs(np.fft.fft(_a ) ) __snake_case : Optional[Any] = 20 * np.logaa(_a ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds __snake_case : Optional[Any] = get_bounds(_a , _a ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(_a ) plt.show() def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = 512 __snake_case : str = [1] + [0] * (size - 1) __snake_case : Tuple = [filter_type.process(_a ) for item in inputs] __snake_case : int = [0] * (samplerate - size) # zero-padding outputs += filler __snake_case : int = np.angle(np.fft.fft(_a ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(_a , -2 * pi ) ) plt.show()
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' __UpperCamelCase = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import math __UpperCamelCase = 10 __UpperCamelCase = 7 __UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def _a ( _lowerCamelCase = 20 ) -> str: """simple docstring""" __snake_case : str = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ ) __snake_case : int = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _A ( UpperCamelCase__ ): lowercase__: List[Any] = DistilBertTokenizer lowercase__: Any = DistilBertTokenizerFast lowercase__: Any = True @slow def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : str = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __snake_case : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowerCamelCase ) __snake_case : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowerCamelCase ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = [False] * len(__lowerCamelCase ) __snake_case : Optional[int] = [] queue.append(__lowerCamelCase ) __snake_case : List[Any] = True while queue: __snake_case : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) __snake_case : Any = True __snake_case : Union[str, Any] = u return visited[t] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : int = [-1] * (len(__lowerCamelCase )) __snake_case : Tuple = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = float("""Inf""" ) __snake_case : Tuple = sink while s != source: # Find the minimum value in select path __snake_case : int = min(__lowerCamelCase , graph[parent[s]][s] ) __snake_case : Tuple = parent[s] max_flow += path_flow __snake_case : List[Any] = sink while v != source: __snake_case : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __snake_case : Any = parent[v] return max_flow __UpperCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCamelCase , __UpperCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> set[str]: """simple docstring""" __snake_case : str = set(_snake_case ), [start] while stack: __snake_case : Any = stack.pop() explored.add(_snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_snake_case ) return explored __UpperCamelCase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __UpperCamelCase = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" __UpperCamelCase = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" __UpperCamelCase = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : int ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Optional[int]=None , __magic_name__ : int=True , __magic_name__ : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" if rouge_types is None: __snake_case : Optional[int] = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __snake_case : List[Any] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: __snake_case : Optional[int] = scoring.BootstrapAggregator() else: __snake_case : Optional[Any] = [] for ref, pred in zip(_a , _a ): __snake_case : Dict = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: __snake_case : str = aggregator.aggregate() else: __snake_case : Dict = {} for key in scores[0]: __snake_case : List[str] = [score[key] for score in scores] return result
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
import re from filelock import FileLock try: import nltk __UpperCamelCase = True except (ImportError, ModuleNotFoundError): __UpperCamelCase = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _a ( _lowerCamelCase ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _A ( __lowerCamelCase ): lowercase__: Any = """bert""" def __init__( self : str , __magic_name__ : Optional[Any]=3_05_22 , __magic_name__ : int=7_68 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[int]=12 , __magic_name__ : int=30_72 , __magic_name__ : Any="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : List[str]=2 , __magic_name__ : Dict=0.02 , __magic_name__ : str=1E-12 , __magic_name__ : List[str]=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : str=True , __magic_name__ : Optional[int]=None , **__magic_name__ : List[Any] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__lowercase , **__lowercase ) __snake_case : Union[str, Any] = vocab_size __snake_case : Any = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = intermediate_size __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : List[Any] = layer_norm_eps __snake_case : List[str] = position_embedding_type __snake_case : Tuple = use_cache __snake_case : Optional[int] = classifier_dropout class _A ( __lowerCamelCase ): @property def lowercase__ ( self : int ) -> Any: """simple docstring""" if self.task == "multiple-choice": __snake_case : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import math import unittest def _a ( _lowerCamelCase ) -> bool: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _A ( unittest.TestCase ): def lowercase__ ( self : Any ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" with self.assertRaises(__magic_name__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn\'t have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) __snake_case : Optional[int] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class _A ( lowerCAmelCase_ ): lowercase__: Dict = """sigmoid""" lowercase__: Optional[int] = """softmax""" lowercase__: List[str] = """none""" @add_end_docstrings( lowerCAmelCase_ , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. ''' , ) class _A ( lowerCAmelCase_ ): lowercase__: Optional[Any] = False lowercase__: Optional[int] = ClassificationFunction.NONE def __init__( self : List[Any] , **__magic_name__ : List[Any] ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase__ ( self : List[str] , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[str]=None , __magic_name__ : Dict="" , **__magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : List[str] = tokenizer_kwargs __snake_case : Optional[int] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __snake_case : Union[str, Any] = self.model.config.return_all_scores if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or top_k is None: __snake_case : Optional[Any] = top_k __snake_case : List[Any] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __SCREAMING_SNAKE_CASE , ) if return_all_scores: __snake_case : List[str] = None else: __snake_case : Optional[int] = 1 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __snake_case : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , *__magic_name__ : List[str] , **__magic_name__ : Any ) -> Dict: """simple docstring""" __snake_case : Any = super().__call__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __snake_case : Optional[Any] = """top_k""" not in kwargs if isinstance(args[0] , __SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase__ ( self : Any , __magic_name__ : List[Any] , **__magic_name__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = self.framework if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.tokenizer(**__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , __SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Tuple , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" return self.model(**__SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any]=None , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=True ) -> int: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __snake_case : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __snake_case : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __snake_case : Any = self.model.config.function_to_apply else: __snake_case : List[str] = ClassificationFunction.NONE __snake_case : Optional[int] = model_outputs["""logits"""][0] __snake_case : Tuple = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __snake_case : List[str] = sigmoid(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: __snake_case : List[str] = softmax(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: __snake_case : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __snake_case : Optional[int] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda __magic_name__ : x["score"] , reverse=__SCREAMING_SNAKE_CASE ) if top_k is not None: __snake_case : Union[str, Any] = dict_scores[:top_k] return dict_scores
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = "▁" __UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __UpperCamelCase = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off __UpperCamelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class _A ( snake_case_ ): lowercase__: List[Any] = VOCAB_FILES_NAMES lowercase__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Any = PRETRAINED_VOCAB_FILES_MAP lowercase__: List[str] = ['''input_ids''', '''attention_mask'''] lowercase__: Optional[Any] = [] lowercase__: int = [] def __init__( self : str , __magic_name__ : str , __magic_name__ : Tuple=None , __magic_name__ : List[Any]=None , __magic_name__ : str="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : Tuple="<s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : Any="<mask>" , __magic_name__ : Any = None , **__magic_name__ : int , ) -> None: """simple docstring""" __snake_case : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs __snake_case : List[Any] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) __snake_case : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __snake_case : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case : Optional[Any] = 1 __snake_case : Dict = len(self.sp_model ) __snake_case : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } __snake_case : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __snake_case : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __snake_case : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __snake_case : str = src_lang if src_lang is not None else """en_XX""" __snake_case : Optional[int] = self.lang_code_to_id[self._src_lang] __snake_case : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self : List[str] , __magic_name__ : List[str] ) -> None: """simple docstring""" __snake_case : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = self.__dict__.copy() __snake_case : List[Any] = None return state def __setstate__( self : Dict , __magic_name__ : str ) -> None: """simple docstring""" __snake_case : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : int = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Tuple , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : str = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : Tuple , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[str] , __magic_name__ : Dict ) -> Any: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : List[str] = """""" __snake_case : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token __snake_case : Dict = True __snake_case : Tuple = [] else: current_sub_tokens.append(__magic_name__ ) __snake_case : Optional[int] = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def lowercase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : Any = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: __snake_case : str = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] = None , __magic_name__ : Union[str, Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) __snake_case : List[str] = [1] * len(self.prefix_tokens ) __snake_case : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __snake_case : Union[str, Any] = src_lang __snake_case : Dict = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) __snake_case : Any = self.convert_tokens_to_ids(__magic_name__ ) __snake_case : List[str] = tgt_lang_id return inputs def lowercase__ ( self : str , __magic_name__ : Any , __magic_name__ : Tuple = "en_XX" , __magic_name__ : Optional[Any] = None , __magic_name__ : Union[str, Any] = "ro_RO" , **__magic_name__ : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = src_lang __snake_case : Any = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple ) -> None: """simple docstring""" __snake_case : int = self.lang_code_to_id[src_lang] __snake_case : int = [self.cur_lang_code_id] __snake_case : Any = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> None: """simple docstring""" __snake_case : Dict = self.lang_code_to_id[tgt_lang] __snake_case : Dict = [self.cur_lang_code_id] __snake_case : str = [self.eos_token_id]
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): lowercase__: Dict = '''sequence-classification''' def __init__( self : Tuple , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if type(_lowerCAmelCase ) == dict: __snake_case : List[Any] = Namespace(**_lowerCAmelCase ) __snake_case : List[str] = glue_output_modes[hparams.task] __snake_case : List[str] = glue_tasks_num_labels[hparams.task] super().__init__(_lowerCAmelCase , _lowerCAmelCase , self.mode ) def lowercase__ ( self : int , **__magic_name__ : Optional[Any] ) -> int: """simple docstring""" return self.model(**_lowerCAmelCase ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : str ) -> List[str]: """simple docstring""" __snake_case : str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __snake_case : Union[str, Any] = self(**_lowerCAmelCase ) __snake_case : str = outputs[0] __snake_case : Union[str, Any] = self.trainer.lr_schedulers[0]["""scheduler"""] __snake_case : str = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.hparams __snake_case : Union[str, Any] = processors[args.task]() __snake_case : Tuple = processor.get_labels() for mode in ["train", "dev"]: __snake_case : Dict = self._feature_file(_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , _lowerCAmelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case : Tuple = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) __snake_case : List[str] = convert_examples_to_features( _lowerCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , _lowerCAmelCase ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> int: """simple docstring""" __snake_case : Optional[int] = """dev""" if mode == """test""" else mode __snake_case : str = self._feature_file(_lowerCAmelCase ) logger.info("""Loading features from cached file %s""" , _lowerCAmelCase ) __snake_case : Optional[Any] = torch.load(_lowerCAmelCase ) __snake_case : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case : Tuple = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" __snake_case : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __snake_case : List[str] = self(**_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = outputs[:2] __snake_case : List[Any] = logits.detach().cpu().numpy() __snake_case : Optional[int] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> int: """simple docstring""" __snake_case : str = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() __snake_case : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case : Any = np.argmax(_lowerCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case : int = np.squeeze(_lowerCAmelCase ) __snake_case : int = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case : str = [[] for _ in range(out_label_ids.shape[0] )] __snake_case : Any = [[] for _ in range(out_label_ids.shape[0] )] __snake_case : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , _lowerCAmelCase , _lowerCAmelCase )} __snake_case : Union[str, Any] = dict(results.items() ) __snake_case : Optional[int] = results return ret, preds_list, out_label_list def lowercase__ ( self : int , __magic_name__ : list ) -> Dict: """simple docstring""" __snake_case , __snake_case , __snake_case : str = self._eval_end(_lowerCAmelCase ) __snake_case : Optional[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowercase__ ( self : Dict , __magic_name__ : List[str] ) -> Any: """simple docstring""" __snake_case , __snake_case , __snake_case : List[str] = self._eval_end(_lowerCAmelCase ) __snake_case : Tuple = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowercase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" BaseTransformer.add_model_specific_args(_lowerCAmelCase , _lowerCAmelCase ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=_lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=_lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def _a ( ) -> Dict: """simple docstring""" __snake_case : Optional[int] = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase , os.getcwd() ) __snake_case : Union[str, Any] = GLUETransformer.add_model_specific_args(_lowerCAmelCase , os.getcwd() ) __snake_case : str = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case : List[Any] = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case : Optional[Any] = GLUETransformer(_lowerCAmelCase ) __snake_case : Optional[Any] = generic_train(_lowerCAmelCase , _lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_lowerCAmelCase ) ) __snake_case : Optional[int] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCAmelCase ) if __name__ == "__main__": main()
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _A ( lowerCAmelCase__ , unittest.TestCase ): lowercase__: Optional[int] = XLMProphetNetTokenizer lowercase__: str = False lowercase__: List[Any] = True def lowercase__ ( self : List[str] ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[str] = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = """[PAD]""" __snake_case : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 10_12 ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : Optional[Any] = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __snake_case : Any = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __snake_case : Any = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def lowercase__ ( self : Any ) -> str: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" __snake_case : Any = """Hello World!""" __snake_case : Any = [3_53_89, 66_72, 49, 2] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = {"""input_ids""": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _A ( __lowerCAmelCase ): lowercase__: Union[str, Any] = "deformable_detr" lowercase__: int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=3 , __magic_name__ : Tuple=3_00 , __magic_name__ : List[Any]=10_24 , __magic_name__ : List[Any]=6 , __magic_name__ : Dict=10_24 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=6 , __magic_name__ : Any=10_24 , __magic_name__ : Optional[Any]=8 , __magic_name__ : int=0.0 , __magic_name__ : Dict=True , __magic_name__ : Dict="relu" , __magic_name__ : int=2_56 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : List[Any]=1.0 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[Any]=False , __magic_name__ : Tuple="sine" , __magic_name__ : Dict="resnet50" , __magic_name__ : Any=True , __magic_name__ : Dict=False , __magic_name__ : str=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=4 , __magic_name__ : List[str]=False , __magic_name__ : Any=3_00 , __magic_name__ : str=False , __magic_name__ : Dict=1 , __magic_name__ : Optional[int]=5 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=1 , __magic_name__ : List[str]=5 , __magic_name__ : Dict=2 , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=0.25 , __magic_name__ : int=False , **__magic_name__ : Any , ) -> List[str]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __snake_case : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __snake_case : Optional[int] = backbone_config.get("""model_type""" ) __snake_case : List[str] = CONFIG_MAPPING[backbone_model_type] __snake_case : Optional[Any] = config_class.from_dict(lowerCamelCase__ ) __snake_case : List[Any] = use_timm_backbone __snake_case : List[Any] = backbone_config __snake_case : Dict = num_channels __snake_case : Tuple = num_queries __snake_case : Any = max_position_embeddings __snake_case : int = d_model __snake_case : List[str] = encoder_ffn_dim __snake_case : Union[str, Any] = encoder_layers __snake_case : Union[str, Any] = encoder_attention_heads __snake_case : Any = decoder_ffn_dim __snake_case : Union[str, Any] = decoder_layers __snake_case : int = decoder_attention_heads __snake_case : Dict = dropout __snake_case : Optional[Any] = attention_dropout __snake_case : Dict = activation_dropout __snake_case : int = activation_function __snake_case : Optional[Any] = init_std __snake_case : Optional[Any] = init_xavier_std __snake_case : List[Any] = encoder_layerdrop __snake_case : Optional[Any] = auxiliary_loss __snake_case : Optional[int] = position_embedding_type __snake_case : List[Any] = backbone __snake_case : List[str] = use_pretrained_backbone __snake_case : Dict = dilation # deformable attributes __snake_case : Tuple = num_feature_levels __snake_case : str = encoder_n_points __snake_case : Dict = decoder_n_points __snake_case : int = two_stage __snake_case : List[Any] = two_stage_num_proposals __snake_case : Any = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __snake_case : Union[str, Any] = class_cost __snake_case : Optional[Any] = bbox_cost __snake_case : Optional[Any] = giou_cost # Loss coefficients __snake_case : List[str] = mask_loss_coefficient __snake_case : Tuple = dice_loss_coefficient __snake_case : Any = bbox_loss_coefficient __snake_case : List[Any] = giou_loss_coefficient __snake_case : List[str] = eos_coefficient __snake_case : Any = focal_alpha __snake_case : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase__ ( self : int ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" return self.d_model def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __snake_case : Optional[int] = self.backbone_config.to_dict() __snake_case : Optional[int] = self.__class__.model_type return output
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase = logging.getLogger(__name__) class _A ( lowerCamelCase__ ): lowercase__: Optional[Any] = 'token-classification' def __init__( self : Any , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" if type(lowercase__ ) == dict: __snake_case : Dict = Namespace(**lowercase__ ) __snake_case : Optional[int] = import_module("""tasks""" ) try: __snake_case : List[str] = getattr(lowercase__ , hparams.task_type ) __snake_case : List[str] = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) __snake_case : Tuple = CrossEntropyLoss().ignore_index super().__init__(lowercase__ , len(self.labels ) , self.mode ) def lowercase__ ( self : Union[str, Any] , **__magic_name__ : int ) -> Union[str, Any]: """simple docstring""" return self.model(**lowercase__ ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Dict = self(**lowercase__ ) __snake_case : Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.hparams for mode in ["train", "dev", "test"]: __snake_case : Any = self._feature_file(lowercase__ ) if os.path.exists(lowercase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowercase__ ) __snake_case : List[Any] = torch.load(lowercase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case : int = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase__ ) __snake_case : int = self.token_classification_task.convert_examples_to_features( lowercase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , lowercase__ ) torch.save(lowercase__ , lowercase__ ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False ) -> Any: """simple docstring""" __snake_case : List[Any] = self._feature_file(lowercase__ ) logger.info("""Loading features from cached file %s""" , lowercase__ ) __snake_case : List[Any] = torch.load(lowercase__ ) __snake_case : Dict = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , batch_size=lowercase__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" """Compute validation""" "" __snake_case : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case : Tuple = self(**lowercase__ ) __snake_case , __snake_case : int = outputs[:2] __snake_case : Optional[int] = logits.detach().cpu().numpy() __snake_case : List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowercase__ ( self : List[str] , __magic_name__ : str ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case : List[str] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case : Any = np.argmax(lowercase__ , axis=2 ) __snake_case : Optional[int] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case : List[Any] = dict(enumerate(self.labels ) ) __snake_case : Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case : str = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(lowercase__ , lowercase__ ), """precision""": precision_score(lowercase__ , lowercase__ ), """recall""": recall_score(lowercase__ , lowercase__ ), """f1""": fa_score(lowercase__ , lowercase__ ), } __snake_case : str = dict(results.items() ) __snake_case : str = results return ret, preds_list, out_label_list def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" __snake_case , __snake_case , __snake_case : Tuple = self._eval_end(lowercase__ ) __snake_case : Tuple = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowercase__ ( self : Dict , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : int = self._eval_end(lowercase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case : List[str] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowercase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" BaseTransformer.add_model_specific_args(lowercase__ , lowercase__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=lowercase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=lowercase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=lowercase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowercase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase = parser.parse_args() __UpperCamelCase = NERTransformer(args) __UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' def _a ( _lowerCamelCase : List[str] ) -> bool: """simple docstring""" if num < 0: return False __snake_case : int = num __snake_case : int = 0 while num > 0: __snake_case : List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' class _A : def __init__( self : List[str] , __magic_name__ : list[int] ) -> None: """simple docstring""" __snake_case : int = len(UpperCAmelCase__ ) __snake_case : List[str] = [0] * len_array if len_array > 0: __snake_case : Dict = array[0] for i in range(1 , UpperCAmelCase__ ): __snake_case : List[Any] = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> bool: """simple docstring""" __snake_case : List[str] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) __UpperCamelCase = parser.parse_args() __UpperCamelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _A ( __SCREAMING_SNAKE_CASE ): lowercase__: Tuple = ['''image_processor'''] lowercase__: int = '''SamImageProcessor''' def __init__( self : Optional[Any] , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) __snake_case : Tuple = self.image_processor __snake_case : Optional[int] = -10 __snake_case : List[Any] = self.image_processor.size["longest_edge"] def __call__( self : List[str] , __magic_name__ : Any=None , __magic_name__ : Any=None , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Any , ) -> BatchEncoding: """simple docstring""" __snake_case : str = self.image_processor( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # pop arguments that are not used in the foward but used nevertheless __snake_case : int = encoding_image_processor["original_sizes"] if hasattr(_SCREAMING_SNAKE_CASE , """numpy""" ): # Checks if Torch or TF tensor __snake_case : Union[str, Any] = original_sizes.numpy() __snake_case : int = self._check_and_preprocess_points( input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , ) __snake_case : Tuple = self._normalize_and_convert( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) return encoding_image_processor def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : int=None , __magic_name__ : Optional[int]="pt" , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): __snake_case : Any = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] ) for point in input_points ] else: __snake_case : Tuple = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for point, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __snake_case : Optional[Any] = self._pad_points_and_labels(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __snake_case : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) if input_labels is not None: __snake_case : Any = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): __snake_case : Optional[int] = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __snake_case : str = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] __snake_case : str = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __snake_case : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __snake_case : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __snake_case : Dict = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __snake_case : int = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __snake_case : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __snake_case : List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __snake_case : Any = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __snake_case : Optional[int] = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __snake_case : Union[str, Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __snake_case : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __snake_case : int = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __snake_case : Tuple = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = max([point.shape[0] for point in input_points] ) __snake_case : Dict = [] for i, point in enumerate(_SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __snake_case : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __snake_case : str = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_SCREAMING_SNAKE_CASE ) __snake_case : Tuple = processed_input_points return input_points, input_labels def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : Tuple=False ) -> np.ndarray: """simple docstring""" __snake_case : Dict = original_size __snake_case : Optional[int] = self.image_processor._get_preprocess_shape(_SCREAMING_SNAKE_CASE , longest_edge=_SCREAMING_SNAKE_CASE ) __snake_case : int = deepcopy(_SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) if is_bounding_box: __snake_case : Tuple = coords.reshape(-1 , 2 , 2 ) __snake_case : str = coords[..., 0] * (new_w / old_w) __snake_case : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: __snake_case : List[Any] = coords.reshape(-1 , 4 ) return coords def lowercase__ ( self : List[Any] , __magic_name__ : int=None , __magic_name__ : str=None , __magic_name__ : Dict=None , ) -> Optional[Any]: """simple docstring""" if input_points is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy""" ): # Checks for TF or Torch tensor __snake_case : Dict = input_points.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0] , _SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __snake_case : Optional[int] = [np.array(_SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __snake_case : Union[str, Any] = None if input_labels is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy""" ): __snake_case : Any = input_labels.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0] , _SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __snake_case : Dict = [np.array(_SCREAMING_SNAKE_CASE ) for label in input_labels] else: __snake_case : Dict = None if input_boxes is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy""" ): __snake_case : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0] , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0] , _SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __snake_case : Dict = [np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __snake_case : List[Any] = None return input_points, input_labels, input_boxes @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : Any = self.image_processor.model_input_names return list(dict.fromkeys(_SCREAMING_SNAKE_CASE ) ) def lowercase__ ( self : Any , *__magic_name__ : Dict , **__magic_name__ : str ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_masks(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10**-10 ) -> List[Any]: """simple docstring""" __snake_case : Tuple = a while True: __snake_case : Optional[Any] = Decimal(_a ) - ( Decimal(eval(_a ) ) / Decimal(eval(str(diff(_a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_a ) ) < precision: # noqa: S307 return float(_a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _a ( *_lowerCamelCase ) -> Dict: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , """r""" ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE_ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE_ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE_ , fcntl.LOCK_UN ) __UpperCamelCase = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __UpperCamelCase = torch.device("cuda", local_rank) __UpperCamelCase = socket.gethostname() __UpperCamelCase = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase = dist.get_rank() __UpperCamelCase = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0