code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=False , lowercase=True , lowercase=False , lowercase=True , lowercase=33 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ):
_lowerCamelCase : List[str] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Dict = seq_length
_lowerCamelCase : Optional[int] = is_training
_lowerCamelCase : int = use_input_mask
_lowerCamelCase : int = use_token_type_ids
_lowerCamelCase : List[Any] = use_labels
_lowerCamelCase : Union[str, Any] = vocab_size
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Dict = num_attention_heads
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : List[Any] = hidden_dropout_prob
_lowerCamelCase : List[Any] = attention_probs_dropout_prob
_lowerCamelCase : Dict = max_position_embeddings
_lowerCamelCase : List[Any] = type_vocab_size
_lowerCamelCase : List[str] = type_sequence_label_size
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : Optional[int] = num_labels
_lowerCamelCase : Dict = num_choices
_lowerCamelCase : Union[str, Any] = scope
def A_ ( self ):
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCamelCase : List[Any] = None
if self.use_input_mask:
_lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase : List[str] = None
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : List[str] = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
_lowerCamelCase : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self ):
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : str = EsmModel(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase )
_lowerCamelCase : Optional[Any] = model(lowercase )
_lowerCamelCase : List[Any] = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : int = EsmForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : int = self.num_labels
_lowerCamelCase : Dict = EsmForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
_lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self ):
_lowerCamelCase : int = self.prepare_config_and_inputs()
(
_lowerCamelCase
) : Union[str, Any] = config_and_inputs
_lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = False
lowerCamelCase__ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = ()
lowerCamelCase__ = (
{
"""feature-extraction""": EsmModel,
"""fill-mask""": EsmForMaskedLM,
"""text-classification""": EsmForSequenceClassification,
"""token-classification""": EsmForTokenClassification,
"""zero-shot""": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = True
def A_ ( self ):
_lowerCamelCase : Dict = EsmModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCamelCase : Any = type
self.model_tester.create_and_check_model(*lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase )
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase )
@slow
def A_ ( self ):
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : List[Any] = EsmModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()[0]
_lowerCamelCase : Dict = EsmEmbeddings(config=lowercase )
_lowerCamelCase : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
_lowerCamelCase : Union[str, Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
_lowerCamelCase : Any = create_position_ids_from_input_ids(lowercase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) )
def A_ ( self ):
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0]
_lowerCamelCase : Any = EsmEmbeddings(config=lowercase )
_lowerCamelCase : int = torch.empty(2 , 4 , 30 )
_lowerCamelCase : Tuple = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
_lowerCamelCase : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] )
_lowerCamelCase : Union[str, Any] = embeddings.create_position_ids_from_inputs_embeds(lowercase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase , lowercase ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def A_ ( self ):
pass
@unittest.skip('Esm does not support embedding resizing' )
def A_ ( self ):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def A_ ( self ):
pass
@require_torch
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@slow
def A_ ( self ):
with torch.no_grad():
_lowerCamelCase : List[Any] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_lowerCamelCase : int = model(lowercase )[0]
_lowerCamelCase : Optional[Any] = 33
_lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[Any] = torch.tensor(
[[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
@slow
def A_ ( self ):
with torch.no_grad():
_lowerCamelCase : Any = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCamelCase : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_lowerCamelCase : Union[str, Any] = model(lowercase )[0]
# compare the actual values for a slice.
_lowerCamelCase : str = torch.tensor(
[[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) | 352 |
"""simple docstring"""
import os
import string
import sys
lowercase__ = 1 << 8
lowercase__ = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
lowercase__ = KEYMAP["""up"""]
lowercase__ = KEYMAP["""left"""]
if sys.platform == "win32":
lowercase__ = []
lowercase__ = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
lowercase__ = ord(str(i))
def _snake_case ( ):
if os.name == "nt":
import msvcrt
_lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowercase__ ) == 0:
# Read the keystroke
_lowerCamelCase : str = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(lowercase__ )
if ord(lowercase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
_lowerCamelCase : int = cha[1]
else:
_lowerCamelCase : Optional[int] = ch.decode(lowercase__ )
else:
_lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ )
try:
tty.setraw(lowercase__ )
_lowerCamelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ )
return ch
def _snake_case ( ):
_lowerCamelCase : int = get_raw_chars()
if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowercase__ ) == KEYMAP["esc"]:
_lowerCamelCase : Union[str, Any] = get_raw_chars()
if ord(lowercase__ ) == KEYMAP["mod_int"]:
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowercase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 353 |
"""simple docstring"""
from typing import Any
def _snake_case ( lowercase__ ):
if not input_list:
return []
_lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list]
_lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DebertaTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = DebertaTokenizerFast
def A_ ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCamelCase : str = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'[UNK]',
]
_lowerCamelCase : Dict = dict(zip(lowercase , range(len(lowercase ) ) ) )
_lowerCamelCase : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_lowerCamelCase : Any = {'unk_token': '[UNK]'}
_lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(lowercase ) )
def A_ ( self , **lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
def A_ ( self , lowercase ):
_lowerCamelCase : List[str] = 'lower newer'
_lowerCamelCase : List[Any] = 'lower newer'
return input_text, output_text
def A_ ( self ):
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = 'lower newer'
_lowerCamelCase : str = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
_lowerCamelCase : List[Any] = tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , lowercase )
_lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token]
_lowerCamelCase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.get_tokenizer()
_lowerCamelCase : List[str] = tokenizer('Hello' , 'World' )
_lowerCamelCase : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['token_type_ids'] , lowercase )
@slow
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' )
_lowerCamelCase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase )
_lowerCamelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tokenizer.encode(
'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase )
_lowerCamelCase : List[str] = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase )
_lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase )
_lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def A_ ( self ):
_lowerCamelCase : List[Any] = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
_lowerCamelCase : Union[str, Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' )
_lowerCamelCase : int = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
_lowerCamelCase : Tuple = tokenizer(lowercase , padding=lowercase )
_lowerCamelCase : List[Any] = [tokenizer.decode(lowercase , skip_special_tokens=lowercase ) for seq in encoding['input_ids']]
# fmt: off
_lowerCamelCase : List[str] = {
'input_ids': [
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2]
],
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
_lowerCamelCase : Any = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
self.assertDictEqual(encoding.data , lowercase )
for expected, decoded in zip(lowercase , lowercase ):
self.assertEqual(lowercase , lowercase ) | 354 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
_lowerCamelCase : List[str] = len(lowercase__ )
_lowerCamelCase : List[str] = max(lowercase__ )
_lowerCamelCase : List[str] = min(lowercase__ )
# create the counting array
_lowerCamelCase : List[Any] = coll_max + 1 - coll_min
_lowerCamelCase : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowercase__ ):
_lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
_lowerCamelCase : Dict = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowercase__ ) ):
_lowerCamelCase : Any = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _snake_case ( lowercase__ ):
return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
lowercase__ = input("""Enter numbers separated by a comma:\n""").strip()
lowercase__ = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 12 | 0 |
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowercase__ = logging.get_logger(__name__)
@add_end_docstrings(lowercase )
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , *lowercase , **lowercase ):
super().__init__(*lowercase , **lowercase )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A_ ( self , lowercase=None ):
_lowerCamelCase : Optional[int] = {}
if top_k is not None:
_lowerCamelCase : Union[str, Any] = top_k
return {}, {}, postprocess_params
def __call__( self , lowercase , **lowercase ):
return super().__call__(lowercase , **lowercase )
def A_ ( self , lowercase ):
_lowerCamelCase : Optional[int] = load_image(lowercase )
_lowerCamelCase : int = self.image_processor(images=lowercase , return_tensors=self.framework )
return model_inputs
def A_ ( self , lowercase ):
_lowerCamelCase : str = self.model(**lowercase )
return model_outputs
def A_ ( self , lowercase , lowercase=5 ):
if top_k > self.model.config.num_labels:
_lowerCamelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
_lowerCamelCase : Any = model_outputs.logits.softmax(-1 )[0]
_lowerCamelCase : int = probs.topk(lowercase )
elif self.framework == "tf":
_lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0]
_lowerCamelCase : int = tf.math.top_k(lowercase , k=lowercase )
_lowerCamelCase : Union[str, Any] = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowerCamelCase : Any = scores.tolist()
_lowerCamelCase : Optional[int] = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )] | 355 |
"""simple docstring"""
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 12 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"""
),
"""microsoft/deberta-v2-xxlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """deberta-v2"""
def __init__( self , lowercase=128100 , lowercase=1536 , lowercase=24 , lowercase=24 , lowercase=6144 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=0 , lowercase=0.02 , lowercase=1E-7 , lowercase=False , lowercase=-1 , lowercase=0 , lowercase=True , lowercase=None , lowercase=0 , lowercase="gelu" , **lowercase , ):
super().__init__(**lowercase )
_lowerCamelCase : int = hidden_size
_lowerCamelCase : Dict = num_hidden_layers
_lowerCamelCase : Dict = num_attention_heads
_lowerCamelCase : Tuple = intermediate_size
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Tuple = max_position_embeddings
_lowerCamelCase : Dict = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : int = relative_attention
_lowerCamelCase : int = max_relative_positions
_lowerCamelCase : int = pad_token_id
_lowerCamelCase : int = position_biased_input
# Backwards compatibility
if type(lowercase ) == str:
_lowerCamelCase : Optional[int] = [x.strip() for x in pos_att_type.lower().split('|' )]
_lowerCamelCase : List[str] = pos_att_type
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Any = kwargs.get('pooler_hidden_size' , lowercase )
_lowerCamelCase : Optional[Any] = pooler_dropout
_lowerCamelCase : Dict = pooler_hidden_act
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
@property
def A_ ( self ):
if self.task == "multiple-choice":
_lowerCamelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCamelCase : str = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def A_ ( self ):
return 12
def A_ ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 40 , lowercase = 40 , lowercase = None , ):
_lowerCamelCase : Optional[Any] = super().generate_dummy_inputs(preprocessor=lowercase , framework=lowercase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 356 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass | 12 | 0 |
"""simple docstring"""
import itertools
import os
import re
lowercase__ = re.compile(R"""([A-Z]+)([A-Z][a-z])""")
lowercase__ = re.compile(R"""([a-z\d])([A-Z])""")
lowercase__ = re.compile(R"""(?<!_)_(?!_)""")
lowercase__ = re.compile(R"""(_{2,})""")
lowercase__ = R"""^\w+(\.\w+)*$"""
lowercase__ = R"""<>:/\|?*"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[Any] = _uppercase_uppercase_re.sub(r'\1_\2' , lowercase__ )
_lowerCamelCase : Dict = _lowercase_uppercase_re.sub(r'\1_\2' , lowercase__ )
return name.lower()
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = _single_underscore_re.split(lowercase__ )
_lowerCamelCase : Any = [_multiple_underscores_re.split(lowercase__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase__ ) if n != '' )
def _snake_case ( lowercase__ ):
if os.path.basename(lowercase__ ) != name:
raise ValueError(f'''Should be a dataset name, not a path: {name}''' )
return camelcase_to_snakecase(lowercase__ )
def _snake_case ( lowercase__ , lowercase__ ):
if os.path.basename(lowercase__ ) != name:
raise ValueError(f'''Should be a dataset name, not a path: {name}''' )
if not re.match(_split_re , lowercase__ ):
raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' )
return f'''{filename_prefix_for_name(lowercase__ )}-{split}'''
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ):
_lowerCamelCase : str = filename_prefix_for_split(lowercase__ , lowercase__ )
if filetype_suffix:
prefix += f'''.{filetype_suffix}'''
_lowerCamelCase : str = os.path.join(lowercase__ , lowercase__ )
return f'''{filepath}*'''
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
_lowerCamelCase : List[Any] = filename_prefix_for_split(lowercase__ , lowercase__ )
_lowerCamelCase : Union[str, Any] = os.path.join(lowercase__ , lowercase__ )
if shard_lengths:
_lowerCamelCase : int = len(lowercase__ )
_lowerCamelCase : Optional[int] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase__ )]
if filetype_suffix:
_lowerCamelCase : str = [filename + f'''.{filetype_suffix}''' for filename in filenames]
return filenames
else:
_lowerCamelCase : Dict = prefix
if filetype_suffix:
filename += f'''.{filetype_suffix}'''
return [filename] | 357 |
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """data2vec-audio"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : str = hidden_size
_lowerCamelCase : str = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Dict = list(lowercase )
_lowerCamelCase : Optional[Any] = conv_bias
_lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings
_lowerCamelCase : List[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = conv_pos_kernel_size
_lowerCamelCase : Optional[int] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Any = hidden_dropout
_lowerCamelCase : Union[str, Any] = attention_dropout
_lowerCamelCase : str = activation_dropout
_lowerCamelCase : Any = feat_proj_dropout
_lowerCamelCase : Tuple = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Optional[Any] = mask_time_prob
_lowerCamelCase : List[Any] = mask_time_length
_lowerCamelCase : List[Any] = mask_time_min_masks
_lowerCamelCase : Tuple = mask_feature_prob
_lowerCamelCase : Optional[Any] = mask_feature_length
_lowerCamelCase : Dict = mask_feature_min_masks
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : str = ctc_zero_infinity
# adapter
_lowerCamelCase : Union[str, Any] = add_adapter
_lowerCamelCase : List[Any] = adapter_kernel_size
_lowerCamelCase : Optional[Any] = adapter_stride
_lowerCamelCase : List[Any] = num_adapter_layers
_lowerCamelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : List[str] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Any = list(lowercase )
_lowerCamelCase : Optional[Any] = xvector_output_dim
@property
def A_ ( self ):
return math.prod(self.conv_stride ) | 12 | 0 |
"""simple docstring"""
lowercase__ = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
lowercase__ = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
lowercase__ = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
lowercase__ = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
lowercase__ = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
lowercase__ = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
lowercase__ = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
lowercase__ = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 358 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase__ = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """facebook/nllb-200-distilled-600M"""
lowerCamelCase__ = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
lowerCamelCase__ = """translator"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = LANGUAGE_CODES
lowerCamelCase__ = ["""text""", """text""", """text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase , lowercase , lowercase ):
if src_lang not in self.lang_to_code:
raise ValueError(F'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'''{tgt_lang} is not a supported language.''' )
_lowerCamelCase : str = self.lang_to_code[src_lang]
_lowerCamelCase : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )
def A_ ( self , lowercase ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase ) | 12 | 0 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
lowercase__ = 50_0000
lowercase__ , lowercase__ = os.path.split(__file__)
lowercase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def _snake_case ( lowercase__ , **lowercase__ ):
_lowerCamelCase : Union[str, Any] = dataset.map(**lowercase__ )
@get_duration
def _snake_case ( lowercase__ , **lowercase__ ):
_lowerCamelCase : int = dataset.filter(**lowercase__ )
def _snake_case ( ):
_lowerCamelCase : int = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCamelCase : Tuple = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
_lowerCamelCase : Tuple = generate_example_dataset(
os.path.join(lowercase__ , 'dataset.arrow' ) , lowercase__ , num_examples=lowercase__ )
_lowerCamelCase : Optional[int] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=lowercase__ )
def tokenize(lowercase__ ):
return tokenizer(examples['text'] )
_lowerCamelCase : Dict = map(lowercase__ )
_lowerCamelCase : Union[str, Any] = map(lowercase__ , batched=lowercase__ )
_lowerCamelCase : Dict = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ )
with dataset.formatted_as(type='numpy' ):
_lowerCamelCase : Optional[Any] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ )
with dataset.formatted_as(type='pandas' ):
_lowerCamelCase : str = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ )
with dataset.formatted_as(type='torch' , columns='numbers' ):
_lowerCamelCase : Tuple = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
_lowerCamelCase : Optional[int] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ )
_lowerCamelCase : Tuple = map(lowercase__ , function=lowercase__ , batched=lowercase__ )
_lowerCamelCase : Optional[Any] = filter(lowercase__ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowercase__ , 'wb' ) as f:
f.write(json.dumps(lowercase__ ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter() | 359 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def A_ ( self , lowercase , lowercase , lowercase ):
_lowerCamelCase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Tuple = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2 )
_lowerCamelCase : List[str] = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def A_ ( self , lowercase , lowercase ):
for example in examples:
_lowerCamelCase : Tuple = video_classifier(lowercase )
self.assertEqual(
lowercase , [
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
{'score': ANY(lowercase ), 'label': ANY(lowercase )},
] , )
@require_torch
def A_ ( self ):
_lowerCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowerCamelCase : Tuple = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
_lowerCamelCase : Dict = pipeline(
'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4 )
_lowerCamelCase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowerCamelCase : Dict = video_classifier(lowercase , top_k=2 )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowerCamelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowercase , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def A_ ( self ):
pass | 12 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
# Initialise PyTorch model
_lowerCamelCase : Any = FunnelConfig.from_json_file(lowercase__ )
print(f'''Building PyTorch model from configuration: {config}''' )
_lowerCamelCase : Optional[int] = FunnelBaseModel(lowercase__ ) if base_model else FunnelModel(lowercase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowercase__ )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not."""
)
lowercase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
) | 360 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 12 | 0 |
"""simple docstring"""
import numpy
# List of input, output pairs
lowercase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowercase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowercase__ = [2, 4, 1, 5]
lowercase__ = len(train_data)
lowercase__ = 0.009
def _snake_case ( lowercase__ , lowercase__="train" ):
return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output(
lowercase__ , lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : int = 0
for i in range(len(lowercase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _snake_case ( lowercase__ , lowercase__ ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _snake_case ( lowercase__ , lowercase__ ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _snake_case ( lowercase__ , lowercase__=m ):
_lowerCamelCase : Optional[int] = 0
for i in range(lowercase__ ):
if index == -1:
summation_value += _error(lowercase__ )
else:
summation_value += _error(lowercase__ ) * train_data[i][0][index]
return summation_value
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m
return cost_derivative_value
def _snake_case ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
_lowerCamelCase : Tuple = 0.0_0_0_0_0_2
_lowerCamelCase : Optional[int] = 0
_lowerCamelCase : Optional[int] = 0
while True:
j += 1
_lowerCamelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(lowercase__ ) ):
_lowerCamelCase : List[Any] = get_cost_derivative(i - 1 )
_lowerCamelCase : List[str] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ):
break
_lowerCamelCase : List[Any] = temp_parameter_vector
print(('Number of iterations:', j) )
def _snake_case ( ):
for i in range(len(lowercase__ ) ):
print(('Actual output value:', output(lowercase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(lowercase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 361 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ):
if attention_mask is None:
_lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
lowerCamelCase__ = OPTConfig
lowerCamelCase__ = {}
lowerCamelCase__ = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ):
_lowerCamelCase : Tuple = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : Tuple = pad_token_id
_lowerCamelCase : List[str] = bos_token_id
_lowerCamelCase : Optional[int] = embed_dim
_lowerCamelCase : List[str] = word_embed_proj_dim
_lowerCamelCase : Any = False
def A_ ( self ):
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowerCamelCase : Tuple = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , )
_lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase )
return config, inputs_dict
def A_ ( self , lowercase , lowercase ):
_lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase )
_lowerCamelCase : Optional[Any] = inputs_dict['input_ids']
_lowerCamelCase : str = input_ids[:1, :]
_lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :]
_lowerCamelCase : Optional[Any] = 1
# first forward pass
_lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
_lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0]
_lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx]
_lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
@require_tf
class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
lowerCamelCase__ = (
{"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 10
def A_ ( self ):
_lowerCamelCase : int = TFOPTModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase )
def A_ ( self ):
self.config_tester.run_common_tests()
def A_ ( self ):
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
def A_ ( self ):
_lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(lowercase , lowercase ):
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(lowercase , 'weight' ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
_lowerCamelCase : Optional[int] = model_class(config=lowercase )
_lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(lowercase )
_lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() )
_lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
_lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , lowercase )
# check that weights remain the same after resizing
_lowerCamelCase : int = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Optional[Any] = False
self.assertTrue(lowercase )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , lowercase )
_lowerCamelCase : Dict = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
_lowerCamelCase : Union[str, Any] = False
self.assertTrue(lowercase )
def _snake_case ( lowercase__ ):
return tf.constant(lowercase__ , dtype=tf.intaa )
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = 99
def A_ ( self ):
_lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2
_lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
_lowerCamelCase : int = input_ids.shape[0]
_lowerCamelCase : List[Any] = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def A_ ( self ):
_lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' )
_lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
_lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id )
with tf.GradientTape():
_lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state
_lowerCamelCase : Optional[Any] = (1, 11, 512)
self.assertEqual(output.shape , lowercase )
_lowerCamelCase : List[str] = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) )
_lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
super().setUp()
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
def A_ ( self ):
_lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model )
_lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model )
_lowerCamelCase : List[str] = [
'Today is a beautiful day and I want to',
'In the city of',
'Paris is the capital of France and',
'Computers and mobile phones have taken',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase )
_lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
_lowerCamelCase : Any = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
_lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase )
_lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) )
@require_tf
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def A_ ( self ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def A_ ( self ):
_lowerCamelCase : str = 'facebook/opt-125m'
_lowerCamelCase : Dict = [
'Today is a beautiful day and I want to',
'In the city of New York, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : int = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase )
def A_ ( self ):
_lowerCamelCase : List[Any] = 'facebook/opt-350m'
_lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase )
_lowerCamelCase : Any = 'left'
# use different length sentences to test batching
_lowerCamelCase : Optional[int] = [
'Hello, my dog is a little',
'Today, I',
]
_lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase )
_lowerCamelCase : int = inputs['input_ids']
_lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase )
_lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['attention_mask'][-1] , tf.intaa ) )
_lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
_lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
_lowerCamelCase : Optional[Any] = [
'Hello, my dog is a little bit of a dork.\nI\'m a little bit',
'Today, I was in the middle of a conversation with a friend about the',
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
def A_ ( self ):
_lowerCamelCase : Tuple = 'facebook/opt-350m'
_lowerCamelCase : List[Any] = [
'Today is a beautiful day and I want to',
'In the city of San Francisco, the city',
'Paris is the capital of France and the capital',
'Computers and mobile phones have taken over the',
]
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase )
for prompt in self.prompts:
_lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids
_lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 )
_lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
predicted_outputs += generated_string
self.assertListEqual(lowercase , lowercase ) | 12 | 0 |
"""simple docstring"""
from torch import nn
def _snake_case ( lowercase__ ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 362 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """philschmid/bart-large-cnn-samsum"""
lowerCamelCase__ = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
lowerCamelCase__ = """summarizer"""
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSeqaSeqLM
lowerCamelCase__ = ["""text"""]
lowerCamelCase__ = ["""text"""]
def A_ ( self , lowercase ):
return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase )
def A_ ( self , lowercase ):
return self.model.generate(**lowercase )[0]
def A_ ( self , lowercase ):
return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) | 12 | 0 |
"""simple docstring"""
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class lowerCAmelCase__ ( lowercase, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = RoFormerTokenizer
lowerCamelCase__ = RoFormerTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def A_ ( self ):
super().setUp()
def A_ ( self , **lowercase ):
return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowercase )
def A_ ( self , **lowercase ):
return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **lowercase )
def A_ ( self ):
_lowerCamelCase : str = '永和服装饰品有限公司,今天天气非常好'
_lowerCamelCase : Optional[int] = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好'
return input_text, output_text
def A_ ( self ):
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : List[str] = self.get_chinese_input_output_texts()
_lowerCamelCase : List[Any] = tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , output_text.split() )
_lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token]
_lowerCamelCase : Optional[Any] = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
def A_ ( self ):
_lowerCamelCase : int = self.get_rust_tokenizer()
_lowerCamelCase : int = self.get_chinese_input_output_texts()
_lowerCamelCase : int = tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , output_text.split() )
_lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token]
_lowerCamelCase : Tuple = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
def A_ ( self ):
pass
def A_ ( self ):
pass
def A_ ( self ):
pass | 363 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = list(range(len(lowercase__ ) ) )
_lowerCamelCase : Any = [v / w for v, w in zip(lowercase__ , lowercase__ )]
index.sort(key=lambda lowercase__ : ratio[i] , reverse=lowercase__ )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(lowercase__ )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : int = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 0 |
"""simple docstring"""
lowercase__ = """0.21.0"""
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 364 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
lowercase__ = []
lowercase__ = []
lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
lowercase__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"""emoji""": True,
},
}
]
lowercase__ = 0
for log in Path().glob("""*.log"""):
lowercase__ = 0
with open(log, """r""") as f:
for line in f:
lowercase__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
lowercase__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
lowercase__ = F"{line['duration']:.4f}"
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase__ = []
log.unlink()
lowercase__ = """"""
lowercase__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase__ = []
lowercase__ = {}
for test in failed_tests:
lowercase__ = test[0].split("""::""")
lowercase__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
lowercase__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase__ = [test[0] for test in failed_table]
lowercase__ = list(set(files))
# Count number of instances in failed_tests
lowercase__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase__ = """Too many failed tests, please see the full report in the Action results."""
lowercase__ = len(err) + 10
lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
lowercase__ = """No failed tests! 🤗"""
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
lowercase__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
lowercase__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase__ = row[0]
else:
lowercase__ = """"""
lowercase__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
) | 12 | 0 |
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase , ):
super().__init__()
_lowerCamelCase : Optional[int] = value_function
_lowerCamelCase : Optional[int] = unet
_lowerCamelCase : Any = scheduler
_lowerCamelCase : Dict = env
_lowerCamelCase : Any = env.get_dataset()
_lowerCamelCase : Any = {}
for key in self.data.keys():
try:
_lowerCamelCase : Union[str, Any] = self.data[key].mean()
except: # noqa: E722
pass
_lowerCamelCase : Optional[int] = {}
for key in self.data.keys():
try:
_lowerCamelCase : Optional[Any] = self.data[key].std()
except: # noqa: E722
pass
_lowerCamelCase : int = env.observation_space.shape[0]
_lowerCamelCase : Union[str, Any] = env.action_space.shape[0]
def A_ ( self , lowercase , lowercase ):
return (x_in - self.means[key]) / self.stds[key]
def A_ ( self , lowercase , lowercase ):
return x_in * self.stds[key] + self.means[key]
def A_ ( self , lowercase ):
if type(lowercase ) is dict:
return {k: self.to_torch(lowercase ) for k, v in x_in.items()}
elif torch.is_tensor(lowercase ):
return x_in.to(self.unet.device )
return torch.tensor(lowercase , device=self.unet.device )
def A_ ( self , lowercase , lowercase , lowercase ):
for key, val in cond.items():
_lowerCamelCase : Union[str, Any] = val.clone()
return x_in
def A_ ( self , lowercase , lowercase , lowercase , lowercase ):
_lowerCamelCase : Union[str, Any] = x.shape[0]
_lowerCamelCase : Union[str, Any] = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
_lowerCamelCase : Optional[int] = torch.full((batch_size,) , lowercase , device=self.unet.device , dtype=torch.long )
for _ in range(lowercase ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
_lowerCamelCase : Optional[Any] = self.value_function(x.permute(0 , 2 , 1 ) , lowercase ).sample
_lowerCamelCase : int = torch.autograd.grad([y.sum()] , [x] )[0]
_lowerCamelCase : List[Any] = self.scheduler._get_variance(lowercase )
_lowerCamelCase : Union[str, Any] = torch.exp(0.5 * posterior_variance )
_lowerCamelCase : Optional[int] = model_std * grad
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : int = x.detach()
_lowerCamelCase : Union[str, Any] = x + scale * grad
_lowerCamelCase : Union[str, Any] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : Union[str, Any] = self.unet(x.permute(0 , 2 , 1 ) , lowercase ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
_lowerCamelCase : Dict = self.scheduler.step(lowercase , lowercase , lowercase , predict_epsilon=lowercase )['prev_sample']
# apply conditions to the trajectory (set the initial state)
_lowerCamelCase : List[str] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : int = self.to_torch(lowercase )
return x, y
def __call__( self , lowercase , lowercase=64 , lowercase=32 , lowercase=2 , lowercase=0.1 ):
# normalize the observations and create batch dimension
_lowerCamelCase : Optional[int] = self.normalize(lowercase , 'observations' )
_lowerCamelCase : int = obs[None].repeat(lowercase , axis=0 )
_lowerCamelCase : Any = {0: self.to_torch(lowercase )}
_lowerCamelCase : str = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
_lowerCamelCase : Tuple = randn_tensor(lowercase , device=self.unet.device )
_lowerCamelCase : Optional[Any] = self.reset_xa(lowercase , lowercase , self.action_dim )
_lowerCamelCase : int = self.to_torch(lowercase )
# run the diffusion process
_lowerCamelCase : List[Any] = self.run_diffusion(lowercase , lowercase , lowercase , lowercase )
# sort output trajectories by value
_lowerCamelCase : List[Any] = y.argsort(0 , descending=lowercase ).squeeze()
_lowerCamelCase : List[str] = x[sorted_idx]
_lowerCamelCase : Any = sorted_values[:, :, : self.action_dim]
_lowerCamelCase : Union[str, Any] = actions.detach().cpu().numpy()
_lowerCamelCase : Dict = self.de_normalize(lowercase , key='actions' )
# select the action with the highest value
if y is not None:
_lowerCamelCase : List[Any] = 0
else:
# if we didn't run value guiding, select a random action
_lowerCamelCase : Union[str, Any] = np.random.randint(0 , lowercase )
_lowerCamelCase : Union[str, Any] = denorm_actions[selected_index, 0]
return denorm_actions | 365 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = ["""tokenizer"""]
lowerCamelCase__ = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , lowercase , lowercase=None ):
super().__init__(lowercase )
_lowerCamelCase : Optional[int] = speaker_embeddings
@classmethod
def A_ ( cls , lowercase , lowercase="speaker_embeddings_path.json" , **lowercase ):
if speaker_embeddings_dict_path is not None:
_lowerCamelCase : Optional[Any] = get_file_from_repo(
lowercase , lowercase , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(lowercase , lowercase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_lowerCamelCase : List[Any] = None
else:
with open(lowercase ) as speaker_embeddings_json:
_lowerCamelCase : Union[str, Any] = json.load(lowercase )
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , **lowercase )
return cls(tokenizer=lowercase , speaker_embeddings=lowercase )
def A_ ( self , lowercase , lowercase="speaker_embeddings_path.json" , lowercase="speaker_embeddings" , lowercase = False , **lowercase , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowercase , lowercase , 'v2' ) , exist_ok=lowercase )
_lowerCamelCase : int = {}
_lowerCamelCase : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_lowerCamelCase : Optional[Any] = self._load_voice_preset(lowercase )
_lowerCamelCase : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['repo_or_path'] , lowercase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowercase , )
_lowerCamelCase : List[str] = os.path.join(lowercase , F'''{prompt_key}_{key}.npy''' )
_lowerCamelCase : Optional[Any] = tmp_dict
with open(os.path.join(lowercase , lowercase ) , 'w' ) as fp:
json.dump(lowercase , lowercase )
super().save_pretrained(lowercase , lowercase , **lowercase )
def A_ ( self , lowercase = None , **lowercase ):
_lowerCamelCase : Tuple = self.speaker_embeddings[voice_preset]
_lowerCamelCase : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_lowerCamelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowercase ) , cache_dir=kwargs.pop('cache_dir' , lowercase ) , force_download=kwargs.pop('force_download' , lowercase ) , proxies=kwargs.pop('proxies' , lowercase ) , resume_download=kwargs.pop('resume_download' , lowercase ) , local_files_only=kwargs.pop('local_files_only' , lowercase ) , use_auth_token=kwargs.pop('use_auth_token' , lowercase ) , revision=kwargs.pop('revision' , lowercase ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_lowerCamelCase : List[str] = np.load(lowercase )
return voice_preset_dict
def A_ ( self , lowercase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , lowercase=None , lowercase=None , lowercase="pt" , lowercase=256 , lowercase=False , lowercase=True , lowercase=False , **lowercase , ):
if voice_preset is not None and not isinstance(lowercase , lowercase ):
if (
isinstance(lowercase , lowercase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_lowerCamelCase : Any = self._load_voice_preset(lowercase )
else:
if isinstance(lowercase , lowercase ) and not voice_preset.endswith('.npz' ):
_lowerCamelCase : Optional[Any] = voice_preset + '.npz'
_lowerCamelCase : Union[str, Any] = np.load(lowercase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowercase , **lowercase )
_lowerCamelCase : Tuple = BatchFeature(data=lowercase , tensor_type=lowercase )
_lowerCamelCase : Any = self.tokenizer(
lowercase , return_tensors=lowercase , padding='max_length' , max_length=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , add_special_tokens=lowercase , **lowercase , )
if voice_preset is not None:
_lowerCamelCase : Optional[int] = voice_preset
return encoded_text | 12 | 0 |
"""simple docstring"""
import os
def _snake_case ( ):
_lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(lowercase__ ) )
_lowerCamelCase : Any = os.path.join(lowercase__ , 'triangle.txt' )
with open(lowercase__ ) as f:
_lowerCamelCase : List[str] = f.readlines()
_lowerCamelCase : List[Any] = []
for line in triangle:
_lowerCamelCase : str = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(lowercase__ ) )
a.append(lowercase__ )
for i in range(1 , len(lowercase__ ) ):
for j in range(len(a[i] ) ):
_lowerCamelCase : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0
_lowerCamelCase : Any = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(lowercase__ , lowercase__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution()) | 366 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ = False
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def A_ ( self ):
_lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
_lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_lowerCamelCase : Dict = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
_lowerCamelCase : str = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 12 | 0 |
"""simple docstring"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( ):
_lowerCamelCase : str = input('Enter message: ' )
_lowerCamelCase : Optional[int] = input('Enter key [alphanumeric]: ' )
_lowerCamelCase : Dict = input('Encrypt/Decrypt [e/d]: ' )
if mode.lower().startswith('e' ):
_lowerCamelCase : Union[str, Any] = 'encrypt'
_lowerCamelCase : List[Any] = encrypt_message(lowercase__ , lowercase__ )
elif mode.lower().startswith('d' ):
_lowerCamelCase : List[str] = 'decrypt'
_lowerCamelCase : Any = decrypt_message(lowercase__ , lowercase__ )
print(f'''\n{mode.title()}ed message:''' )
print(lowercase__ )
def _snake_case ( lowercase__ , lowercase__ ):
return translate_message(lowercase__ , lowercase__ , 'encrypt' )
def _snake_case ( lowercase__ , lowercase__ ):
return translate_message(lowercase__ , lowercase__ , 'decrypt' )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : str = []
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : List[Any] = key.upper()
for symbol in message:
_lowerCamelCase : Optional[Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(lowercase__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(lowercase__ ):
_lowerCamelCase : Optional[Any] = 0
else:
translated.append(lowercase__ )
return "".join(lowercase__ )
if __name__ == "__main__":
main()
| 367 |
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
lowercase__ = {
"""E""": 12.70,
"""T""": 9.06,
"""A""": 8.17,
"""O""": 7.51,
"""I""": 6.97,
"""N""": 6.75,
"""S""": 6.33,
"""H""": 6.09,
"""R""": 5.99,
"""D""": 4.25,
"""L""": 4.03,
"""C""": 2.78,
"""U""": 2.76,
"""M""": 2.41,
"""W""": 2.36,
"""F""": 2.23,
"""G""": 2.02,
"""Y""": 1.97,
"""P""": 1.93,
"""B""": 1.29,
"""V""": 0.98,
"""K""": 0.77,
"""J""": 0.15,
"""X""": 0.15,
"""Q""": 0.10,
"""Z""": 0.07,
}
lowercase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ"""
lowercase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Tuple = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( lowercase__ ):
return x[0]
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = get_letter_count(lowercase__ )
_lowerCamelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(lowercase__ )
_lowerCamelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowercase__ )
_lowerCamelCase : Optional[int] = ''.join(freq_to_letter[freq] )
_lowerCamelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=lowercase__ , reverse=lowercase__ )
_lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = get_frequency_order(lowercase__ )
_lowerCamelCase : Union[str, Any] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod() | 12 | 0 |
"""simple docstring"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def _snake_case ( lowercase__ ):
return 1 / (1 + np.exp(-z ))
def _snake_case ( lowercase__ , lowercase__ ):
return (-y * np.log(lowercase__ ) - (1 - y) * np.log(1 - h )).mean()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : int = np.dot(lowercase__ , lowercase__ )
return np.sum(y * scores - np.log(1 + np.exp(lowercase__ ) ) )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=70000 ):
_lowerCamelCase : int = np.zeros(x.shape[1] )
for iterations in range(lowercase__ ):
_lowerCamelCase : Dict = np.dot(lowercase__ , lowercase__ )
_lowerCamelCase : List[Any] = sigmoid_function(lowercase__ )
_lowerCamelCase : Optional[int] = np.dot(x.T , h - y ) / y.size
_lowerCamelCase : Any = theta - alpha * gradient # updating the weights
_lowerCamelCase : int = np.dot(lowercase__ , lowercase__ )
_lowerCamelCase : Any = sigmoid_function(lowercase__ )
_lowerCamelCase : str = cost_function(lowercase__ , lowercase__ )
if iterations % 100 == 0:
print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
lowercase__ = datasets.load_iris()
lowercase__ = iris.data[:, :2]
lowercase__ = (iris.target != 0) * 1
lowercase__ = 0.1
lowercase__ = logistic_reg(alpha, x, y, max_iterations=7_0000)
print("""theta: """, theta) # printing the theta i.e our weights vector
def _snake_case ( lowercase__ ):
return sigmoid_function(
np.dot(lowercase__ , lowercase__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""")
((lowercase__) , (lowercase__)) = (x[:, 0].min(), x[:, 0].max())
((lowercase__) , (lowercase__)) = (x[:, 1].min(), x[:, 1].max())
((lowercase__) , (lowercase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
lowercase__ = np.c_[xxa.ravel(), xxa.ravel()]
lowercase__ = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""")
plt.legend()
plt.show() | 368 |
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowercase__ = logging.get_logger(__name__)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase , lowercase ):
_lowerCamelCase : Dict = question_encoder
_lowerCamelCase : List[Any] = generator
_lowerCamelCase : Optional[Any] = self.question_encoder
def A_ ( self , lowercase ):
if os.path.isfile(lowercase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase , exist_ok=lowercase )
_lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' )
_lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' )
self.question_encoder.save_pretrained(lowercase )
self.generator.save_pretrained(lowercase )
@classmethod
def A_ ( cls , lowercase , **lowercase ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase )
if config is None:
_lowerCamelCase : int = RagConfig.from_pretrained(lowercase )
_lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
_lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
lowercase , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=lowercase , generator=lowercase )
def __call__( self , *lowercase , **lowercase ):
return self.current_tokenizer(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.batch_decode(*lowercase , **lowercase )
def A_ ( self , *lowercase , **lowercase ):
return self.generator.decode(*lowercase , **lowercase )
def A_ ( self ):
_lowerCamelCase : Any = self.question_encoder
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.generator
def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ):
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , lowercase , )
if max_length is None:
_lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length
_lowerCamelCase : Optional[Any] = self(
lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_lowerCamelCase : int = self.current_tokenizer.model_max_length
_lowerCamelCase : str = self(
text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , )
_lowerCamelCase : int = labels['input_ids']
return model_inputs | 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 369 |
"""simple docstring"""
def _snake_case ( lowercase__ = 10 ):
if not isinstance(lowercase__ , lowercase__ ) or n < 0:
raise ValueError('Invalid input' )
_lowerCamelCase : str = 10**n
_lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }") | 12 | 0 |
"""simple docstring"""
def _snake_case ( lowercase__ ):
if any(not isinstance(lowercase__ , lowercase__ ) or x < 0 for x in sequence ):
raise TypeError('Sequence must be list of non-negative integers' )
for _ in range(len(lowercase__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(lowercase__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 370 |
"""simple docstring"""
import argparse
import datetime
def _snake_case ( lowercase__ ):
_lowerCamelCase : Dict = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
_lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('Must be 10 characters long' )
# Get month
_lowerCamelCase : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12' )
_lowerCamelCase : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get day
_lowerCamelCase : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31' )
# Get second separator
_lowerCamelCase : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'' )
# Get year
_lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?' )
# Get datetime obj for validation
_lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
_lowerCamelCase : str = y - 1
_lowerCamelCase : Tuple = m + 12
# maths var
_lowerCamelCase : int = int(str(lowercase__ )[:2] )
_lowerCamelCase : int = int(str(lowercase__ )[2:] )
_lowerCamelCase : int = int(2.6 * m - 5.3_9 )
_lowerCamelCase : int = int(c / 4 )
_lowerCamelCase : int = int(k / 4 )
_lowerCamelCase : int = int(d + k )
_lowerCamelCase : int = int(t + u + v + x )
_lowerCamelCase : int = int(z - (2 * c) )
_lowerCamelCase : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.' )
# Response
_lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
lowercase__ = parser.parse_args()
zeller(args.date_input) | 12 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
lowercase__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""")
lowercase__ = cvtColor(img, COLOR_BGR2GRAY)
def _snake_case ( ):
_lowerCamelCase : List[str] = cn.convert_to_negative(lowercase__ )
# assert negative_img array for at least one True
assert negative_img.any()
def _snake_case ( ):
with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith(
'<PIL.Image.Image image mode=RGB size=100x100 at' )
def _snake_case ( ):
_lowerCamelCase : int = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def _snake_case ( ):
_lowerCamelCase : int = imread('digital_image_processing/image_data/lena_small.jpg' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
_lowerCamelCase : List[Any] = canny.canny(lowercase__ )
# assert canny array for at least one True
assert canny_array.any()
def _snake_case ( ):
assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all()
def _snake_case ( ):
# laplace diagonals
_lowerCamelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] )
_lowerCamelCase : int = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ )
assert res.any()
def _snake_case ( ):
assert med.median_filter(lowercase__ , 3 ).any()
def _snake_case ( ):
_lowerCamelCase : List[Any] = sob.sobel_filter(lowercase__ )
assert grad.any() and theta.any()
def _snake_case ( ):
_lowerCamelCase : Dict = sp.make_sepia(lowercase__ , 20 )
assert sepia.all()
def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ):
_lowerCamelCase : Any = bs.Burkes(imread(lowercase__ , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ):
_lowerCamelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def _snake_case ( ):
_lowerCamelCase : str = 'digital_image_processing/image_data/lena.jpg'
# Reading the image and converting it to grayscale.
_lowerCamelCase : List[str] = imread(lowercase__ , 0 )
# Test for get_neighbors_pixel function() return not None
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : int = 0
_lowerCamelCase : Union[str, Any] = image[x_coordinate][y_coordinate]
_lowerCamelCase : Optional[int] = lbp.get_neighbors_pixel(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
_lowerCamelCase : Dict = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
_lowerCamelCase : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ )
assert lbp_image.any() | 371 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' )
if match := re.search(lowercase__ , lowercase__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("""+918827897895""")) | 12 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=3 , __magic_name__ : List[Any]=32 , __magic_name__ : int=3 , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Optional[int]=[10, 20, 30, 40] , __magic_name__ : Union[str, Any]=[1, 1, 2, 1] , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[str]="relu" , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[int]=None , ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = parent
__snake_case : List[str] = batch_size
__snake_case : Dict = image_size
__snake_case : Tuple = num_channels
__snake_case : int = embeddings_size
__snake_case : Optional[int] = hidden_sizes
__snake_case : Any = depths
__snake_case : Optional[int] = is_training
__snake_case : Optional[int] = use_labels
__snake_case : Tuple = hidden_act
__snake_case : Dict = num_labels
__snake_case : int = scope
__snake_case : Optional[int] = len(__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : str = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Dict = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = RegNetModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Any = model(__magic_name__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[str] = self.num_labels
__snake_case : List[str] = RegNetForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs
__snake_case : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
lowercase__: Dict = (
{'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__: List[Any] = False
lowercase__: int = False
lowercase__: Tuple = False
lowercase__: Optional[int] = False
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = RegNetModelTester(self )
__snake_case : Optional[int] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Any = model_class(__magic_name__ )
__snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Dict = [*signature.parameters.keys()]
__snake_case : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : List[str] = model_class(config=__magic_name__ )
for name, module in model.named_modules():
if isinstance(__magic_name__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str ):
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : Any = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : int = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : Union[str, Any] = layer_type
__snake_case : Any = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : List[str] = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = RegNetModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ )
__snake_case : Optional[Any] = self.default_image_processor
__snake_case : int = prepare_img()
__snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : List[Any] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _A :
@staticmethod
def lowercase__ ( *__magic_name__ : str , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class _A ( unittest.TestCase ):
@require_torch
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
__snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Optional[Any] = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__magic_name__ ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
__snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@require_tf
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
__snake_case : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Tuple = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
__snake_case : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@slow
@require_torch
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
__snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Optional[Any] = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
__snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Dict = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
__snake_case : int = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(__lowercase )
class _A ( __lowercase ):
def __init__( self : Dict , **__magic_name__ : int ) -> List[str]:
"""simple docstring"""
super().__init__(**__magic_name__ )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(__magic_name__ )
def __call__( self : List[str] , __magic_name__ : Union[str, "Image.Image", List[Dict[str, Any]]] , __magic_name__ : Union[str, List[str]] = None , **__magic_name__ : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
if "text_queries" in kwargs:
__snake_case : str = kwargs.pop("""text_queries""" )
if isinstance(__magic_name__ , (str, Image.Image) ):
__snake_case : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
__snake_case : List[str] = image
__snake_case : Dict = super().__call__(__magic_name__ , **__magic_name__ )
return results
def lowercase__ ( self : Any , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Union[str, Any] = {}
if "threshold" in kwargs:
__snake_case : Optional[int] = kwargs["""threshold"""]
if "top_k" in kwargs:
__snake_case : Dict = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : int = load_image(inputs["""image"""] )
__snake_case : Tuple = inputs["""candidate_labels"""]
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Union[str, Any] = candidate_labels.split(""",""" )
__snake_case : Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(__magic_name__ ):
__snake_case : int = self.tokenizer(__magic_name__ , return_tensors=self.framework )
__snake_case : Union[str, Any] = self.image_processor(__magic_name__ , return_tensors=self.framework )
yield {
"is_last": i == len(__magic_name__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self : Any , __magic_name__ : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = model_inputs.pop("""target_size""" )
__snake_case : Dict = model_inputs.pop("""candidate_label""" )
__snake_case : List[str] = model_inputs.pop("""is_last""" )
__snake_case : str = self.model(**__magic_name__ )
__snake_case : Dict = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Tuple=None ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = []
for model_output in model_outputs:
__snake_case : Dict = model_output["""candidate_label"""]
__snake_case : Union[str, Any] = BaseModelOutput(__magic_name__ )
__snake_case : int = self.image_processor.post_process_object_detection(
outputs=__magic_name__ , threshold=__magic_name__ , target_sizes=model_output["""target_size"""] )[0]
for index in outputs["scores"].nonzero():
__snake_case : Tuple = outputs["""scores"""][index].item()
__snake_case : str = self._get_bounding_box(outputs["""boxes"""][index][0] )
__snake_case : List[str] = {"""score""": score, """label""": label, """box""": box}
results.append(__magic_name__ )
__snake_case : Dict = sorted(__magic_name__ , key=lambda __magic_name__ : x["score"] , reverse=__magic_name__ )
if top_k:
__snake_case : str = results[:top_k]
return results
def lowercase__ ( self : Union[str, Any] , __magic_name__ : "torch.Tensor" ) -> Dict[str, int]:
"""simple docstring"""
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" )
__snake_case , __snake_case , __snake_case , __snake_case : List[str] = box.int().tolist()
__snake_case : List[Any] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _A ( __lowercase ):
lowercase__: Tuple = '''gpt_neo'''
lowercase__: int = ['''past_key_values''']
lowercase__: str = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self : Optional[Any] , __magic_name__ : str=5_02_57 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[Any]=20_48 , __magic_name__ : Optional[int]=24 , __magic_name__ : Union[str, Any]=[[["global", "local"], 12]] , __magic_name__ : Any=16 , __magic_name__ : Any=None , __magic_name__ : Optional[int]=2_56 , __magic_name__ : List[Any]="gelu_new" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=True , __magic_name__ : int=5_02_56 , __magic_name__ : Optional[Any]=5_02_56 , **__magic_name__ : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = vocab_size
__snake_case : List[str] = max_position_embeddings
__snake_case : List[str] = hidden_size
__snake_case : Optional[Any] = num_layers
__snake_case : Optional[int] = num_heads
__snake_case : int = intermediate_size
__snake_case : Any = window_size
__snake_case : Any = activation_function
__snake_case : Dict = resid_dropout
__snake_case : Union[str, Any] = embed_dropout
__snake_case : Optional[Any] = attention_dropout
__snake_case : Optional[int] = classifier_dropout
__snake_case : Any = layer_norm_epsilon
__snake_case : List[str] = initializer_range
__snake_case : Any = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Optional[int] = eos_token_id
__snake_case : str = attention_types
__snake_case : str = self.expand_attention_types_params(__magic_name__ )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.attention_layers)` == `config.num_layers` """
f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, '''
f'''`config.num_layers = {self.num_layers}`. '''
"""`config.attention_layers` is prepared using `config.attention_types`. """
"""Please verify the value of `config.attention_types` argument.""" )
super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
@staticmethod
def lowercase__ ( __magic_name__ : str ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[Any] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
import torch
__snake_case : List[Any] = input.size()
__snake_case : Optional[Any] = len(_lowerCamelCase )
__snake_case : Tuple = shape[dimension]
__snake_case : Union[str, Any] = torch.arange(0 , _lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = torch.div(sizedim - size , _lowerCamelCase , rounding_mode="""floor""" ) + 1
__snake_case : Any = torch.arange(_lowerCamelCase ) + low_indices[:min_length][:, None]
__snake_case : Dict = [slice(_lowerCamelCase )] * rank
__snake_case : Optional[int] = indices
__snake_case : List[Any] = input[s]
__snake_case : List[Any] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
import torch
__snake_case : Dict = torch.arange(1 , _lowerCamelCase )
__snake_case : Optional[Any] = torch.remainder(_lowerCamelCase , _lowerCamelCase )
__snake_case : List[str] = remainders == 0
__snake_case : int = candidates[divisor_indices]
__snake_case : Optional[Any] = torch.max(_lowerCamelCase )
return largest_divisor, torch.div(_lowerCamelCase , _lowerCamelCase , rounding_mode="""floor""" )
class _A ( __lowercase ):
@property
def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : List[Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Dict = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
return self._config.num_heads
def lowercase__ ( self : List[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : int = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : Optional[Any] = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : List[str] = seqlen + 2
__snake_case : Optional[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : Optional[int] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : List[Any] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : str = ordered_inputs["""attention_mask"""].dtype
__snake_case : Tuple = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return 13
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ViTFeatureExtractor"]
__UpperCamelCase = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
__UpperCamelCase = "Muhammad Umer Farooq"
__UpperCamelCase = "MIT"
__UpperCamelCase = "1.0.0"
__UpperCamelCase = "Muhammad Umer Farooq"
__UpperCamelCase = "[email protected]"
__UpperCamelCase = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : str ) -> None:
"""simple docstring"""
super().__init__()
__snake_case : list[str] = []
__snake_case : Optional[int] = domain
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : list[tuple[str, str | None]] ) -> None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
__snake_case : Union[str, Any] = parse.urljoin(self.domain , __magic_name__ )
self.urls.append(__magic_name__ )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
return ".".join(get_sub_domain_name(_lowerCamelCase ).split(""".""" )[-2:] )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
return parse.urlparse(_lowerCamelCase ).netloc
def _a ( _lowerCamelCase = "https://github.com" ) -> list[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = get_domain_name(_lowerCamelCase )
# Initialize the parser
__snake_case : List[str] = Parser(_lowerCamelCase )
try:
# Open URL
__snake_case : Any = requests.get(_lowerCamelCase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
__snake_case : List[Any] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
__snake_case : Union[str, Any] = requests.get(_lowerCamelCase )
# Get the valid email.
__snake_case : Optional[Any] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(_lowerCamelCase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = emails_from_url("https://github.com")
print(f"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
import math
import sys
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
if number != int(_lowerCamelCase ):
raise ValueError("""the value of input must be a natural number""" )
if number < 0:
raise ValueError("""the value of input must not be a negative number""" )
if number == 0:
return 1
__snake_case : Union[str, Any] = [-1] * (number + 1)
__snake_case : List[Any] = 0
for i in range(1 , number + 1 ):
__snake_case : Union[str, Any] = sys.maxsize
__snake_case : str = int(math.sqrt(_lowerCamelCase ) )
for j in range(1 , root + 1 ):
__snake_case : int = 1 + answers[i - (j**2)]
__snake_case : Dict = min(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Optional[int] = image.size
__snake_case , __snake_case : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__snake_case : List[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] )
__snake_case : int = np.array(_lowerCamelCase ).astype(np.floataa ) / 2_55.0
__snake_case : Tuple = image[None].transpose(0 , 3 , 1 , 2 )
__snake_case : Optional[Any] = torch.from_numpy(_lowerCamelCase )
return 2.0 * image - 1.0
class _A ( __lowercase ):
def __init__( self : Any , __magic_name__ : VQModel , __magic_name__ : UNetaDModel , __magic_name__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ )
@torch.no_grad()
def __call__( self : Optional[int] , __magic_name__ : Union[torch.Tensor, PIL.Image.Image] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : Optional[int] = 1_00 , __magic_name__ : Optional[float] = 0.0 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
if isinstance(__magic_name__ , PIL.Image.Image ):
__snake_case : Union[str, Any] = 1
elif isinstance(__magic_name__ , torch.Tensor ):
__snake_case : List[Any] = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__magic_name__ )}''' )
if isinstance(__magic_name__ , PIL.Image.Image ):
__snake_case : List[str] = preprocess(__magic_name__ )
__snake_case , __snake_case : int = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__snake_case : List[str] = (batch_size, self.unet.config.in_channels // 2, height, width)
__snake_case : Union[str, Any] = next(self.unet.parameters() ).dtype
__snake_case : Optional[Any] = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ )
__snake_case : Tuple = image.to(device=self.device , dtype=__magic_name__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(__magic_name__ , device=self.device )
__snake_case : List[Any] = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__snake_case : int = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case : str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__snake_case : Optional[int] = {}
if accepts_eta:
__snake_case : Tuple = eta
for t in self.progress_bar(__magic_name__ ):
# concat latents and low resolution image in the channel dimension.
__snake_case : int = torch.cat([latents, image] , dim=1 )
__snake_case : List[str] = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ )
# predict the noise residual
__snake_case : Optional[Any] = self.unet(__magic_name__ , __magic_name__ ).sample
# compute the previous noisy sample x_t -> x_t-1
__snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
# decode the image latents with the VQVAE
__snake_case : Any = self.vqvae.decode(__magic_name__ ).sample
__snake_case : Union[str, Any] = torch.clamp(__magic_name__ , -1.0 , 1.0 )
__snake_case : Any = image / 2 + 0.5
__snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__snake_case : Optional[int] = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__magic_name__ )
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__UpperCamelCase = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) -> List[str]:
"""simple docstring"""
if attention_mask is None:
__snake_case : int = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__snake_case : Tuple = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__snake_case : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__snake_case : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _A :
def __init__( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple=13 , __magic_name__ : Any=7 , __magic_name__ : List[str]=True , __magic_name__ : Dict=False , __magic_name__ : Union[str, Any]=99 , __magic_name__ : List[str]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Dict=4 , __magic_name__ : int=4 , __magic_name__ : List[str]="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Any=32 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[int]=0 , __magic_name__ : Optional[int]=0.02 , ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = parent
__snake_case : str = batch_size
__snake_case : Optional[Any] = seq_length
__snake_case : List[Any] = is_training
__snake_case : List[Any] = use_labels
__snake_case : int = vocab_size
__snake_case : Tuple = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Tuple = num_attention_heads
__snake_case : Any = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Optional[Any] = max_position_embeddings
__snake_case : Optional[Any] = eos_token_id
__snake_case : Optional[Any] = pad_token_id
__snake_case : Tuple = bos_token_id
__snake_case : int = initializer_range
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__snake_case : Dict = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__snake_case : List[Any] = shift_tokens_right(__magic_name__ , 1 , 2 )
__snake_case : Optional[Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__magic_name__ , )
__snake_case : List[str] = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ )
return config, inputs_dict
def lowercase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = 20
__snake_case : List[str] = model_class_name(__magic_name__ )
__snake_case : int = model.encode(inputs_dict["""input_ids"""] )
__snake_case , __snake_case : Optional[Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__snake_case : Dict = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__snake_case : Tuple = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__snake_case : Optional[int] = model.decode(
decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , )
__snake_case : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : Tuple = model.decode(
decoder_input_ids[:, -1:] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__magic_name__ , )
__snake_case : str = model.decode(__magic_name__ , __magic_name__ )
__snake_case : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] ) -> int:
"""simple docstring"""
__snake_case : Any = 20
__snake_case : Union[str, Any] = model_class_name(__magic_name__ )
__snake_case : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] )
__snake_case , __snake_case : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__snake_case : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__snake_case : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__snake_case : Any = model.decode(
decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , )
__snake_case : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : List[Any] = model.decode(
decoder_input_ids[:, -1:] , __magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__magic_name__ , decoder_position_ids=__magic_name__ , )
__snake_case : Dict = model.decode(__magic_name__ , __magic_name__ , decoder_attention_mask=__magic_name__ )
__snake_case : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class _A ( unittest.TestCase ):
lowercase__: Dict = 99
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : str = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__snake_case : Optional[int] = input_ids.shape[0]
__snake_case : Optional[Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : Optional[int] = self._get_config_and_data()
__snake_case : int = FlaxBlenderbotSmallForConditionalGeneration(__magic_name__ )
__snake_case : Tuple = lm_model(input_ids=__magic_name__ )
__snake_case : Tuple = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__snake_case : str = FlaxBlenderbotSmallForConditionalGeneration(__magic_name__ )
__snake_case : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__snake_case : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__snake_case : Dict = lm_model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ )
__snake_case : Dict = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , __magic_name__ )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__snake_case : Union[str, Any] = shift_tokens_right(__magic_name__ , 1 , 2 )
__snake_case : List[str] = np.equal(__magic_name__ , 1 ).astype(np.floataa ).sum()
__snake_case : Dict = np.equal(__magic_name__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(__magic_name__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _A ( __lowercase , unittest.TestCase , __lowercase ):
lowercase__: str = True
lowercase__: List[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__: Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = FlaxBlenderbotSmallModelTester(self )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = model_class(__magic_name__ )
@jax.jit
def encode_jitted(__magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=None , **__magic_name__ : Optional[Any] ):
return model.encode(input_ids=__magic_name__ , attention_mask=__magic_name__ )
with self.subTest("""JIT Enabled""" ):
__snake_case : Dict = encode_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__snake_case : str = encode_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : List[Any] = model_class(__magic_name__ )
__snake_case : List[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__snake_case : str = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__magic_name__ : Any , __magic_name__ : str , __magic_name__ : str ):
return model.decode(
decoder_input_ids=__magic_name__ , decoder_attention_mask=__magic_name__ , encoder_outputs=__magic_name__ , )
with self.subTest("""JIT Enabled""" ):
__snake_case : List[Any] = decode_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__snake_case : Optional[Any] = decode_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case : Dict = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__snake_case : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id
__snake_case : Any = model(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class _A ( unittest.TestCase ):
def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Dict=99 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : Tuple=4 , __magic_name__ : Dict=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : List[str]=16 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : List[Any]=4 , ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : Union[str, Any] = seq_length
__snake_case : int = is_training
__snake_case : List[str] = use_attention_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : int = vocab_size
__snake_case : Optional[Any] = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Any = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : Tuple = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[int] = num_choices
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Optional[Any] = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : int = None
if self.use_token_type_ids:
__snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = config_and_inputs
__snake_case : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class _A ( __lowercase , unittest.TestCase ):
lowercase__: Optional[Any] = True
lowercase__: int = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = FlaxRoFormerModelTester(self )
@slow
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case : List[str] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
__snake_case : List[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
__snake_case : List[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] )
__snake_case : Tuple = model(__magic_name__ )[0]
__snake_case : Any = 5_00_00
__snake_case : Tuple = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
__snake_case : Tuple = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _A ( __lowercase ):
lowercase__: Dict = (
'''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'''
'''It takes two arguments named `image` which should be the original image, and `label` which should be a text '''
'''describing the elements what should be identified in the segmentation mask. The tool returns the mask.'''
)
lowercase__: Tuple = '''CIDAS/clipseg-rd64-refined'''
lowercase__: Optional[Any] = '''image_segmenter'''
lowercase__: Optional[Any] = CLIPSegForImageSegmentation
lowercase__: Tuple = ['''image''', '''text''']
lowercase__: List[Any] = ['''image''']
def __init__( self : Dict , *__magic_name__ : int , **__magic_name__ : Any ) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""vision"""] )
super().__init__(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Any , __magic_name__ : "Image" , __magic_name__ : str ) -> List[Any]:
"""simple docstring"""
return self.pre_processor(text=[label] , images=[image] , padding=__magic_name__ , return_tensors="""pt""" )
def lowercase__ ( self : Tuple , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
with torch.no_grad():
__snake_case : str = self.model(**__magic_name__ ).logits
return logits
def lowercase__ ( self : Tuple , __magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = outputs.cpu().detach().numpy()
__snake_case : str = 0
__snake_case : str = 1
return Image.fromarray((array * 2_55).astype(np.uinta ) )
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _lowerCamelCase )
__snake_case : List[str] = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
__snake_case : Optional[Any] = dataset_size < in_memory_max_size
else:
__snake_case : List[str] = False
__snake_case : List[Any] = is_small_dataset(_lowerCamelCase )
assert result == expected
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple=13 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Any=3 , __magic_name__ : str=2 , __magic_name__ : Tuple=2 , __magic_name__ : int=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Dict=True , __magic_name__ : str=32 , __magic_name__ : str=5 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Any=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Dict=10 , __magic_name__ : Any=0.02 , __magic_name__ : Optional[Any]=0.9 , __magic_name__ : str=None , ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = parent
__snake_case : List[Any] = batch_size
__snake_case : Dict = image_size
__snake_case : Union[str, Any] = num_channels
__snake_case : Optional[Any] = patch_size
__snake_case : List[str] = tubelet_size
__snake_case : Union[str, Any] = num_frames
__snake_case : List[str] = is_training
__snake_case : str = use_labels
__snake_case : str = hidden_size
__snake_case : Dict = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Any = mask_ratio
__snake_case : List[str] = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
__snake_case : Optional[Any] = (image_size // patch_size) ** 2
__snake_case : List[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
__snake_case : Union[str, Any] = int(mask_ratio * self.seq_length )
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : int = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[Any] = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = VideoMAEModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = VideoMAEForPreTraining(__magic_name__ )
model.to(__magic_name__ )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__snake_case : Tuple = torch.ones((self.num_masks,) )
__snake_case : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
__snake_case : Any = mask.expand(self.batch_size , -1 ).bool()
__snake_case : int = model(__magic_name__ , __magic_name__ )
# model only returns predictions for masked patches
__snake_case : Tuple = mask.sum().item()
__snake_case : Union[str, Any] = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def lowercase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : List[str] = config_and_inputs
__snake_case : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
lowercase__: int = (
{'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: int = False
lowercase__: Optional[int] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = VideoMAEModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int=False ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = copy.deepcopy(__magic_name__ )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
__snake_case : int = torch.ones((self.model_tester.num_masks,) )
__snake_case : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
__snake_case : Union[str, Any] = mask.expand(self.model_tester.batch_size , -1 ).bool()
__snake_case : List[Any] = bool_masked_pos.to(__magic_name__ )
if return_labels:
if model_class in [
*get_values(__magic_name__ ),
]:
__snake_case : Dict = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""VideoMAE does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> int:
"""simple docstring"""
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[int] = model_class(__magic_name__ )
__snake_case : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Any = [*signature.parameters.keys()]
__snake_case : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = VideoMAEModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[str] = True
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks
__snake_case : Any = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = False
__snake_case : Any = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Union[str, Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Dict = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Optional[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__snake_case : Any = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Tuple = True
__snake_case : Union[str, Any] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : Any = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
__snake_case : List[Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : List[str] = outputs.hidden_states
__snake_case : List[Any] = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks
__snake_case : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Optional[Any] = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
pass
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : Optional[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : int = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to(
__magic_name__ )
__snake_case : Any = self.default_image_processor
__snake_case : Any = prepare_video()
__snake_case : int = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(**__magic_name__ )
# verify the logits
__snake_case : Dict = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Tuple = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__snake_case : Any = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__magic_name__ )
__snake_case : str = self.default_image_processor
__snake_case : List[str] = prepare_video()
__snake_case : List[Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# add boolean mask, indicating which patches to mask
__snake_case : List[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
__snake_case : Any = torch.load(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : str = model(**__magic_name__ )
# verify the logits
__snake_case : Tuple = torch.Size([1, 14_08, 15_36] )
__snake_case : Any = torch.tensor(
[[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__magic_name__ )
self.assertEqual(outputs.logits.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
__snake_case : Union[str, Any] = torch.tensor([0.5142] , device=__magic_name__ )
self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
__snake_case : Tuple = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__magic_name__ ).to(
__magic_name__ )
with torch.no_grad():
__snake_case : Optional[Any] = model(**__magic_name__ )
__snake_case : str = torch.tensor(torch.tensor([0.6469] ) , device=__magic_name__ )
self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> List[Any]:
"""simple docstring"""
__snake_case : Dict = []
for _ in range(_lowerCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = []
for step in range(_lowerCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : Any = os.path.join(_lowerCamelCase , """schedule.bin""" )
torch.save(scheduler.state_dict() , _lowerCamelCase )
__snake_case : Tuple = torch.load(_lowerCamelCase )
scheduler.load_state_dict(_lowerCamelCase )
return lrs
@require_torch
class _A ( unittest.TestCase ):
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for a, b in zip(__magic_name__ , __magic_name__ ):
self.assertAlmostEqual(__magic_name__ , __magic_name__ , delta=__magic_name__ )
def lowercase__ ( self : int ) -> Dict:
"""simple docstring"""
__snake_case : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__magic_name__ )
__snake_case : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] )
__snake_case : Dict = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__snake_case : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(1_00 ):
__snake_case : List[Any] = criterion(__magic_name__ , __magic_name__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__magic_name__ )
__snake_case : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] )
__snake_case : Optional[Any] = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__snake_case : Tuple = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__magic_name__ , weight_decay=0.0 , relative_step=__magic_name__ , scale_parameter=__magic_name__ , warmup_init=__magic_name__ , )
for _ in range(10_00 ):
__snake_case : Any = criterion(__magic_name__ , __magic_name__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _A ( unittest.TestCase ):
lowercase__: Optional[int] = nn.Linear(50 , 50 ) if is_torch_available() else None
lowercase__: str = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
lowercase__: Any = 10
def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Any=None ) -> List[str]:
"""simple docstring"""
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for a, b in zip(__magic_name__ , __magic_name__ ):
self.assertAlmostEqual(__magic_name__ , __magic_name__ , delta=__magic_name__ , msg=__magic_name__ )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = {"""num_warmup_steps""": 2, """num_training_steps""": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
__snake_case : Tuple = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"""num_warmup_steps""": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, """num_cycles""": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, """power""": 2.0, """lr_end""": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"""num_warmup_steps""": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
__snake_case , __snake_case : Tuple = data
__snake_case : Union[str, Any] = scheduler_func(self.optimizer , **__magic_name__ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
__snake_case : Tuple = unwrap_schedule(__magic_name__ , self.num_steps )
self.assertListAlmostEqual(
__magic_name__ , __magic_name__ , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
__snake_case : Optional[Any] = scheduler_func(self.optimizer , **__magic_name__ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(__magic_name__ ) # wrap to test picklability of the schedule
__snake_case : Any = unwrap_and_save_reload_schedule(__magic_name__ , self.num_steps )
self.assertListEqual(__magic_name__ , __magic_name__ , msg=f'''failed for {scheduler_func} in save and reload''' )
class _A :
def __init__( self : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = fn
def __call__( self : Union[str, Any] , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.fn(*__magic_name__ , **__magic_name__ )
@classmethod
def lowercase__ ( self : Any , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Dict = list(map(self , scheduler.lr_lambdas ) )
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class _A ( __lowercase ):
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Dict=10_24 , __magic_name__ : List[Any]=10_24 , __magic_name__ : Optional[Any]=3.6 ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = tokenizer
__snake_case : Tuple = tokenizer.bos_token_id
__snake_case : Optional[int] = dataset
__snake_case : int = seq_length
__snake_case : Optional[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : int = iter(self.dataset )
__snake_case : str = True
while more_examples:
__snake_case , __snake_case : str = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(__magic_name__ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
__snake_case : Union[str, Any] = False
break
__snake_case : List[Any] = tokenizer(__magic_name__ , truncation=__magic_name__ )["""input_ids"""]
__snake_case : Union[str, Any] = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(__magic_name__ ) , self.seq_length ):
__snake_case : Tuple = all_token_ids[i : i + self.seq_length]
if len(__magic_name__ ) == self.seq_length:
yield torch.tensor(__magic_name__ )
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = {"""streaming""": True}
__snake_case : int = load_dataset(args.dataset_name , split="""train""" , **_lowerCamelCase )
__snake_case : Any = ConstantLengthDataset(_lowerCamelCase , _lowerCamelCase , seq_length=args.seq_length )
__snake_case : int = DataLoader(_lowerCamelCase , batch_size=args.batch_size )
return eval_dataloader
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
model.eval()
__snake_case : Dict = []
for step, batch in enumerate(_lowerCamelCase ):
with torch.no_grad():
__snake_case : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase )
__snake_case : Tuple = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(_lowerCamelCase ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__snake_case : Tuple = torch.mean(torch.cat(_lowerCamelCase ) )
try:
__snake_case : Optional[Any] = torch.exp(_lowerCamelCase )
except OverflowError:
__snake_case : Dict = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
__UpperCamelCase = Accelerator()
# Parse configuration
__UpperCamelCase = HfArgumentParser(EvaluationArguments)
__UpperCamelCase = parser.parse_args()
set_seed(args.seed)
# Logging
__UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
# Load model and tokenizer
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
__UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
__UpperCamelCase = create_dataloader(args)
# Prepare everything with our `accelerator`.
__UpperCamelCase , __UpperCamelCase = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
__UpperCamelCase , __UpperCamelCase = evaluate(args)
logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "sentencepiece.model"}
__UpperCamelCase = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
__UpperCamelCase = {
"google/rembert": 256,
}
class _A ( __lowercase ):
lowercase__: Optional[Any] = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Optional[Any]="[SEP]" , __magic_name__ : int="[UNK]" , __magic_name__ : int="[SEP]" , __magic_name__ : Dict="[PAD]" , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , **__magic_name__ : List[str] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , **__magic_name__ , )
__snake_case : Union[str, Any] = do_lower_case
__snake_case : List[Any] = remove_space
__snake_case : Dict = keep_accents
__snake_case : Any = vocab_file
__snake_case : Dict = spm.SentencePieceProcessor()
self.sp_model.Load(__magic_name__ )
@property
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
return len(self.sp_model )
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : int , __magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = d
__snake_case : Optional[Any] = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=False ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = self.sp_model.EncodeAsPieces(__magic_name__ )
return pieces
def lowercase__ ( self : List[Any] , __magic_name__ : Any ) -> str:
"""simple docstring"""
return self.sp_model.PieceToId(__magic_name__ )
def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.IdToPiece(__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = self.sp_model.decode_pieces(__magic_name__ )
return out_string
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Any = [self.sep_token_id]
__snake_case : str = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowercase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Any = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(__magic_name__ ) )
return
__snake_case : Tuple = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ):
copyfile(self.vocab_file , __magic_name__ )
return (out_vocab_file,)
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__UpperCamelCase = "true"
def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=16 ) -> str:
"""simple docstring"""
set_seed(42 )
__snake_case : int = RegressionModel()
__snake_case : Any = deepcopy(_lowerCamelCase )
__snake_case : List[str] = RegressionDataset(length=_lowerCamelCase )
__snake_case : Any = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase )
model.to(accelerator.device )
__snake_case , __snake_case : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
return model, ddp_model, dataloader
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
__snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" , split="""validation""" )
def tokenize_function(_lowerCamelCase ):
__snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
with accelerator.main_process_first():
__snake_case : Union[str, Any] = dataset.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
__snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_lowerCamelCase ):
if use_longest:
return tokenizer.pad(_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )
return tokenizer.pad(_lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=16 )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase )
__snake_case : List[str] = get_dataloader(_lowerCamelCase , not dispatch_batches )
__snake_case : int = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_lowerCamelCase )
__snake_case , __snake_case : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Tuple = []
for batch in dataloader:
__snake_case , __snake_case : Dict = batch.values()
with torch.no_grad():
__snake_case : Optional[Any] = model(_lowerCamelCase )
__snake_case , __snake_case : int = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
__snake_case , __snake_case : str = [], []
for logit, targ in logits_and_targets:
logits.append(_lowerCamelCase )
targs.append(_lowerCamelCase )
__snake_case , __snake_case : Optional[Any] = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase )
return logits, targs
def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=16 ) -> Union[str, Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : Optional[int] = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case , __snake_case : Optional[Any] = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
assert (
len(_lowerCamelCase ) == num_samples
), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}'''
def _a ( _lowerCamelCase = False , _lowerCamelCase = False ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
__snake_case , __snake_case : Dict = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase )
# First do baseline
__snake_case , __snake_case , __snake_case : Optional[Any] = setup["""no"""]
model.to(_lowerCamelCase )
model.eval()
for batch in dataloader:
batch.to(_lowerCamelCase )
with torch.inference_mode():
__snake_case : List[Any] = model(**_lowerCamelCase )
__snake_case : Tuple = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=_lowerCamelCase , references=batch["""labels"""] )
__snake_case : Optional[int] = metric.compute()
# Then do distributed
__snake_case , __snake_case , __snake_case : Optional[int] = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
__snake_case : Union[str, Any] = model(**_lowerCamelCase )
__snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 )
__snake_case : List[str] = batch["""labels"""]
__snake_case , __snake_case : Optional[Any] = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase )
__snake_case : Union[str, Any] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def _a ( ) -> str:
"""simple docstring"""
__snake_case : str = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(_lowerCamelCase , _lowerCamelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__snake_case : Tuple = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase )
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(_lowerCamelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
__snake_case : Optional[Any] = Accelerator()
test_torch_metrics(_lowerCamelCase , 512 )
accelerator.state._reset_state()
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _A ( __lowercase ):
def __init__( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[Any]=13 , __magic_name__ : str=7 , __magic_name__ : List[str]=True , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[int]=False , __magic_name__ : str=False , __magic_name__ : Tuple=False , __magic_name__ : int=2 , __magic_name__ : int=99 , __magic_name__ : Dict=0 , __magic_name__ : str=32 , __magic_name__ : Union[str, Any]=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[str]=12 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : int=3 , __magic_name__ : str=4 , __magic_name__ : Any="last" , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = parent
__snake_case : Tuple = batch_size
__snake_case : Any = seq_length
__snake_case : List[Any] = is_training
__snake_case : Dict = use_input_lengths
__snake_case : Tuple = use_token_type_ids
__snake_case : List[str] = use_labels
__snake_case : Tuple = gelu_activation
__snake_case : Optional[Any] = sinusoidal_embeddings
__snake_case : int = causal
__snake_case : Dict = asm
__snake_case : Any = n_langs
__snake_case : Optional[int] = vocab_size
__snake_case : Dict = n_special
__snake_case : Dict = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Tuple = attention_probs_dropout_prob
__snake_case : Dict = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : List[str] = initializer_range
__snake_case : int = num_labels
__snake_case : List[str] = num_choices
__snake_case : int = summary_type
__snake_case : List[Any] = use_proj
__snake_case : Union[str, Any] = scope
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Optional[int] = None
if self.use_input_lengths:
__snake_case : List[str] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__snake_case : str = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__snake_case : Optional[int] = None
__snake_case : List[Any] = None
__snake_case : int = None
if self.use_labels:
__snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[str] = ids_tensor([self.batch_size] , 2 ).float()
__snake_case : Dict = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : int = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = FlaubertModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ , lengths=__magic_name__ , langs=__magic_name__ )
__snake_case : Any = model(__magic_name__ , langs=__magic_name__ )
__snake_case : List[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : List[Any] , ) -> int:
"""simple docstring"""
__snake_case : List[Any] = FlaubertWithLMHeadModel(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Any , ) -> Tuple:
"""simple docstring"""
__snake_case : List[Any] = FlaubertForQuestionAnsweringSimple(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = model(__magic_name__ )
__snake_case : Dict = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = FlaubertForQuestionAnswering(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
__snake_case : Optional[Any] = model(
__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , p_mask=__magic_name__ , )
__snake_case : int = model(
__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , )
((__snake_case) , ) : int = result_with_labels.to_tuple()
__snake_case : int = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ )
((__snake_case) , ) : Any = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : str , ) -> str:
"""simple docstring"""
__snake_case : Any = FlaubertForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ )
__snake_case : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : int , ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = FlaubertForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = self.num_choices
__snake_case : int = FlaubertForMultipleChoice(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = model(
__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[int] = config_and_inputs
__snake_case : Optional[Any] = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: int = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase__: List[str] = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Tuple=False ) -> Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
__snake_case : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : int = FlaubertModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , emb_dim=37 )
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : int ) -> Any:
"""simple docstring"""
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__magic_name__ )
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__magic_name__ )
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__magic_name__ )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__magic_name__ )
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__magic_name__ )
@slow
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Union[str, Any] = FlaubertModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@slow
@require_torch_gpu
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__snake_case : Any = True
__snake_case : List[Any] = model_class(config=__magic_name__ )
__snake_case : List[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : List[str] = torch.jit.trace(
__magic_name__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__magic_name__ , os.path.join(__magic_name__ , """traced_model.pt""" ) )
__snake_case : Optional[int] = torch.jit.load(os.path.join(__magic_name__ , """traced_model.pt""" ) , map_location=__magic_name__ )
loaded(inputs_dict["""input_ids"""].to(__magic_name__ ) , inputs_dict["""attention_mask"""].to(__magic_name__ ) )
@require_torch
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case : str = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
__snake_case : Tuple = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
__snake_case : Optional[Any] = model(__magic_name__ )[0]
__snake_case : int = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
__snake_case : Optional[Any] = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> float:
"""simple docstring"""
__snake_case : int = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
__snake_case : List[str] = 1 - (matter_density + radiation_density + dark_energy)
__snake_case : List[Any] = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
__snake_case : List[Any] = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
__UpperCamelCase = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCamelCase = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwinForImageClassification",
"SwinForMaskedImageModeling",
"SwinModel",
"SwinPreTrainedModel",
"SwinBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSwinForImageClassification",
"TFSwinForMaskedImageModeling",
"TFSwinModel",
"TFSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
__UpperCamelCase = logging.get_logger(__name__)
def _a ( _lowerCamelCase ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_lowerCamelCase ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class _A ( __lowercase ):
lowercase__: int = ['''pixel_values''']
def __init__( self : Dict , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : int , ) -> None:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Any = size if size is not None else {"""shortest_edge""": 2_56}
__snake_case : List[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
__snake_case : Any = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
__snake_case : str = get_size_dict(__magic_name__ , param_name="""crop_size""" )
__snake_case : Tuple = do_resize
__snake_case : Union[str, Any] = size
__snake_case : List[Any] = do_center_crop
__snake_case : Tuple = crop_size
__snake_case : Any = resample
__snake_case : Any = do_rescale
__snake_case : Optional[Any] = rescale_factor
__snake_case : List[str] = offset
__snake_case : Dict = do_normalize
__snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray:
"""simple docstring"""
__snake_case : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
if "shortest_edge" in size:
__snake_case : List[str] = get_resize_output_image_size(__magic_name__ , size["""shortest_edge"""] , default_to_square=__magic_name__ )
elif "height" in size and "width" in size:
__snake_case : Optional[int] = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
__snake_case : Tuple = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = image.astype(np.floataa )
if offset:
__snake_case : Dict = image - (scale / 2)
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
"""simple docstring"""
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__snake_case : Dict = to_numpy_array(__magic_name__ )
if do_resize:
__snake_case : List[Any] = self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ )
if do_center_crop:
__snake_case : List[Any] = self.center_crop(__magic_name__ , size=__magic_name__ )
if do_rescale:
__snake_case : Any = self.rescale(image=__magic_name__ , scale=__magic_name__ , offset=__magic_name__ )
if do_normalize:
__snake_case : Union[str, Any] = self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ )
__snake_case : str = to_channel_dimension_format(__magic_name__ , __magic_name__ )
return image
def lowercase__ ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Dict , ) -> PIL.Image.Image:
"""simple docstring"""
__snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize
__snake_case : Optional[int] = resample if resample is not None else self.resample
__snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Optional[int] = offset if offset is not None else self.offset
__snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else self.image_mean
__snake_case : Optional[Any] = image_std if image_std is not None else self.image_std
__snake_case : Union[str, Any] = size if size is not None else self.size
__snake_case : List[str] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
__snake_case : Dict = crop_size if crop_size is not None else self.crop_size
__snake_case : Tuple = get_size_dict(__magic_name__ , param_name="""crop_size""" )
if not valid_images(__magic_name__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__snake_case : Any = make_batched(__magic_name__ )
__snake_case : str = [
[
self._preprocess_image(
image=__magic_name__ , do_resize=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , do_center_crop=__magic_name__ , crop_size=__magic_name__ , do_rescale=__magic_name__ , rescale_factor=__magic_name__ , offset=__magic_name__ , do_normalize=__magic_name__ , image_mean=__magic_name__ , image_std=__magic_name__ , data_format=__magic_name__ , )
for img in video
]
for video in videos
]
__snake_case : str = {"""pixel_values""": videos}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class _A :
def __init__( self : Dict , __magic_name__ : str , __magic_name__ : List[str]=3 , __magic_name__ : int=32 , __magic_name__ : List[Any]=3 , __magic_name__ : List[Any]=10 , __magic_name__ : int=[8, 16, 32, 64] , __magic_name__ : Tuple=[1, 1, 2, 1] , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]="relu" , __magic_name__ : str=3 , __magic_name__ : Any=None , __magic_name__ : Dict=["stage2", "stage3", "stage4"] , __magic_name__ : Any=[2, 3, 4] , __magic_name__ : Optional[Any]=1 , ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = parent
__snake_case : Any = batch_size
__snake_case : int = image_size
__snake_case : Optional[int] = num_channels
__snake_case : Tuple = embeddings_size
__snake_case : Tuple = hidden_sizes
__snake_case : int = depths
__snake_case : str = is_training
__snake_case : List[Any] = use_labels
__snake_case : str = hidden_act
__snake_case : Optional[int] = num_labels
__snake_case : List[str] = scope
__snake_case : Optional[int] = len(__magic_name__ )
__snake_case : Tuple = out_features
__snake_case : str = out_indices
__snake_case : int = num_groups
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowercase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = BitModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.num_labels
__snake_case : str = BitForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : str , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = BitBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__snake_case : int = None
__snake_case : str = BitBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowercase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowercase__: List[str] = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
lowercase__: Optional[int] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: Any = False
lowercase__: Dict = False
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : int = BitModelTester(self )
__snake_case : Any = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return
@unittest.skip(reason="""Bit does not output attentions""" )
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Any = model_class(__magic_name__ )
__snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Optional[Any] = [*signature.parameters.keys()]
__snake_case : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(config=__magic_name__ )
for name, module in model.named_modules():
if isinstance(__magic_name__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ):
__snake_case : List[str] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[str] = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : Any = layer_type
__snake_case : Union[str, Any] = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[int] = BitModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Dict:
"""simple docstring"""
__snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ )
__snake_case : Optional[int] = self.default_image_processor
__snake_case : Any = prepare_img()
__snake_case : Any = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : int = model(**__magic_name__ )
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : str = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
@require_torch
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = (BitBackbone,) if is_torch_available() else ()
lowercase__: Optional[Any] = BitConfig
lowercase__: Tuple = False
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[Any] = BitModelTester(self )
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__lowercase ):
lowercase__: Tuple = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : str , *__magic_name__ : Union[str, Any] , **__magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Optional[Any] , *__magic_name__ : Union[str, Any] , **__magic_name__ : int ) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : List[Any] , *__magic_name__ : Dict , **__magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=__lowercase ):
lowercase__: Tuple = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Tuple , *__magic_name__ : str , **__magic_name__ : Tuple ) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Optional[int] , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=__lowercase ):
lowercase__: Union[str, Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : int , *__magic_name__ : int , **__magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : int , *__magic_name__ : str , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : int , *__magic_name__ : Dict , **__magic_name__ : Any ) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=__lowercase ):
lowercase__: Tuple = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[Any] , *__magic_name__ : List[str] , **__magic_name__ : Union[str, Any] ) -> int:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Dict , *__magic_name__ : List[str] , **__magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Optional[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=__lowercase ):
lowercase__: Optional[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Optional[int] , *__magic_name__ : str , **__magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : str , *__magic_name__ : Any , **__magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Any , *__magic_name__ : Tuple , **__magic_name__ : str ) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=__lowercase ):
lowercase__: Dict = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Any , *__magic_name__ : Tuple , **__magic_name__ : Any ) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowercase__ ( cls : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
__UpperCamelCase = HUGGINGFACE_HUB_CACHE
__UpperCamelCase = "config.json"
__UpperCamelCase = "diffusion_pytorch_model.bin"
__UpperCamelCase = "diffusion_flax_model.msgpack"
__UpperCamelCase = "model.onnx"
__UpperCamelCase = "diffusion_pytorch_model.safetensors"
__UpperCamelCase = "weights.pb"
__UpperCamelCase = "https://huggingface.co"
__UpperCamelCase = default_cache_path
__UpperCamelCase = "diffusers_modules"
__UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
__UpperCamelCase = ["fp16", "non-ema"]
__UpperCamelCase = ".self_attn"
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
__UpperCamelCase = False
class _A ( unittest.TestCase ):
def lowercase__ ( self : int , __magic_name__ : str=32 ) -> str:
"""simple docstring"""
set_seed(0 )
__snake_case : Union[str, Any] = UNetaDModel(sample_size=__magic_name__ , in_channels=3 , out_channels=3 )
__snake_case : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0001 )
return model, optimizer
@slow
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
__snake_case : List[Any] = DDPMScheduler(
num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__magic_name__ , )
__snake_case : Any = DDIMScheduler(
num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__magic_name__ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
__snake_case : Dict = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__magic_name__ ) for _ in range(4 )]
__snake_case : Any = [torch.randn((4, 3, 32, 32) ).to(__magic_name__ ) for _ in range(4 )]
__snake_case : int = [torch.randint(0 , 10_00 , (4,) ).long().to(__magic_name__ ) for _ in range(4 )]
# train with a DDPM scheduler
__snake_case , __snake_case : List[Any] = self.get_model_optimizer(resolution=32 )
model.train().to(__magic_name__ )
for i in range(4 ):
optimizer.zero_grad()
__snake_case : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
__snake_case : int = model(__magic_name__ , timesteps[i] ).sample
__snake_case : Dict = torch.nn.functional.mse_loss(__magic_name__ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
__snake_case , __snake_case : str = self.get_model_optimizer(resolution=32 )
model.train().to(__magic_name__ )
for i in range(4 ):
optimizer.zero_grad()
__snake_case : Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
__snake_case : List[Any] = model(__magic_name__ , timesteps[i] ).sample
__snake_case : List[Any] = torch.nn.functional.mse_loss(__magic_name__ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[Any] = IFInpaintingPipeline
lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
lowercase__: List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase__: Any = PipelineTesterMixin.required_optional_params - {'''latents'''}
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
return self._get_dummy_components()
def lowercase__ ( self : Any , __magic_name__ : str , __magic_name__ : str=0 ) -> Any:
"""simple docstring"""
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : Any = torch.manual_seed(__magic_name__ )
else:
__snake_case : Any = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Any = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
self._test_save_load_local()
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" )
__snake_case : Optional[int] = AutoTokenizer.from_pretrained("""google/mt5-small""" )
__snake_case : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids
__snake_case : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids
__snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ).loss
__snake_case : Optional[Any] = -tf.math.reduce_mean(__magic_name__ ).numpy()
__snake_case : Union[str, Any] = -21.228168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if inductance < 0:
raise ValueError("""Inductance cannot be negative""" )
if frequency < 0:
raise ValueError("""Frequency cannot be negative""" )
if reactance < 0:
raise ValueError("""Inductive reactance cannot be negative""" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class _A ( __lowercase , unittest.TestCase ):
lowercase__: str = ShapEPipeline
lowercase__: Union[str, Any] = ['''prompt''']
lowercase__: Dict = ['''prompt''']
lowercase__: Union[str, Any] = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
lowercase__: Union[str, Any] = False
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return 8
@property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(__magic_name__ )
@property
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : Tuple = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__snake_case : List[Any] = PriorTransformer(**__magic_name__ )
return model
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : Optional[Any] = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__snake_case : Any = ShapERenderer(**__magic_name__ )
return model
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case : int = self.dummy_prior
__snake_case : Optional[int] = self.dummy_text_encoder
__snake_case : str = self.dummy_tokenizer
__snake_case : List[str] = self.dummy_renderer
__snake_case : str = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , )
__snake_case : List[Any] = {
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowercase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str=0 ) -> Any:
"""simple docstring"""
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : int = torch.manual_seed(__magic_name__ )
else:
__snake_case : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Any = {
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[Any] = """cpu"""
__snake_case : Optional[int] = self.get_dummy_components()
__snake_case : List[Any] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : str = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : str = output.images[0]
__snake_case : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__snake_case : List[Any] = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : Any ) -> List[str]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = torch_device == """cpu"""
__snake_case : List[Any] = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , )
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : str = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Any = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : Optional[int] = 1
__snake_case : Union[str, Any] = 2
__snake_case : Any = self.get_dummy_inputs(__magic_name__ )
for key in inputs.keys():
if key in self.batch_params:
__snake_case : Optional[int] = batch_size * [inputs[key]]
__snake_case : Tuple = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : int ) -> Dict:
"""simple docstring"""
__snake_case : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
__snake_case : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" )
__snake_case : Union[str, Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 )
__snake_case : Any = pipe(
"""a shark""" , generator=__magic_name__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: Tuple = '''timm_backbone'''
def __init__( self : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Dict=3 , __magic_name__ : List[str]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=None , **__magic_name__ : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Any = backbone
__snake_case : Tuple = num_channels
__snake_case : int = features_only
__snake_case : int = use_pretrained_backbone
__snake_case : List[str] = True
__snake_case : Dict = out_indices if out_indices is not None else (-1,)
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
__UpperCamelCase = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
__UpperCamelCase = {
"allenai/longformer-base-4096": 4096,
"allenai/longformer-large-4096": 4096,
"allenai/longformer-large-4096-finetuned-triviaqa": 4096,
"allenai/longformer-base-4096-extra.pos.embd.only": 4096,
"allenai/longformer-large-4096-extra.pos.embd.only": 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _a ( ) -> str:
"""simple docstring"""
__snake_case : int = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
__snake_case : List[str] = bs[:]
__snake_case : int = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCamelCase )
cs.append(2**8 + n )
n += 1
__snake_case : Any = [chr(_lowerCamelCase ) for n in cs]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : int = set()
__snake_case : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__snake_case : List[str] = char
return pairs
class _A ( __lowercase ):
lowercase__: Union[str, Any] = VOCAB_FILES_NAMES
lowercase__: Dict = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: int = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Any="replace" , __magic_name__ : Dict="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : int="<unk>" , __magic_name__ : Optional[Any]="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : Union[str, Any]=False , **__magic_name__ : Dict , ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
__snake_case : str = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
__snake_case : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
__snake_case : Union[str, Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
__snake_case : str = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle:
__snake_case : Tuple = json.load(__magic_name__ )
__snake_case : Optional[Any] = {v: k for k, v in self.encoder.items()}
__snake_case : Any = errors # how to handle errors in decoding
__snake_case : List[Any] = bytes_to_unicode()
__snake_case : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding="""utf-8""" ) as merges_handle:
__snake_case : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__snake_case : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges]
__snake_case : Union[str, Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
__snake_case : Optional[Any] = {}
__snake_case : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__snake_case : Any = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
return len(self.encoder )
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : Dict , __magic_name__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
__snake_case : Any = tuple(__magic_name__ )
__snake_case : Tuple = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
__snake_case : Optional[Any] = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__snake_case , __snake_case : List[Any] = bigram
__snake_case : str = []
__snake_case : List[Any] = 0
while i < len(__magic_name__ ):
try:
__snake_case : Optional[int] = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__snake_case : List[str] = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__snake_case : List[Any] = tuple(__magic_name__ )
__snake_case : int = new_word
if len(__magic_name__ ) == 1:
break
else:
__snake_case : List[Any] = get_pairs(__magic_name__ )
__snake_case : Dict = """ """.join(__magic_name__ )
__snake_case : Optional[Any] = word
return word
def lowercase__ ( self : List[str] , __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : int = []
for token in re.findall(self.pat , __magic_name__ ):
__snake_case : str = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(""" """ ) )
return bpe_tokens
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def lowercase__ ( self : int , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = """""".join(__magic_name__ )
__snake_case : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : int = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + """\n""" )
__snake_case : Tuple = 0
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
__snake_case : List[Any] = token_index
writer.write(""" """.join(__magic_name__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowercase__ ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
__snake_case : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : List[str] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any]=False , **__magic_name__ : List[str] ) -> Any:
"""simple docstring"""
__snake_case : Dict = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
__snake_case : Dict = """ """ + text
return (text, kwargs)
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: # noqa: E741
"""simple docstring"""
while r - l > 1:
__snake_case : List[str] = (l + r) // 2
if v[m] >= key:
__snake_case : Any = m
else:
__snake_case : Tuple = m # noqa: E741
return r
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return 0
__snake_case : int = [0] * len(_lowerCamelCase )
__snake_case : Dict = 1
__snake_case : Optional[Any] = v[0]
for i in range(1 , len(_lowerCamelCase ) ):
if v[i] < tail[0]:
__snake_case : Optional[Any] = v[i]
elif v[i] > tail[length - 1]:
__snake_case : Tuple = v[i]
length += 1
else:
__snake_case : int = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
"""simple docstring"""
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool:
"""simple docstring"""
if curr_ind == len(_lowerCamelCase ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(_lowerCamelCase ) ):
if valid_connection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
# Insert current vertex into path as next transition
__snake_case : Optional[int] = next_ver
# Validate created path
if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , curr_ind + 1 ):
return True
# Backtrack
__snake_case : Optional[int] = -1
return False
def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> list[int]:
"""simple docstring"""
__snake_case : List[str] = [-1] * (len(_lowerCamelCase ) + 1)
# initialize start and end of path with starting index
__snake_case : Tuple = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(_lowerCamelCase , _lowerCamelCase , 1 ) else []
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _A :
def __init__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Tuple=14 , __magic_name__ : List[str]=7 , __magic_name__ : Any=True , __magic_name__ : List[Any]=True , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : Optional[int]=99 , __magic_name__ : List[str]=32 , __magic_name__ : Tuple=4 , __magic_name__ : Tuple=4 , __magic_name__ : List[str]=4 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : str=0.02 , ) -> Any:
"""simple docstring"""
__snake_case : Dict = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : Tuple = seq_length
__snake_case : Tuple = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : Any = use_token_type_ids
__snake_case : List[str] = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : Any = rotary_dim
__snake_case : List[Any] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : List[Any] = intermediate_size
__snake_case : List[str] = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : int = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Optional[int] = initializer_range
__snake_case : Tuple = None
__snake_case : Optional[Any] = vocab_size - 1
__snake_case : Any = vocab_size - 1
__snake_case : Union[str, Any] = vocab_size - 1
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = None
if self.use_input_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : List[Any] = config_and_inputs
__snake_case : List[str] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = 20
__snake_case : int = model_class_name(__magic_name__ )
__snake_case : List[Any] = model.init_cache(input_ids.shape[0] , __magic_name__ )
__snake_case : Tuple = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__snake_case : List[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__snake_case : Tuple = model(
input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , )
__snake_case : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : Tuple = model(
input_ids[:, -1:] , attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , position_ids=__magic_name__ , )
__snake_case : Tuple = model(__magic_name__ )
__snake_case : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = 20
__snake_case : List[str] = model_class_name(__magic_name__ )
__snake_case : int = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__snake_case : Any = model.init_cache(input_ids.shape[0] , __magic_name__ )
__snake_case : List[str] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__snake_case : int = model(
input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , )
__snake_case : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
__snake_case : Optional[Any] = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__magic_name__ , position_ids=__magic_name__ , )
__snake_case : str = model(__magic_name__ , attention_mask=__magic_name__ )
__snake_case : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
lowercase__: Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = FlaxGPTJModelTester(self )
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@tooslow
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
__snake_case : Dict = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=__magic_name__ , truncation=__magic_name__ )
__snake_case : Union[str, Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
__snake_case : str = False
__snake_case : Optional[Any] = model.config.eos_token_id
__snake_case : Optional[Any] = jax.jit(model.generate )
__snake_case : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
__snake_case : Optional[int] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
__snake_case : int = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(__magic_name__ , __magic_name__ )
@is_pt_flax_cross_test
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case : int = getattr(__magic_name__ , __magic_name__ )
__snake_case , __snake_case : Dict = pt_inputs["""input_ids"""].shape
__snake_case : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__magic_name__ ):
__snake_case : Tuple = 0
__snake_case : Union[str, Any] = 1
__snake_case : Any = 0
__snake_case : int = 1
__snake_case : Optional[Any] = pt_model_class(__magic_name__ ).eval()
__snake_case : List[str] = model_class(__magic_name__ , dtype=jnp.floataa )
__snake_case : Optional[int] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ )
__snake_case : Tuple = fx_state
with torch.no_grad():
__snake_case : Tuple = pt_model(**__magic_name__ ).to_tuple()
__snake_case : Dict = fx_model(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__magic_name__ )
__snake_case : int = model_class.from_pretrained(__magic_name__ , from_pt=__magic_name__ )
__snake_case : Tuple = fx_model_loaded(**__magic_name__ ).to_tuple()
self.assertEqual(
len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__snake_case : Any = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : Tuple = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case : int = getattr(__magic_name__ , __magic_name__ )
__snake_case : Tuple = pt_model_class(__magic_name__ ).eval()
__snake_case : Union[str, Any] = model_class(__magic_name__ , dtype=jnp.floataa )
__snake_case : Union[str, Any] = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params )
__snake_case , __snake_case : Any = pt_inputs["""input_ids"""].shape
__snake_case : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__magic_name__ ):
__snake_case : Dict = 0
__snake_case : str = 1
__snake_case : Tuple = 0
__snake_case : Union[str, Any] = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__snake_case : str = pt_model(**__magic_name__ ).to_tuple()
__snake_case : List[Any] = fx_model(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__magic_name__ )
__snake_case : Optional[int] = pt_model_class.from_pretrained(__magic_name__ , from_flax=__magic_name__ )
with torch.no_grad():
__snake_case : str = pt_model_loaded(**__magic_name__ ).to_tuple()
self.assertEqual(
len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
__snake_case : List[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
return "".join(sorted(_lowerCamelCase ) )
def _a ( _lowerCamelCase ) -> list[str]:
"""simple docstring"""
return word_by_signature[signature(_lowerCamelCase )]
__UpperCamelCase = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8")
__UpperCamelCase = sorted({word.strip().lower() for word in data.splitlines()})
__UpperCamelCase = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__UpperCamelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open("anagrams.txt", "w") as file:
file.write("all_anagrams = \n ")
file.write(pprint.pformat(all_anagrams))
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__lowercase ):
lowercase__: int = ['''speech''']
def __init__( self : Tuple , *__magic_name__ : List[Any] , **__magic_name__ : Dict ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""speech"""] )
class _A ( metaclass=__lowercase ):
lowercase__: List[str] = ['''speech''']
def __init__( self : Optional[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""speech"""] )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
__UpperCamelCase = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
__UpperCamelCase = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
__UpperCamelCase = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
__UpperCamelCase = sorted(arg_to_scheduler.keys())
__UpperCamelCase = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class _A ( pl.LightningModule ):
def __init__( self : Optional[Any] , __magic_name__ : argparse.Namespace , __magic_name__ : str=None , __magic_name__ : Any="base" , __magic_name__ : int=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None , **__magic_name__ : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__magic_name__ )
__snake_case : int = 0
__snake_case : Optional[int] = Path(self.hparams.output_dir )
__snake_case : Union[str, Any] = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__snake_case : Optional[int] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , )
else:
__snake_case : PretrainedConfig = config
__snake_case : Optional[Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(self.hparams , __magic_name__ , __magic_name__ ):
assert hasattr(self.config , __magic_name__ ), f'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) )
if tokenizer is None:
__snake_case : Dict = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , )
else:
__snake_case : PreTrainedTokenizer = tokenizer
__snake_case : Optional[Any] = MODEL_MODES[mode]
if model is None:
__snake_case : Dict = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , )
else:
__snake_case : Optional[Any] = model
def lowercase__ ( self : str , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
__snake_case : str = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__snake_case : Tuple = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1}
return scheduler
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = self.model
__snake_case : List[Any] = ["""bias""", """LayerNorm.weight"""]
__snake_case : List[str] = [
{
"""params""": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"""weight_decay""": self.hparams.weight_decay,
},
{
"""params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
if self.hparams.adafactor:
__snake_case : Dict = Adafactor(
__magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ )
else:
__snake_case : Any = AdamW(
__magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__snake_case : Tuple = optimizer
__snake_case : Dict = self.get_lr_scheduler()
return [optimizer], [scheduler]
def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Any:
"""simple docstring"""
return self.validation_step(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
return self.validation_end(__magic_name__ )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__snake_case : Union[str, Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if stage == "test":
__snake_case : Optional[int] = len(self.test_dataloader().dataset )
else:
__snake_case : int = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__magic_name__ )
__snake_case : Optional[Any] = len(self.train_dataloader().dataset )
def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> Any:
"""simple docstring"""
raise NotImplementedError("""You must implement this for your task""" )
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
return self.train_loader
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , """cached_{}_{}_{}""".format(
__magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def lowercase__ ( self : Optional[Any] , __magic_name__ : Dict[str, Any] ) -> None:
"""simple docstring"""
__snake_case : Optional[int] = self.output_dir.joinpath("""best_tfmr""" )
__snake_case : Optional[Any] = self.step_count
self.model.save_pretrained(__magic_name__ )
self.tokenizer.save_pretrained(__magic_name__ )
@staticmethod
def lowercase__ ( __magic_name__ : List[str] , __magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
parser.add_argument(
"""--model_name_or_path""" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--config_name""" , default="""""" , type=__magic_name__ , help="""Pretrained config name or path if not the same as model_name""" )
parser.add_argument(
"""--tokenizer_name""" , default=__magic_name__ , type=__magic_name__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument(
"""--cache_dir""" , default=str(Path(__magic_name__ ).parent / """test_run""" / """cache""" ) , type=__magic_name__ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , )
parser.add_argument(
"""--encoder_layerdrop""" , type=__magic_name__ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--decoder_layerdrop""" , type=__magic_name__ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--dropout""" , type=__magic_name__ , help="""Dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--attention_dropout""" , type=__magic_name__ , help="""Attention dropout probability (Optional). Goes into model.config""" , )
parser.add_argument("""--learning_rate""" , default=5E-5 , type=__magic_name__ , help="""The initial learning rate for Adam.""" )
parser.add_argument(
"""--lr_scheduler""" , default="""linear""" , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help="""Learning rate scheduler""" , )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__magic_name__ , help="""Weight decay if we apply some.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__magic_name__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--warmup_steps""" , default=0 , type=__magic_name__ , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--num_workers""" , default=4 , type=__magic_name__ , help="""kwarg passed to DataLoader""" )
parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__magic_name__ )
parser.add_argument("""--train_batch_size""" , default=32 , type=__magic_name__ )
parser.add_argument("""--eval_batch_size""" , default=32 , type=__magic_name__ )
parser.add_argument("""--adafactor""" , action="""store_true""" )
class _A ( pl.Callback ):
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Any ) -> int:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class _A ( pl.Callback ):
def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> str:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__magic_name__ )
class _A ( pl.Callback ):
def lowercase__ ( self : str , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : str = trainer.lr_schedulers[0]["""scheduler"""]
__snake_case : List[str] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> int:
"""simple docstring"""
rank_zero_info("""***** Validation results *****""" )
__snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
def lowercase__ ( self : str , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> Optional[int]:
"""simple docstring"""
rank_zero_info("""***** Test results *****""" )
__snake_case : Union[str, Any] = trainer.callback_metrics
# Log and save results to file
__snake_case : Optional[int] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" )
with open(__magic_name__ , """w""" ) as writer:
for key in sorted(__magic_name__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
writer.write("""{} = {}\n""".format(__magic_name__ , str(metrics[key] ) ) )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
parser.add_argument(
"""--output_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=_lowerCamelCase , default="""O2""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_lowerCamelCase )
parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_lowerCamelCase , help="""Max gradient norm""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" )
parser.add_argument(
"""--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--seed""" , type=_lowerCamelCase , default=42 , help="""random seed for initialization""" )
parser.add_argument(
"""--data_dir""" , default=str(Path(_lowerCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_lowerCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) -> Union[str, Any]:
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
__snake_case : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_lowerCamelCase )
# add custom checkpoints
if checkpoint_callback is None:
__snake_case : List[str] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_lowerCamelCase )
if logging_callback is None:
__snake_case : Optional[int] = LoggingCallback()
__snake_case : List[str] = {}
if args.fpaa:
__snake_case : List[str] = 16
if args.gpus > 1:
__snake_case : List[Any] = """auto"""
__snake_case : int = """ddp"""
__snake_case : int = args.accumulate_grad_batches
__snake_case : Dict = None
__snake_case : Union[str, Any] = """auto"""
__snake_case : List[str] = pl.Trainer.from_argparse_args(
_lowerCamelCase , weights_summary=_lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCamelCase , )
if args.do_train:
trainer.fit(_lowerCamelCase )
else:
print("""RAG modeling tests with new set functions successfuly executed!""" )
return trainer
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = XGLMTokenizer
lowercase__: Dict = XGLMTokenizerFast
lowercase__: List[str] = True
lowercase__: Optional[Any] = True
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : str = """<pad>"""
__snake_case : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(len(__magic_name__ ) , 10_08 )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08 )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
__snake_case : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__snake_case : Tuple = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__magic_name__ , f.name )
__snake_case : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=__magic_name__ )
__snake_case : str = pickle.dumps(__magic_name__ )
pickle.loads(__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__snake_case : Optional[int] = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_rust_tokenizer()
__snake_case : Dict = """I was born in 92000, and this is falsé."""
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
__snake_case : Optional[Any] = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : str = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
__snake_case : Tuple = self.get_rust_tokenizer()
__snake_case : Optional[int] = tokenizer.encode(__magic_name__ )
__snake_case : Optional[int] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : str = """Hello World!"""
__snake_case : Optional[int] = [2, 3_12_27, 44_47, 35]
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"""
)
# fmt: off
__snake_case : Optional[int] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : str = {
"""input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""facebook/xglm-564M""" , padding=__magic_name__ , )
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
__UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> list[int]:
"""simple docstring"""
__snake_case : Tuple = True
__snake_case : Union[str, Any] = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
order.append(_lowerCamelCase )
return order
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> list[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = True
__snake_case : List[Any] = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return component
def _a ( _lowerCamelCase ) -> list[list[int]]:
"""simple docstring"""
__snake_case : List[str] = len(_lowerCamelCase ) * [False]
__snake_case : dict[int, list[int]] = {vert: [] for vert in range(len(_lowerCamelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_lowerCamelCase )
__snake_case : Any = []
for i, was_visited in enumerate(_lowerCamelCase ):
if not was_visited:
order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : List[str] = []
__snake_case : Any = len(_lowerCamelCase ) * [False]
for i in range(len(_lowerCamelCase ) ):
__snake_case : Any = order[len(_lowerCamelCase ) - i - 1]
if not visited[vert]:
__snake_case : List[Any] = find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
components_list.append(_lowerCamelCase )
return components_list
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _A ( unittest.TestCase ):
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = """laion/clap-htsat-unfused"""
__snake_case : Dict = tempfile.mkdtemp()
def lowercase__ ( self : Union[str, Any] , **__magic_name__ : List[str] ) -> str:
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint , **__magic_name__ )
def lowercase__ ( self : List[str] , **__magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Tuple = self.get_feature_extractor()
__snake_case : Any = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
processor.save_pretrained(self.tmpdirname )
__snake_case : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
__snake_case : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : List[Any] = self.get_feature_extractor(do_normalize=__magic_name__ , padding_value=1.0 )
__snake_case : Any = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = self.get_feature_extractor()
__snake_case : int = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : Tuple = floats_list((3, 10_00) )
__snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" )
__snake_case : str = processor(audios=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = self.get_feature_extractor()
__snake_case : Any = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : int = """This is a test string"""
__snake_case : List[Any] = processor(text=__magic_name__ )
__snake_case : List[Any] = tokenizer(__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_feature_extractor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : List[Any] = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
__snake_case : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Optional[int] = processor.batch_decode(__magic_name__ )
__snake_case : int = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = self.get_feature_extractor()
__snake_case : List[Any] = self.get_tokenizer()
__snake_case : Dict = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class _A ( nn.Module ):
lowercase__: int
lowercase__: int
lowercase__: float = 0.0
lowercase__: int = 1
lowercase__: int = 1
lowercase__: bool = True
lowercase__: bool = False
lowercase__: bool = False
lowercase__: bool = False
lowercase__: jnp.dtype = jnp.floataa
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : List[Any] = []
__snake_case : List[Any] = []
for i in range(self.num_layers ):
__snake_case : Dict = self.in_channels if i == 0 else self.out_channels
__snake_case : Optional[int] = FlaxResnetBlockaD(
in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
__snake_case : str = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
__snake_case : Optional[int] = resnets
__snake_case : Union[str, Any] = attentions
if self.add_downsample:
__snake_case : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=True ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
__snake_case : Any = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
__snake_case : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
output_states += (hidden_states,)
if self.add_downsample:
__snake_case : Optional[int] = self.downsamplers_a(__magic_name__ )
output_states += (hidden_states,)
return hidden_states, output_states
class _A ( nn.Module ):
lowercase__: int
lowercase__: int
lowercase__: float = 0.0
lowercase__: int = 1
lowercase__: bool = True
lowercase__: jnp.dtype = jnp.floataa
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = []
for i in range(self.num_layers ):
__snake_case : Optional[int] = self.in_channels if i == 0 else self.out_channels
__snake_case : int = FlaxResnetBlockaD(
in_channels=__magic_name__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
__snake_case : int = resnets
if self.add_downsample:
__snake_case : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=True ) -> Any:
"""simple docstring"""
__snake_case : Any = ()
for resnet in self.resnets:
__snake_case : Optional[int] = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
output_states += (hidden_states,)
if self.add_downsample:
__snake_case : Optional[int] = self.downsamplers_a(__magic_name__ )
output_states += (hidden_states,)
return hidden_states, output_states
class _A ( nn.Module ):
lowercase__: int
lowercase__: int
lowercase__: int
lowercase__: float = 0.0
lowercase__: int = 1
lowercase__: int = 1
lowercase__: bool = True
lowercase__: bool = False
lowercase__: bool = False
lowercase__: bool = False
lowercase__: jnp.dtype = jnp.floataa
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[int] = []
__snake_case : str = []
for i in range(self.num_layers ):
__snake_case : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__snake_case : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels
__snake_case : Dict = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
__snake_case : List[Any] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
__snake_case : Optional[int] = resnets
__snake_case : Any = attentions
if self.add_upsample:
__snake_case : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : str , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=True ) -> Dict:
"""simple docstring"""
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
__snake_case : Any = res_hidden_states_tuple[-1]
__snake_case : int = res_hidden_states_tuple[:-1]
__snake_case : Any = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__snake_case : Any = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
__snake_case : Tuple = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
if self.add_upsample:
__snake_case : Dict = self.upsamplers_a(__magic_name__ )
return hidden_states
class _A ( nn.Module ):
lowercase__: int
lowercase__: int
lowercase__: int
lowercase__: float = 0.0
lowercase__: int = 1
lowercase__: bool = True
lowercase__: jnp.dtype = jnp.floataa
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = []
for i in range(self.num_layers ):
__snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__snake_case : int = self.prev_output_channel if i == 0 else self.out_channels
__snake_case : Union[str, Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
__snake_case : Optional[Any] = resnets
if self.add_upsample:
__snake_case : str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Optional[int]=True ) -> List[str]:
"""simple docstring"""
for resnet in self.resnets:
# pop res hidden states
__snake_case : Tuple = res_hidden_states_tuple[-1]
__snake_case : Any = res_hidden_states_tuple[:-1]
__snake_case : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__snake_case : Any = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
if self.add_upsample:
__snake_case : int = self.upsamplers_a(__magic_name__ )
return hidden_states
class _A ( nn.Module ):
lowercase__: int
lowercase__: float = 0.0
lowercase__: int = 1
lowercase__: int = 1
lowercase__: bool = False
lowercase__: bool = False
lowercase__: jnp.dtype = jnp.floataa
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
__snake_case : List[Any] = []
for _ in range(self.num_layers ):
__snake_case : Any = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__magic_name__ )
__snake_case : Tuple = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__magic_name__ )
__snake_case : Optional[int] = resnets
__snake_case : Optional[Any] = attentions
def __call__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=True ) -> int:
"""simple docstring"""
__snake_case : List[str] = self.resnets[0](__magic_name__ , __magic_name__ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
__snake_case : List[Any] = attn(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
__snake_case : str = resnet(__magic_name__ , __magic_name__ , deterministic=__magic_name__ )
return hidden_states
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__UpperCamelCase = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
__UpperCamelCase = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
__UpperCamelCase = {f"""funnel-transformer/{name}""": 512 for name in _model_names}
__UpperCamelCase = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names}
class _A ( __lowercase ):
lowercase__: Optional[Any] = VOCAB_FILES_NAMES
lowercase__: int = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Dict = PRETRAINED_INIT_CONFIGURATION
lowercase__: Dict = FunnelTokenizer
lowercase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: int = 2
def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=True , __magic_name__ : Dict="<unk>" , __magic_name__ : str="<sep>" , __magic_name__ : int="<pad>" , __magic_name__ : Optional[Any]="<cls>" , __magic_name__ : Dict="<mask>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="</s>" , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[int]=None , __magic_name__ : str="##" , **__magic_name__ : Union[str, Any] , ) -> Dict:
"""simple docstring"""
super().__init__(
__magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , clean_text=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , wordpieces_prefix=__magic_name__ , **__magic_name__ , )
__snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __magic_name__ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __magic_name__ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __magic_name__ ) != tokenize_chinese_chars
):
__snake_case : Any = getattr(__magic_name__ , normalizer_state.pop("""type""" ) )
__snake_case : Tuple = do_lower_case
__snake_case : List[Any] = strip_accents
__snake_case : Dict = tokenize_chinese_chars
__snake_case : Optional[int] = normalizer_class(**__magic_name__ )
__snake_case : Union[str, Any] = do_lower_case
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : Optional[int]=None ) -> Any:
"""simple docstring"""
__snake_case : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = """"""
for i in table:
res += inp[i - 1]
return res
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
return data[1:] + data[0]
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = """"""
for i in range(len(_lowerCamelCase ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 )
__snake_case : Any = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = message[:4]
__snake_case : Dict = message[4:]
__snake_case : Dict = apply_table(_lowerCamelCase , _lowerCamelCase )
__snake_case : Union[str, Any] = xor(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[int] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741
__snake_case : List[str] = apply_sbox(_lowerCamelCase , temp[4:] )
__snake_case : Tuple = """0""" * (2 - len(_lowerCamelCase )) + l # noqa: E741
__snake_case : List[Any] = """0""" * (2 - len(_lowerCamelCase )) + r
__snake_case : Dict = apply_table(l + r , _lowerCamelCase )
__snake_case : List[Any] = xor(_lowerCamelCase , _lowerCamelCase )
return temp + right
if __name__ == "__main__":
__UpperCamelCase = input("Enter 10 bit key: ")
__UpperCamelCase = input("Enter 8 bit message: ")
__UpperCamelCase = [6, 3, 7, 4, 8, 5, 10, 9]
__UpperCamelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
__UpperCamelCase = [2, 4, 3, 1]
__UpperCamelCase = [2, 6, 3, 1, 4, 8, 5, 7]
__UpperCamelCase = [4, 1, 3, 5, 7, 2, 8, 6]
__UpperCamelCase = [4, 1, 2, 3, 2, 3, 4, 1]
__UpperCamelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
__UpperCamelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
__UpperCamelCase = apply_table(key, paa_table)
__UpperCamelCase = temp[:5]
__UpperCamelCase = temp[5:]
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = apply_table(left + right, pa_table)
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = left_shift(left)
__UpperCamelCase = left_shift(right)
__UpperCamelCase = apply_table(left + right, pa_table)
# encryption
__UpperCamelCase = apply_table(message, IP)
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = temp[4:] + temp[:4]
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = apply_table(temp, IP_inv)
print("Cipher text is:", CT)
# decryption
__UpperCamelCase = apply_table(CT, IP)
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = temp[4:] + temp[:4]
__UpperCamelCase = function(expansion, sa, sa, keya, temp)
__UpperCamelCase = apply_table(temp, IP_inv)
print("Plain text after decypting is:", PT)
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
"""simple docstring"""
if partitions <= 0:
raise ValueError("""partitions must be a positive number!""" )
if partitions > number_of_bytes:
raise ValueError("""partitions can not > number_of_bytes!""" )
__snake_case : int = number_of_bytes // partitions
__snake_case : int = []
for i in range(_lowerCamelCase ):
__snake_case : str = i * bytes_per_partition + 1
__snake_case : str = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(F'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def _a ( ) -> None:
"""simple docstring"""
print("""Making key files...""" )
make_key_files("""rsa""" , 1024 )
print("""Key files generation successful.""" )
def _a ( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print("""Generating prime p...""" )
__snake_case : Dict = rabinMiller.generate_large_prime(_lowerCamelCase )
print("""Generating prime q...""" )
__snake_case : Dict = rabinMiller.generate_large_prime(_lowerCamelCase )
__snake_case : str = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
__snake_case : str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
__snake_case : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) )
__snake_case : Tuple = (n, e)
__snake_case : Optional[Any] = (n, d)
return (public_key, private_key)
def _a ( _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ):
print("""\nWARNING:""" )
print(
F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
__snake_case , __snake_case : Union[str, Any] = generate_key(_lowerCamelCase )
print(F'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(F'''{name}_pubkey.txt''' , """w""" ) as out_file:
out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' )
print(F'''Writing private key to file {name}_privkey.txt...''' )
with open(F'''{name}_privkey.txt''' , """w""" ) as out_file:
out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = checkpoint
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = vae_state_dict["""encoder.conv_in.weight"""]
__snake_case : str = vae_state_dict["""encoder.conv_in.bias"""]
__snake_case : List[Any] = vae_state_dict["""encoder.conv_out.weight"""]
__snake_case : Dict = vae_state_dict["""encoder.conv_out.bias"""]
__snake_case : List[str] = vae_state_dict["""encoder.norm_out.weight"""]
__snake_case : Tuple = vae_state_dict["""encoder.norm_out.bias"""]
__snake_case : Dict = vae_state_dict["""decoder.conv_in.weight"""]
__snake_case : Union[str, Any] = vae_state_dict["""decoder.conv_in.bias"""]
__snake_case : List[str] = vae_state_dict["""decoder.conv_out.weight"""]
__snake_case : List[Any] = vae_state_dict["""decoder.conv_out.bias"""]
__snake_case : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""]
__snake_case : Optional[int] = vae_state_dict["""decoder.norm_out.bias"""]
__snake_case : Tuple = vae_state_dict["""quant_conv.weight"""]
__snake_case : List[Any] = vae_state_dict["""quant_conv.bias"""]
__snake_case : Any = vae_state_dict["""post_quant_conv.weight"""]
__snake_case : Union[str, Any] = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
__snake_case : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
__snake_case : int = {
layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(_lowerCamelCase )
}
# Retrieves the keys for the decoder up blocks only
__snake_case : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
__snake_case : str = {
layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(_lowerCamelCase )
}
for i in range(_lowerCamelCase ):
__snake_case : List[Any] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key]
if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict:
__snake_case : List[Any] = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.weight''' )
__snake_case : Any = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.bias''' )
__snake_case : Optional[Any] = renew_vae_resnet_paths(_lowerCamelCase )
__snake_case : Tuple = {"""old""": F'''down.{i}.block''', """new""": F'''down_blocks.{i}.resnets'''}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
__snake_case : str = [key for key in vae_state_dict if """encoder.mid.block""" in key]
__snake_case : List[Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__snake_case : Dict = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key]
__snake_case : Tuple = renew_vae_resnet_paths(_lowerCamelCase )
__snake_case : List[Any] = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
__snake_case : int = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
__snake_case : int = renew_vae_attention_paths(_lowerCamelCase )
__snake_case : Optional[int] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
conv_attn_to_linear(_lowerCamelCase )
for i in range(_lowerCamelCase ):
__snake_case : Optional[Any] = num_up_blocks - 1 - i
__snake_case : Optional[Any] = [
key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key
]
if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict:
__snake_case : Optional[int] = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.weight'''
]
__snake_case : List[Any] = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.bias'''
]
__snake_case : Tuple = renew_vae_resnet_paths(_lowerCamelCase )
__snake_case : List[Any] = {"""old""": F'''up.{block_id}.block''', """new""": F'''up_blocks.{i}.resnets'''}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
__snake_case : Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key]
__snake_case : Optional[Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__snake_case : Union[str, Any] = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key]
__snake_case : Dict = renew_vae_resnet_paths(_lowerCamelCase )
__snake_case : str = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
__snake_case : List[Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
__snake_case : List[str] = renew_vae_attention_paths(_lowerCamelCase )
__snake_case : Tuple = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase )
conv_attn_to_linear(_lowerCamelCase )
return new_checkpoint
def _a ( _lowerCamelCase , _lowerCamelCase , ) -> List[Any]:
"""simple docstring"""
__snake_case : List[str] = requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
__snake_case : int = io.BytesIO(r.content )
__snake_case : List[Any] = OmegaConf.load(_lowerCamelCase )
__snake_case : Union[str, Any] = 512
__snake_case : str = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
__snake_case : Any = {}
with safe_open(_lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f:
for key in f.keys():
__snake_case : List[str] = f.get_tensor(_lowerCamelCase )
else:
__snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )["""state_dict"""]
# Convert the VAE model.
__snake_case : str = create_vae_diffusers_config(_lowerCamelCase , image_size=_lowerCamelCase )
__snake_case : Any = custom_convert_ldm_vae_checkpoint(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = AutoencoderKL(**_lowerCamelCase )
vae.load_state_dict(_lowerCamelCase )
vae.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
__UpperCamelCase = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import math
__UpperCamelCase = 10
__UpperCamelCase = 7
__UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS
def _a ( _lowerCamelCase = 20 ) -> str:
"""simple docstring"""
__snake_case : int = math.comb(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase )
__snake_case : Tuple = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyVaaControlnetPipeline
lowercase__: int = ['''image_embeds''', '''negative_image_embeds''', '''hint''']
lowercase__: int = ['''image_embeds''', '''negative_image_embeds''', '''hint''']
lowercase__: Any = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: List[str] = False
@property
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : Any = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : List[str] = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : str = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : int = self.dummy_unet
__snake_case : Tuple = self.dummy_movq
__snake_case : int = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__magic_name__ , )
__snake_case : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple=0 ) -> int:
"""simple docstring"""
__snake_case : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__magic_name__ )
# create hint
__snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : Optional[int] = torch.manual_seed(__magic_name__ )
else:
__snake_case : Tuple = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : List[str] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = """cpu"""
__snake_case : int = self.get_dummy_components()
__snake_case : int = self.pipeline_class(**__magic_name__ )
__snake_case : List[str] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : Union[str, Any] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : List[Any] = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Dict = image[0, -3:, -3:, -1]
__snake_case : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : List[str] = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__snake_case : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
__snake_case : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
__snake_case : Dict = torch.from_numpy(np.array(__magic_name__ ) ).float() / 255.0
__snake_case : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__snake_case : Any = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Tuple = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
__snake_case : Optional[int] = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : Union[str, Any] = """A robot, 4k photo"""
__snake_case : Optional[int] = torch.Generator(device="""cuda""" ).manual_seed(0 )
__snake_case , __snake_case : List[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
__snake_case : Optional[int] = pipeline(
image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , hint=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , output_type="""np""" , )
__snake_case : Optional[Any] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
__UpperCamelCase = random.Random()
def _a ( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]:
"""simple docstring"""
if rng is None:
__snake_case : Union[str, Any] = global_rng
__snake_case : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class _A ( unittest.TestCase ):
def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=7 , __magic_name__ : Union[str, Any]=4_00 , __magic_name__ : Optional[Any]=20_00 , __magic_name__ : List[str]=10 , __magic_name__ : List[str]=1_60 , __magic_name__ : str=8 , __magic_name__ : Any=0.0 , __magic_name__ : str=40_00 , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=True , ) -> Any:
"""simple docstring"""
__snake_case : str = parent
__snake_case : List[str] = batch_size
__snake_case : Any = min_seq_length
__snake_case : Tuple = max_seq_length
__snake_case : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__snake_case : Any = padding_value
__snake_case : Optional[Any] = sampling_rate
__snake_case : Optional[int] = return_attention_mask
__snake_case : Optional[Any] = do_normalize
__snake_case : Optional[int] = feature_size
__snake_case : Tuple = chunk_length
__snake_case : Optional[int] = hop_length
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowercase__ ( self : Tuple , __magic_name__ : List[str]=False , __magic_name__ : List[str]=False ) -> List[Any]:
"""simple docstring"""
def _flatten(__magic_name__ : Tuple ):
return list(itertools.chain(*__magic_name__ ) )
if equal_length:
__snake_case : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__snake_case : List[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__snake_case : Tuple = [np.asarray(__magic_name__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class _A ( __lowercase , unittest.TestCase ):
lowercase__: Dict = WhisperFeatureExtractor if is_speech_available() else None
def lowercase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = WhisperFeatureExtractionTester(self )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : str = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : Optional[int] = feat_extract_first.save_pretrained(__magic_name__ )[0]
check_json_file_has_correct_format(__magic_name__ )
__snake_case : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ )
__snake_case : int = feat_extract_first.to_dict()
__snake_case : str = feat_extract_second.to_dict()
__snake_case : str = feat_extract_first.mel_filters
__snake_case : Union[str, Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : List[str] = os.path.join(__magic_name__ , """feat_extract.json""" )
feat_extract_first.to_json_file(__magic_name__ )
__snake_case : Union[str, Any] = self.feature_extraction_class.from_json_file(__magic_name__ )
__snake_case : Dict = feat_extract_first.to_dict()
__snake_case : List[str] = feat_extract_second.to_dict()
__snake_case : int = feat_extract_first.mel_filters
__snake_case : List[str] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__snake_case : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs]
# Test feature size
__snake_case : Tuple = feature_extractor(__magic_name__ , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
__snake_case : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
__snake_case : str = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# Test batched
__snake_case : Tuple = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
__snake_case : int = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
__snake_case : int = np.asarray(__magic_name__ )
__snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
__snake_case : Tuple = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# Test truncation required
__snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )]
__snake_case : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs]
__snake_case : str = [x[: feature_extractor.n_samples] for x in speech_inputs]
__snake_case : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated]
__snake_case : Optional[Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
__snake_case : Any = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
import torch
__snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case : Optional[Any] = np.random.rand(1_00 , 32 ).astype(np.floataa )
__snake_case : Optional[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__snake_case : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
__snake_case : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Any = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
__snake_case : str = ds.sort("""id""" ).select(range(__magic_name__ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
__snake_case : List[str] = self._load_datasamples(1 )
__snake_case : List[str] = WhisperFeatureExtractor()
__snake_case : int = feature_extractor(__magic_name__ , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 30_00) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1E-4 ) )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case : str = self._load_datasamples(1 )[0]
__snake_case : int = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue
__snake_case : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0]
self.assertTrue(np.all(np.mean(__magic_name__ ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1E-3 ) )
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
import math
import unittest
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
with self.assertRaises(__magic_name__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , )
self.assertFalse(
is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]]
__snake_case : str = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = [[1, 2, 3], [1, 2, 4]]
__snake_case : str = DisjunctiveConstraint(__magic_name__ )
__snake_case , __snake_case , __snake_case : Dict = dc.update(1 )
__snake_case : Optional[int] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__snake_case , __snake_case , __snake_case : int = dc.update(2 )
__snake_case : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__snake_case , __snake_case , __snake_case : Union[str, Any] = dc.update(3 )
__snake_case : int = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__snake_case : Union[str, Any] = DisjunctiveConstraint(__magic_name__ )
__snake_case , __snake_case , __snake_case : List[str] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__snake_case , __snake_case , __snake_case : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__snake_case , __snake_case , __snake_case : Any = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__snake_case , __snake_case , __snake_case : Tuple = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__snake_case , __snake_case , __snake_case : Union[str, Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__snake_case , __snake_case , __snake_case : Tuple = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__snake_case , __snake_case , __snake_case : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class _A ( __lowercase ):
def lowercase__ ( self : str , __magic_name__ : float ) -> float:
"""simple docstring"""
return 0.0
def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[int | float, int | float]:
"""simple docstring"""
__snake_case : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
__snake_case : List[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _a ( _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : Optional[int] = 512
__snake_case : Union[str, Any] = [1] + [0] * (size - 1)
__snake_case : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs]
__snake_case : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
__snake_case : List[Any] = np.abs(np.fft.fft(_lowerCamelCase ) )
__snake_case : List[Any] = 20 * np.logaa(_lowerCamelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
__snake_case : Optional[int] = get_bounds(_lowerCamelCase , _lowerCamelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(_lowerCamelCase )
plt.show()
def _a ( _lowerCamelCase , _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : Optional[Any] = 512
__snake_case : Optional[Any] = [1] + [0] * (size - 1)
__snake_case : List[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs]
__snake_case : List[str] = [0] * (samplerate - size) # zero-padding
outputs += filler
__snake_case : Any = np.angle(np.fft.fft(_lowerCamelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) )
plt.show()
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__UpperCamelCase = "src/diffusers"
# Matches is_xxx_available()
__UpperCamelCase = re.compile(R"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
__UpperCamelCase = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
__UpperCamelCase = "\n{0} = None\n"
__UpperCamelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
__UpperCamelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = _re_backend.findall(_lowerCamelCase )
if len(_lowerCamelCase ) == 0:
return None
return "_and_".join(_lowerCamelCase )
def _a ( ) -> Union[str, Any]:
"""simple docstring"""
with open(os.path.join(_lowerCamelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__snake_case : int = f.readlines()
# Get to the point we do the actual imports for type checking
__snake_case : Any = 0
__snake_case : Any = {}
# Go through the end of the file
while line_index < len(_lowerCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__snake_case : Any = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
__snake_case : Tuple = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowerCamelCase ) and len(lines[line_index] ) > 1:
__snake_case : str = lines[line_index]
__snake_case : Optional[Any] = _re_single_line_import.search(_lowerCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowerCamelCase ) > 0:
__snake_case : str = objects
else:
line_index += 1
return backend_specific_objects
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowerCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowerCamelCase , _lowerCamelCase )
else:
return DUMMY_CLASS.format(_lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase=None ) -> str:
"""simple docstring"""
if backend_specific_objects is None:
__snake_case : Union[str, Any] = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__snake_case : List[Any] = {}
for backend, objects in backend_specific_objects.items():
__snake_case : Optional[Any] = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
__snake_case : Dict = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowerCamelCase , _lowerCamelCase ) for o in objects] )
__snake_case : Any = dummy_file
return dummy_files
def _a ( _lowerCamelCase=False ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__snake_case : Tuple = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
__snake_case : str = os.path.join(_lowerCamelCase , """utils""" )
__snake_case : Dict = {
backend: os.path.join(_lowerCamelCase , F'''dummy_{short_names.get(_lowerCamelCase , _lowerCamelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
__snake_case : List[str] = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowerCamelCase ):
with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__snake_case : Union[str, Any] = f.read()
else:
__snake_case : Optional[int] = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(_lowerCamelCase , _lowerCamelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(_lowerCamelCase , _lowerCamelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__UpperCamelCase = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
from math import ceil
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = list(range(0 , _lowerCamelCase ) )
__snake_case : Dict = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
__snake_case : Dict = []
for i in device_map_blocks:
if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(_lowerCamelCase )
# Missing blocks
__snake_case : Union[str, Any] = [i for i in blocks if i not in device_map_blocks]
__snake_case : Tuple = [i for i in device_map_blocks if i not in blocks]
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."""
""" These attention blocks were specified more than once: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""There are attention blocks for this model that are not specified in the device_map. Add these attention """
"""blocks to a device on the device_map: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""The device_map contains more attention blocks than this model has. Remove these from the device_map:"""
+ str(_lowerCamelCase ) )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = list(range(_lowerCamelCase ) )
__snake_case : int = int(ceil(n_layers / len(_lowerCamelCase ) ) )
__snake_case : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , _lowerCamelCase , _lowerCamelCase )]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
__UpperCamelCase = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
__UpperCamelCase = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Tuple:
"""simple docstring"""
__snake_case , __snake_case : Tuple = create_model(
"""HTSAT-tiny""" , """roberta""" , _lowerCamelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_lowerCamelCase , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : List[str] = {}
__snake_case : Any = R""".*sequential.(\d+).*"""
__snake_case : Union[str, Any] = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__snake_case : List[str] = key.replace(_lowerCamelCase , _lowerCamelCase )
if re.match(_lowerCamelCase , _lowerCamelCase ):
# replace sequential layers with list
__snake_case : Optional[int] = re.match(_lowerCamelCase , _lowerCamelCase ).group(1 )
__snake_case : List[str] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_lowerCamelCase )//3}.linear.''' )
elif re.match(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Dict = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
__snake_case : Tuple = 1 if projecton_layer == 0 else 2
__snake_case : List[Any] = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
__snake_case : Any = value
__snake_case : Tuple = mixed_qkv.size(0 ) // 3
__snake_case : Dict = mixed_qkv[:qkv_dim]
__snake_case : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
__snake_case : Union[str, Any] = mixed_qkv[qkv_dim * 2 :]
__snake_case : Union[str, Any] = query_layer
__snake_case : Dict = key_layer
__snake_case : Optional[int] = value_layer
else:
__snake_case : Dict = value
return model_state_dict
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case : Dict = init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase )
clap_model.eval()
__snake_case : int = clap_model.state_dict()
__snake_case : Dict = rename_state_dict(_lowerCamelCase )
__snake_case : Any = ClapConfig()
__snake_case : Any = enable_fusion
__snake_case : Optional[Any] = ClapModel(_lowerCamelCase )
# ignore the spectrogram embedding layer
model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
transformers_config.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
__UpperCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class _A :
def __init__( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=13 , __magic_name__ : Dict=7 , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=True , __magic_name__ : str=99 , __magic_name__ : List[str]=64 , __magic_name__ : str=32 , __magic_name__ : List[str]=5 , __magic_name__ : Dict=4 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : List[str]=16 , __magic_name__ : List[Any]=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]=3 , __magic_name__ : int=4 , __magic_name__ : str=None , ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = parent
__snake_case : Optional[Any] = batch_size
__snake_case : Optional[Any] = seq_length
__snake_case : Optional[Any] = is_training
__snake_case : List[str] = use_input_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : Union[str, Any] = vocab_size
__snake_case : str = hidden_size
__snake_case : Any = embedding_size
__snake_case : Tuple = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Any = intermediate_size
__snake_case : List[Any] = hidden_act
__snake_case : str = hidden_dropout_prob
__snake_case : int = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : Union[str, Any] = type_vocab_size
__snake_case : Optional[Any] = type_sequence_label_size
__snake_case : Any = initializer_range
__snake_case : List[str] = num_labels
__snake_case : Optional[Any] = num_choices
__snake_case : Dict = scope
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : int = None
__snake_case : List[str] = None
__snake_case : Optional[int] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def lowercase__ ( self : str , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : Any = MegatronBertModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
__snake_case : Dict = model(__magic_name__ , token_type_ids=__magic_name__ )
__snake_case : str = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = MegatronBertForMaskedLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = MegatronBertForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Dict = MegatronBertForNextSentencePrediction(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = model(
__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = MegatronBertForPreTraining(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : str = model(
__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , next_sentence_label=__magic_name__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Dict:
"""simple docstring"""
__snake_case : Any = MegatronBertForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(
__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = self.num_labels
__snake_case : Optional[int] = MegatronBertForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.num_labels
__snake_case : Optional[Any] = MegatronBertForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = self.num_choices
__snake_case : str = MegatronBertForMultipleChoice(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[Any] = model(
__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[int] = config_and_inputs
__snake_case : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Tuple = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__: Any = (
{
'''feature-extraction''': MegatronBertModel,
'''fill-mask''': MegatronBertForMaskedLM,
'''question-answering''': MegatronBertForQuestionAnswering,
'''text-classification''': MegatronBertForSequenceClassification,
'''text-generation''': MegatronBertForCausalLM,
'''token-classification''': MegatronBertForTokenClassification,
'''zero-shot''': MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__: Tuple = True
# test_resize_embeddings = False
lowercase__: Optional[int] = False
def lowercase__ ( self : List[str] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=False ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__magic_name__ )
__snake_case : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case : Dict = MegatronBertModelTester(self )
__snake_case : Optional[int] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__magic_name__ )
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__magic_name__ )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__magic_name__ )
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__magic_name__ )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__magic_name__ )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__magic_name__ )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__magic_name__ )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
return torch.tensor(
_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , )
__UpperCamelCase = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""" )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
__snake_case : str = os.path.join(os.environ["""MYDIR"""] , __magic_name__ )
__snake_case : Dict = MegatronBertModel.from_pretrained(__magic_name__ )
model.to(__magic_name__ )
model.half()
__snake_case : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
__snake_case : List[Any] = model(__magic_name__ )[0]
__snake_case : Union[str, Any] = torch.Size((1, 9, 10_24) )
self.assertEqual(output.shape , __magic_name__ )
__snake_case : List[str] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3 ):
for jj in range(3 ):
__snake_case : int = output[0, ii, jj]
__snake_case : Dict = expected[3 * ii + jj]
__snake_case : Tuple = """ii={} jj={} a={} b={}""".format(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
self.assertTrue(math.isclose(__magic_name__ , __magic_name__ , rel_tol=__magic_name__ , abs_tol=__magic_name__ ) , msg=__magic_name__ )
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "spiece.model"}
__UpperCamelCase = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
}
}
__UpperCamelCase = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
# Segments (not really needed)
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = 2
__UpperCamelCase = 3
__UpperCamelCase = 4
class _A ( __lowercase ):
lowercase__: List[str] = VOCAB_FILES_NAMES
lowercase__: int = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: int = '''left'''
def __init__( self : int , __magic_name__ : str , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : List[str]=False , __magic_name__ : Any="<s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : int="<unk>" , __magic_name__ : Dict="<sep>" , __magic_name__ : str="<pad>" , __magic_name__ : Tuple="<cls>" , __magic_name__ : Optional[Any]="<mask>" , __magic_name__ : List[str]=["<eop>", "<eod>"] , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Dict , ) -> None:
"""simple docstring"""
__snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
__snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
__snake_case : Tuple = 3
__snake_case : int = do_lower_case
__snake_case : Optional[int] = remove_space
__snake_case : Optional[int] = keep_accents
__snake_case : List[Any] = vocab_file
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@property
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
return len(self.sp_model )
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__snake_case : Any = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.__dict__.copy()
__snake_case : List[Any] = None
return state
def __setstate__( self : Union[str, Any] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : int = {}
__snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : Dict , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
if self.remove_space:
__snake_case : Optional[int] = """ """.join(inputs.strip().split() )
else:
__snake_case : List[str] = inputs
__snake_case : Optional[Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
__snake_case : int = unicodedata.normalize("""NFKD""" , __magic_name__ )
__snake_case : int = """""".join([c for c in outputs if not unicodedata.combining(__magic_name__ )] )
if self.do_lower_case:
__snake_case : Optional[Any] = outputs.lower()
return outputs
def lowercase__ ( self : List[Any] , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.preprocess_text(__magic_name__ )
__snake_case : Dict = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
__snake_case : Optional[Any] = []
for piece in pieces:
if len(__magic_name__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
__snake_case : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__snake_case : List[str] = cur_pieces[1:]
else:
__snake_case : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__magic_name__ )
else:
new_pieces.append(__magic_name__ )
return new_pieces
def lowercase__ ( self : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
return self.sp_model.PieceToId(__magic_name__ )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = """""".join(__magic_name__ ).replace(__magic_name__ , """ """ ).strip()
return out_string
def lowercase__ ( self : List[Any] , __magic_name__ : List[int] , __magic_name__ : bool = False , __magic_name__ : bool = None , __magic_name__ : bool = True , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.pop("""use_source_tokenizer""" , __magic_name__ )
__snake_case : Any = self.convert_ids_to_tokens(__magic_name__ , skip_special_tokens=__magic_name__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__snake_case : Dict = []
__snake_case : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
__snake_case : Optional[int] = []
sub_texts.append(__magic_name__ )
else:
current_sub_text.append(__magic_name__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
__snake_case : Tuple = """""".join(__magic_name__ )
__snake_case : Optional[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__snake_case : Dict = self.clean_up_tokenization(__magic_name__ )
return clean_text
else:
return text
def lowercase__ ( self : List[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is not None:
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1, 1]
return ([0] * len(__magic_name__ )) + [1, 1]
def lowercase__ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Any = [self.sep_token_id]
__snake_case : Optional[int] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : int = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
__snake_case : Dict = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
import math
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Dict = F'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowerCamelCase )
if number < 1:
__snake_case : Union[str, Any] = F'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowerCamelCase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__snake_case : Union[str, Any] = int(math.log(number // 3 , 2 ) ) + 2
__snake_case : List[str] = [3, 5]
__snake_case : Optional[Any] = 2
__snake_case : Optional[Any] = 3
for block in range(1 , _lowerCamelCase ):
for _ in range(_lowerCamelCase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
__UpperCamelCase = 0
try:
__UpperCamelCase = proth(number)
except ValueError:
print(f"""ValueError: there is no {number}th Proth number""")
continue
print(f"""The {number}th Proth number: {value}""")
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
from pathlib import Path
import numpy as np
from PIL import Image
def _a ( _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _a ( _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
return (gray > 127) & (gray <= 255)
def _a ( _lowerCamelCase , _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
__snake_case : Optional[Any] = np.zeros_like(_lowerCamelCase )
__snake_case : List[Any] = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__snake_case : Dict = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__snake_case : Dict = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__snake_case : Optional[int] = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
__UpperCamelCase = Path(__file__).resolve().parent / "image_data" / "lena.jpg"
__UpperCamelCase = np.array(Image.open(lena_path))
# kernel to be applied
__UpperCamelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
__UpperCamelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
__UpperCamelCase = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png")
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowercase )
class _A ( __lowercase ):
lowercase__: str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
lowercase__: ClassVar[Features] = Features({'''audio''': Audio()} )
lowercase__: ClassVar[Features] = Features({'''transcription''': Value('''string''' )} )
lowercase__: str = "audio"
lowercase__: str = "transcription"
def lowercase__ ( self : Optional[int] , __magic_name__ : str ) -> int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(f'''Column {self.audio_column} is not present in features.''' )
if not isinstance(features[self.audio_column] , __magic_name__ ):
raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' )
__snake_case : List[Any] = copy.deepcopy(self )
__snake_case : Any = self.input_schema.copy()
__snake_case : Union[str, Any] = features[self.audio_column]
__snake_case : int = input_schema
return task_template
@property
def lowercase__ ( self : int ) -> Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class _A :
lowercase__: List[str]
lowercase__: Optional[str] = None
# Automatically constructed
lowercase__: ClassVar[str] = "dict"
lowercase__: ClassVar[Any] = None
lowercase__: str = field(default='''Translation''' , init=__lowercase , repr=__lowercase )
def __call__( self : int ) -> Optional[Any]:
"""simple docstring"""
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class _A :
lowercase__: Optional[List] = None
lowercase__: Optional[int] = None
lowercase__: Optional[str] = None
# Automatically constructed
lowercase__: ClassVar[str] = "dict"
lowercase__: ClassVar[Any] = None
lowercase__: str = field(default='''TranslationVariableLanguages''' , init=__lowercase , repr=__lowercase )
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : int = sorted(set(self.languages ) ) if self.languages else None
__snake_case : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self : int ) -> Dict:
"""simple docstring"""
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def lowercase__ ( self : int , __magic_name__ : int ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = set(self.languages )
if self.languages and set(__magic_name__ ) - lang_set:
raise ValueError(
f'''Some languages in example ({", ".join(sorted(set(__magic_name__ ) - lang_set ) )}) are not in valid set ({", ".join(__magic_name__ )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__snake_case : int = []
for lang, text in translation_dict.items():
if isinstance(__magic_name__ , __magic_name__ ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__snake_case , __snake_case : Any = zip(*sorted(__magic_name__ ) )
return {"language": languages, "translation": translations}
def lowercase__ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
from math import sqrt
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number >= 0
), "'number' must been an int and positive"
__snake_case : Optional[Any] = True
# 0 and 1 are none primes.
if number <= 1:
__snake_case : Dict = False
for divisor in range(2 , int(round(sqrt(_lowerCamelCase ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__snake_case : Any = False
break
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'status' must been from type bool"
return status
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__snake_case : int = list(range(2 , n + 1 ) )
__snake_case : int = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_lowerCamelCase ) ):
for j in range(i + 1 , len(_lowerCamelCase ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__snake_case : str = 0
# filters actual prime numbers.
__snake_case : Tuple = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list"
return ans
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2"
__snake_case : Dict = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_lowerCamelCase ):
ans.append(_lowerCamelCase )
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list"
return ans
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0"
__snake_case : int = [] # this list will be returns of the function.
# potential prime number factors.
__snake_case : List[str] = 2
__snake_case : List[Any] = number
if number == 0 or number == 1:
ans.append(_lowerCamelCase )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_lowerCamelCase ):
while quotient != 1:
if is_prime(_lowerCamelCase ) and (quotient % factor == 0):
ans.append(_lowerCamelCase )
quotient /= factor
else:
factor += 1
else:
ans.append(_lowerCamelCase )
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list"
return ans
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : List[str] = 0
# prime factorization of 'number'
__snake_case : Any = prime_factorization(_lowerCamelCase )
__snake_case : Any = max(_lowerCamelCase )
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int"
return ans
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : List[Any] = 0
# prime factorization of 'number'
__snake_case : int = prime_factorization(_lowerCamelCase )
__snake_case : List[str] = min(_lowerCamelCase )
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int"
return ans
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _lowerCamelCase ), "compare bust been from type bool"
return number % 2 == 0
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _lowerCamelCase ), "compare bust been from type bool"
return number % 2 != 0
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase ) and (number > 2) and is_even(_lowerCamelCase )
), "'number' must been an int, even and > 2"
__snake_case : List[Any] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__snake_case : Tuple = get_prime_numbers(_lowerCamelCase )
__snake_case : Dict = len(_lowerCamelCase )
# run variable for while-loops.
__snake_case : Union[str, Any] = 0
__snake_case : Dict = None
# exit variable. for break up the loops
__snake_case : int = True
while i < len_pn and loop:
__snake_case : Optional[Any] = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__snake_case : Any = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and (len(_lowerCamelCase ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and isinstance(_lowerCamelCase , _lowerCamelCase )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__snake_case : Optional[Any] = 0
while numbera != 0:
__snake_case : Union[str, Any] = numbera % numbera
__snake_case : Any = numbera
__snake_case : Dict = rest
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and isinstance(_lowerCamelCase , _lowerCamelCase )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__snake_case : int = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__snake_case : int = prime_factorization(_lowerCamelCase )
__snake_case : Optional[int] = prime_factorization(_lowerCamelCase )
elif numbera == 1 or numbera == 1:
__snake_case : List[str] = []
__snake_case : List[str] = []
__snake_case : Dict = max(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[int] = 0
__snake_case : Union[str, Any] = 0
__snake_case : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__snake_case : Optional[Any] = prime_fac_a.count(_lowerCamelCase )
__snake_case : int = prime_fac_a.count(_lowerCamelCase )
for _ in range(max(_lowerCamelCase , _lowerCamelCase ) ):
ans *= n
else:
__snake_case : Union[str, Any] = prime_fac_a.count(_lowerCamelCase )
for _ in range(_lowerCamelCase ):
ans *= n
done.append(_lowerCamelCase )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__snake_case : List[str] = prime_fac_a.count(_lowerCamelCase )
for _ in range(_lowerCamelCase ):
ans *= n
done.append(_lowerCamelCase )
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'number' must been a positive int"
__snake_case : Dict = 0
__snake_case : Optional[Any] = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_lowerCamelCase ):
ans += 1
# precondition
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and is_prime(
_lowerCamelCase ), "'ans' must been a prime number and from type int"
return ans
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
assert (
is_prime(_lowerCamelCase ) and is_prime(_lowerCamelCase ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__snake_case : List[str] = p_number_a + 1 # jump to the next number
__snake_case : Optional[int] = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_lowerCamelCase ):
number += 1
while number < p_number_a:
ans.append(_lowerCamelCase )
number += 1
# fetch the next prime number.
while not is_prime(_lowerCamelCase ):
number += 1
# precondition
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and ans[0] != p_number_a
and ans[len(_lowerCamelCase ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1"
__snake_case : Any = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_lowerCamelCase )
# precondition
assert ans[0] == 1 and ans[len(_lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (
number > 1
), "'number' must been an int and >= 1"
__snake_case : Optional[int] = get_divisors(_lowerCamelCase )
# precondition
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and (divisors[0] == 1)
and (divisors[len(_lowerCamelCase ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and isinstance(_lowerCamelCase , _lowerCamelCase )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__snake_case : Tuple = gcd(abs(_lowerCamelCase ) , abs(_lowerCamelCase ) )
# precondition
assert (
isinstance(_lowerCamelCase , _lowerCamelCase )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0"
__snake_case : Tuple = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0"
__snake_case : Any = 0
__snake_case : Tuple = 1
__snake_case : str = 1 # this will be return
for _ in range(n - 1 ):
__snake_case : Any = ans
ans += fiba
__snake_case : Any = tmp
return ans
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Tuple = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
__snake_case : Optional[Any] = get_activation("""gelu""" )
self.assertTrue(torch.allclose(gelu_python(__magic_name__ ) , torch_builtin(__magic_name__ ) ) )
self.assertFalse(torch.allclose(gelu_python(__magic_name__ ) , gelu_new(__magic_name__ ) ) )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
__snake_case : Optional[Any] = get_activation("""gelu""" )
__snake_case : List[Any] = get_activation("""gelu_10""" )
__snake_case : List[str] = torch_builtin(__magic_name__ )
__snake_case : List[str] = geluaa(__magic_name__ )
__snake_case : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(__magic_name__ ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
get_activation("""gelu""" )
get_activation("""gelu_10""" )
get_activation("""gelu_fast""" )
get_activation("""gelu_new""" )
get_activation("""gelu_python""" )
get_activation("""gelu_pytorch_tanh""" )
get_activation("""linear""" )
get_activation("""mish""" )
get_activation("""quick_gelu""" )
get_activation("""relu""" )
get_activation("""sigmoid""" )
get_activation("""silu""" )
get_activation("""swish""" )
get_activation("""tanh""" )
with self.assertRaises(__magic_name__ ):
get_activation("""bogus""" )
with self.assertRaises(__magic_name__ ):
get_activation(__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = get_activation("""gelu""" )
__snake_case : Optional[Any] = 1
__snake_case : str = get_activation("""gelu""" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__magic_name__ ):
__snake_case : Tuple = acta.a
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import numpy as np
def _a ( _lowerCamelCase , _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , _lowerCamelCase , (alpha * (np.exp(_lowerCamelCase ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _a ( ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
__snake_case : Tuple = bs[:]
__snake_case : List[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCamelCase )
cs.append(2**8 + n )
n += 1
__snake_case : Tuple = [chr(_lowerCamelCase ) for n in cs]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = set()
__snake_case : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__snake_case : Tuple = char
return pairs
class _A ( __lowercase ):
lowercase__: Optional[Any] = VOCAB_FILES_NAMES
lowercase__: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Tuple = ['''input_ids''', '''attention_mask''']
def __init__( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]="replace" , __magic_name__ : str="<s>" , __magic_name__ : Optional[int]="</s>" , __magic_name__ : str="</s>" , __magic_name__ : List[str]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : int="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : List[str]=False , **__magic_name__ : List[str] , ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else bos_token
__snake_case : Union[str, Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
__snake_case : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else sep_token
__snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else cls_token
__snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
__snake_case : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
super().__init__(
errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="""utf-8""" ) as vocab_handle:
__snake_case : int = json.load(__magic_name__ )
__snake_case : Any = {v: k for k, v in self.encoder.items()}
__snake_case : Tuple = errors # how to handle errors in decoding
__snake_case : Optional[int] = bytes_to_unicode()
__snake_case : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(__magic_name__ , encoding="""utf-8""" ) as merges_handle:
__snake_case : str = merges_handle.read().split("""\n""" )[1:-1]
__snake_case : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges]
__snake_case : Union[str, Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
__snake_case : Optional[int] = {}
__snake_case : str = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__snake_case : List[str] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return len(self.encoder )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
__snake_case : List[str] = tuple(__magic_name__ )
__snake_case : str = get_pairs(__magic_name__ )
if not pairs:
return token
while True:
__snake_case : List[str] = min(__magic_name__ , key=lambda __magic_name__ : self.bpe_ranks.get(__magic_name__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__snake_case , __snake_case : Optional[Any] = bigram
__snake_case : Union[str, Any] = []
__snake_case : Optional[int] = 0
while i < len(__magic_name__ ):
try:
__snake_case : Union[str, Any] = word.index(__magic_name__ , __magic_name__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__snake_case : str = j
if word[i] == first and i < len(__magic_name__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__snake_case : Union[str, Any] = tuple(__magic_name__ )
__snake_case : Optional[int] = new_word
if len(__magic_name__ ) == 1:
break
else:
__snake_case : Dict = get_pairs(__magic_name__ )
__snake_case : Tuple = """ """.join(__magic_name__ )
__snake_case : Any = word
return word
def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Dict = []
for token in re.findall(self.pat , __magic_name__ ):
__snake_case : Union[str, Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__magic_name__ ).split(""" """ ) )
return bpe_tokens
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> str:
"""simple docstring"""
return self.encoder.get(__magic_name__ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] ) -> Tuple:
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = """""".join(__magic_name__ )
__snake_case : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : Union[str, Any] = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__snake_case : Any = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + """\n""" )
__snake_case : List[Any] = 0
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
__snake_case : List[Any] = token_index
writer.write(""" """.join(__magic_name__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
__snake_case : str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
def lowercase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = [self.sep_token_id]
__snake_case : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : str=False , **__magic_name__ : Optional[Any] ) -> str:
"""simple docstring"""
__snake_case : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__magic_name__ ) > 0 and not text[0].isspace()):
__snake_case : str = """ """ + text
return (text, kwargs)
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"WavLMForAudioFrameClassification",
"WavLMForCTC",
"WavLMForSequenceClassification",
"WavLMForXVector",
"WavLMModel",
"WavLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _A ( unittest.TestCase ):
lowercase__: str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowercase__: str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def lowercase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : int = TextaTextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ )
return generator, ["Something to write", "Something else"]
def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = generator("""Something there""" )
self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
__snake_case : Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
] , )
__snake_case : List[Any] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ )
self.assertEqual(
__magic_name__ , [
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
[{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}],
] , )
with self.assertRaises(__magic_name__ ):
generator(4 )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
__snake_case : int = generator("""Something there""" , do_sample=__magic_name__ )
self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
__snake_case : str = 3
__snake_case : int = generator(
"""Something there""" , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , )
__snake_case : Any = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(__magic_name__ , __magic_name__ )
__snake_case : List[str] = generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ )
self.assertEqual(
__magic_name__ , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
__snake_case : Any = generator.model.config.eos_token_id
__snake_case : Any = """<pad>"""
__snake_case : Optional[int] = generator(
["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , )
self.assertEqual(
__magic_name__ , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
__snake_case : int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
__snake_case : List[Any] = generator("""Something there""" , do_sample=__magic_name__ )
self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: int = '''AutoTokenizer'''
lowercase__: Union[str, Any] = ['''tokenizer''']
lowercase__: Union[str, Any] = {
'''semantic_prompt''': 1,
'''coarse_prompt''': 2,
'''fine_prompt''': 2,
}
def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=None ) -> str:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Tuple = speaker_embeddings
@classmethod
def lowercase__ ( cls : Dict , __magic_name__ : Any , __magic_name__ : int="speaker_embeddings_path.json" , **__magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
__snake_case : Optional[int] = get_file_from_repo(
__magic_name__ , __magic_name__ , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(__magic_name__ , __magic_name__ )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
__snake_case : Union[str, Any] = None
else:
with open(__magic_name__ ) as speaker_embeddings_json:
__snake_case : int = json.load(__magic_name__ )
else:
__snake_case : Optional[int] = None
__snake_case : Tuple = AutoTokenizer.from_pretrained(__magic_name__ , **__magic_name__ )
return cls(tokenizer=__magic_name__ , speaker_embeddings=__magic_name__ )
def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]="speaker_embeddings_path.json" , __magic_name__ : str="speaker_embeddings" , __magic_name__ : bool = False , **__magic_name__ : Dict , ) -> Optional[int]:
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__magic_name__ , __magic_name__ , """v2""" ) , exist_ok=__magic_name__ )
__snake_case : Tuple = {}
__snake_case : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
__snake_case : Any = self._load_voice_preset(__magic_name__ )
__snake_case : str = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , __magic_name__ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__magic_name__ , )
__snake_case : str = os.path.join(__magic_name__ , f'''{prompt_key}_{key}.npy''' )
__snake_case : Optional[Any] = tmp_dict
with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as fp:
json.dump(__magic_name__ , __magic_name__ )
super().save_pretrained(__magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str = None , **__magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.speaker_embeddings[voice_preset]
__snake_case : List[str] = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
__snake_case : Tuple = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __magic_name__ ) , cache_dir=kwargs.pop("""cache_dir""" , __magic_name__ ) , force_download=kwargs.pop("""force_download""" , __magic_name__ ) , proxies=kwargs.pop("""proxies""" , __magic_name__ ) , resume_download=kwargs.pop("""resume_download""" , __magic_name__ ) , local_files_only=kwargs.pop("""local_files_only""" , __magic_name__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , __magic_name__ ) , revision=kwargs.pop("""revision""" , __magic_name__ ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
__snake_case : List[Any] = np.load(__magic_name__ )
return voice_preset_dict
def lowercase__ ( self : List[str] , __magic_name__ : Optional[dict] = None ) -> Dict:
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self : Optional[int] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]="pt" , __magic_name__ : Optional[int]=2_56 , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=True , __magic_name__ : str=False , **__magic_name__ : List[str] , ) -> str:
"""simple docstring"""
if voice_preset is not None and not isinstance(__magic_name__ , __magic_name__ ):
if (
isinstance(__magic_name__ , __magic_name__ )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
__snake_case : Dict = self._load_voice_preset(__magic_name__ )
else:
if isinstance(__magic_name__ , __magic_name__ ) and not voice_preset.endswith(""".npz""" ):
__snake_case : Any = voice_preset + """.npz"""
__snake_case : Optional[Any] = np.load(__magic_name__ )
if voice_preset is not None:
self._validate_voice_preset_dict(__magic_name__ , **__magic_name__ )
__snake_case : str = BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
__snake_case : Union[str, Any] = self.tokenizer(
__magic_name__ , return_tensors=__magic_name__ , padding="""max_length""" , max_length=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , )
if voice_preset is not None:
__snake_case : Any = voice_preset
return encoded_text
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class _A ( unittest.TestCase ):
def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = jnp.ones((batch_size, length) ) / length
return scores
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = None
__snake_case : str = 20
__snake_case : List[str] = self._get_uniform_logits(batch_size=2 , length=__magic_name__ )
# tweak scores to not be uniform anymore
__snake_case : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
__snake_case : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
__snake_case : str = jax.nn.softmax(__magic_name__ , axis=-1 )
__snake_case : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 )
__snake_case : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 )
__snake_case : str = jax.nn.softmax(temp_dist_warper_smoother(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = None
__snake_case : Optional[int] = 10
__snake_case : int = 2
# create ramp distribution
__snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy()
__snake_case : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size
__snake_case : Union[str, Any] = FlaxTopKLogitsWarper(3 )
__snake_case : Optional[int] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
__snake_case : Dict = 5
__snake_case : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
__snake_case : str = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, length) ).copy()
__snake_case : Tuple = top_k_warp_safety_check(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = None
__snake_case : Optional[int] = 10
__snake_case : List[str] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__snake_case : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
__snake_case : Any = FlaxTopPLogitsWarper(0.8 )
__snake_case : List[str] = np.exp(top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__snake_case : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# check edge cases with negative and extreme logits
__snake_case : Optional[int] = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__snake_case : Union[str, Any] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
__snake_case : Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
__snake_case : Dict = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = 20
__snake_case : Dict = 4
__snake_case : int = 0
__snake_case : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
# check that min length is applied at length 5
__snake_case : int = ids_tensor((batch_size, 20) , vocab_size=20 )
__snake_case : Optional[int] = 5
__snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
__snake_case : Optional[int] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Tuple = 15
__snake_case : Dict = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = 20
__snake_case : str = 4
__snake_case : List[str] = 0
__snake_case : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
# check that all scores are -inf except the bos_token_id score
__snake_case : Union[str, Any] = ids_tensor((batch_size, 1) , vocab_size=20 )
__snake_case : Tuple = 1
__snake_case : Union[str, Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Tuple = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__snake_case : Optional[Any] = 3
__snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[int] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = 20
__snake_case : Dict = 4
__snake_case : Optional[Any] = 0
__snake_case : Optional[Any] = 5
__snake_case : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
# check that all scores are -inf except the eos_token_id when max_length is reached
__snake_case : Any = ids_tensor((batch_size, 4) , vocab_size=20 )
__snake_case : List[str] = 4
__snake_case : Tuple = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__snake_case : int = 3
__snake_case : Optional[Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Any = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
self.assertFalse(jnp.isinf(__magic_name__ ).any() )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case : Dict = 4
__snake_case : Union[str, Any] = 10
__snake_case : List[Any] = 15
__snake_case : List[Any] = 2
__snake_case : Any = 1
__snake_case : Optional[Any] = 15
# dummy input_ids and scores
__snake_case : int = ids_tensor((batch_size, sequence_length) , __magic_name__ )
__snake_case : Tuple = input_ids.copy()
__snake_case : int = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Optional[int] = scores.copy()
# instantiate all dist processors
__snake_case : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : List[Any] = FlaxTopKLogitsWarper(3 )
__snake_case : Optional[int] = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__snake_case : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
__snake_case : Union[str, Any] = 10
# no processor list
__snake_case : int = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Dict = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : List[Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : int = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Optional[Any] = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Any = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# with processor list
__snake_case : Optional[int] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__snake_case : Optional[int] = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
# scores should be equal
self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
__snake_case : Any = 4
__snake_case : Optional[int] = 10
__snake_case : Dict = 15
__snake_case : Tuple = 2
__snake_case : Union[str, Any] = 1
__snake_case : int = 15
# dummy input_ids and scores
__snake_case : Any = ids_tensor((batch_size, sequence_length) , __magic_name__ )
__snake_case : Optional[Any] = input_ids.copy()
__snake_case : Dict = self._get_uniform_logits(__magic_name__ , __magic_name__ )
__snake_case : Any = scores.copy()
# instantiate all dist processors
__snake_case : Any = FlaxTemperatureLogitsWarper(temperature=0.5 )
__snake_case : str = FlaxTopKLogitsWarper(3 )
__snake_case : int = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__snake_case : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ )
__snake_case : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ )
__snake_case : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ )
__snake_case : str = 10
# no processor list
def run_no_processor_list(__magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
__snake_case : Union[str, Any] = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : List[Any] = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Union[str, Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : str = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : str = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
__snake_case : Optional[Any] = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
return scores
# with processor list
def run_processor_list(__magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Tuple ):
__snake_case : Any = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__snake_case : str = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ )
return scores
__snake_case : Optional[int] = jax.jit(__magic_name__ )
__snake_case : Optional[int] = jax.jit(__magic_name__ )
__snake_case : Any = jitted_run_no_processor_list(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : Dict = jitted_run_processor_list(__magic_name__ , __magic_name__ , __magic_name__ )
# scores should be equal
self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _A ( __lowercase ):
lowercase__: Optional[Any] = ['''image_processor''']
lowercase__: str = '''SamImageProcessor'''
def __init__( self : List[str] , __magic_name__ : Any ) -> str:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Any = self.image_processor
__snake_case : List[str] = -10
__snake_case : Union[str, Any] = self.image_processor.size["""longest_edge"""]
def __call__( self : Union[str, Any] , __magic_name__ : str=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : int=None , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : Optional[int] , ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = self.image_processor(
__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
# pop arguments that are not used in the foward but used nevertheless
__snake_case : Optional[int] = encoding_image_processor["""original_sizes"""]
if hasattr(__magic_name__ , """numpy""" ): # Checks if Torch or TF tensor
__snake_case : int = original_sizes.numpy()
__snake_case , __snake_case , __snake_case : Union[str, Any] = self._check_and_preprocess_points(
input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , )
__snake_case : Optional[Any] = self._normalize_and_convert(
__magic_name__ , __magic_name__ , input_points=__magic_name__ , input_labels=__magic_name__ , input_boxes=__magic_name__ , return_tensors=__magic_name__ , )
return encoding_image_processor
def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=None , __magic_name__ : Any="pt" , ) -> Optional[int]:
"""simple docstring"""
if input_points is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
__snake_case : Union[str, Any] = [
self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] ) for point in input_points
]
else:
__snake_case : Optional[int] = [
self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ )
for point, original_size in zip(__magic_name__ , __magic_name__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__snake_case , __snake_case : int = self._pad_points_and_labels(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = np.array(__magic_name__ )
if input_labels is not None:
__snake_case : str = np.array(__magic_name__ )
if input_boxes is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
__snake_case : List[Any] = [
self._normalize_coordinates(self.target_size , __magic_name__ , original_sizes[0] , is_bounding_box=__magic_name__ )
for box in input_boxes
]
else:
__snake_case : str = [
self._normalize_coordinates(self.target_size , __magic_name__ , __magic_name__ , is_bounding_box=__magic_name__ )
for box, original_size in zip(__magic_name__ , __magic_name__ )
]
__snake_case : Any = np.array(__magic_name__ )
if input_boxes is not None:
if return_tensors == "pt":
__snake_case : List[str] = torch.from_numpy(__magic_name__ )
# boxes batch size of 1 by default
__snake_case : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__snake_case : List[Any] = tf.convert_to_tensor(__magic_name__ )
# boxes batch size of 1 by default
__snake_case : str = tf.expand_dims(__magic_name__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__snake_case : Tuple = torch.from_numpy(__magic_name__ )
# point batch size of 1 by default
__snake_case : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__snake_case : List[Any] = tf.convert_to_tensor(__magic_name__ )
# point batch size of 1 by default
__snake_case : int = tf.expand_dims(__magic_name__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__snake_case : Dict = torch.from_numpy(__magic_name__ )
# point batch size of 1 by default
__snake_case : int = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__snake_case : List[Any] = tf.convert_to_tensor(__magic_name__ )
# point batch size of 1 by default
__snake_case : Optional[int] = tf.expand_dims(__magic_name__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowercase__ ( self : Any , __magic_name__ : List[Any] , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = max([point.shape[0] for point in input_points] )
__snake_case : Optional[int] = []
for i, point in enumerate(__magic_name__ ):
if point.shape[0] != expected_nb_points:
__snake_case : Dict = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
__snake_case : int = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(__magic_name__ )
__snake_case : List[Any] = processed_input_points
return input_points, input_labels
def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : np.ndarray , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False ) -> np.ndarray:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = original_size
__snake_case , __snake_case : Dict = self.image_processor._get_preprocess_shape(__magic_name__ , longest_edge=__magic_name__ )
__snake_case : Dict = deepcopy(__magic_name__ ).astype(__magic_name__ )
if is_bounding_box:
__snake_case : int = coords.reshape(-1 , 2 , 2 )
__snake_case : List[Any] = coords[..., 0] * (new_w / old_w)
__snake_case : Optional[Any] = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__snake_case : str = coords.reshape(-1 , 4 )
return coords
def lowercase__ ( self : str , __magic_name__ : List[Any]=None , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
if input_points is not None:
if hasattr(__magic_name__ , """numpy""" ): # Checks for TF or Torch tensor
__snake_case : Tuple = input_points.numpy().tolist()
if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_points[0] , __magic_name__ ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__snake_case : List[Any] = [np.array(__magic_name__ ) for input_point in input_points]
else:
__snake_case : Optional[int] = None
if input_labels is not None:
if hasattr(__magic_name__ , """numpy""" ):
__snake_case : Any = input_labels.numpy().tolist()
if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(input_labels[0] , __magic_name__ ):
raise ValueError("""Input labels must be a list of list integers.""" )
__snake_case : Dict = [np.array(__magic_name__ ) for label in input_labels]
else:
__snake_case : List[Any] = None
if input_boxes is not None:
if hasattr(__magic_name__ , """numpy""" ):
__snake_case : Tuple = input_boxes.numpy().tolist()
if (
not isinstance(__magic_name__ , __magic_name__ )
or not isinstance(input_boxes[0] , __magic_name__ )
or not isinstance(input_boxes[0][0] , __magic_name__ )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__snake_case : int = [np.array(__magic_name__ ).astype(np.floataa ) for box in input_boxes]
else:
__snake_case : List[str] = None
return input_points, input_labels, input_boxes
@property
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : Tuple = self.image_processor.model_input_names
return list(dict.fromkeys(__magic_name__ ) )
def lowercase__ ( self : Any , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Dict:
"""simple docstring"""
return self.image_processor.post_process_masks(*__magic_name__ , **__magic_name__ )
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class _A ( datasets.BuilderConfig ):
lowercase__: Optional[datasets.Features] = None
class _A ( datasets.ArrowBasedBuilder ):
lowercase__: str = PandasConfig
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def lowercase__ ( self : Any , __magic_name__ : str ) -> Any:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
__snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
__snake_case : Optional[int] = data_files
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : Union[str, Any] = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
__snake_case : Dict = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : str = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowercase__ ( self : Dict , __magic_name__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : Tuple = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowercase__ ( self : Dict , __magic_name__ : List[str] ) -> Tuple:
"""simple docstring"""
for i, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
with open(__magic_name__ , """rb""" ) as f:
__snake_case : Optional[int] = pa.Table.from_pandas(pd.read_pickle(__magic_name__ ) )
yield i, self._cast_table(__magic_name__ )
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCamelCase = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _A ( __lowercase ):
def lowercase__ ( self : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : Optional[int]=None , __magic_name__ : str=None , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenize_kwargs is None:
__snake_case : List[str] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
__snake_case : Optional[int] = truncation
__snake_case : Any = tokenize_kwargs
__snake_case : Union[str, Any] = {}
if return_tensors is not None:
__snake_case : List[str] = return_tensors
return preprocess_params, {}, postprocess_params
def lowercase__ ( self : Tuple , __magic_name__ : str , **__magic_name__ : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
__snake_case : Optional[Any] = self.framework
__snake_case : Tuple = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
return model_inputs
def lowercase__ ( self : Optional[int] , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = self.model(**__magic_name__ )
return model_outputs
def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : str , *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return super().__call__(*__magic_name__ , **__magic_name__ )
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = torch.load(_lowerCamelCase , map_location="""cpu""" )
__snake_case : Optional[Any] = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
__snake_case : Optional[Any] = {}
for k, v in state_dict.items():
if "pred_layer" in k:
__snake_case : int = v
else:
__snake_case : Any = v
__snake_case : Dict = chkpt["""params"""]
__snake_case : str = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )}
__snake_case : List[str] = chkpt["""dico_word2id"""]
__snake_case : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()}
# Save pytorch-model
__snake_case : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__snake_case : Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
__snake_case : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(_lowerCamelCase , _lowerCamelCase )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
print(F'''Save vocab file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__UpperCamelCase = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.