code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class _A ( unittest.TestCase ):
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : int = tempfile.mkdtemp()
__snake_case : int = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
__snake_case : Union[str, Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48145466, 0.4578275, 0.40821073],
"""image_std""": [0.26862954, 0.26130258, 0.27577711],
}
__snake_case : Any = os.path.join(self.tmpdirname , __magic_name__ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__magic_name__ , __magic_name__ )
def lowercase__ ( self : str , **__magic_name__ : Any ) -> str:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowercase__ ( self : Any , **__magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowercase__ ( self : Any , **__magic_name__ : str ) -> int:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__snake_case : List[Any] = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_rust_tokenizer()
__snake_case : Any = self.get_image_processor()
__snake_case : str = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
processor_slow.save_pretrained(self.tmpdirname )
__snake_case : int = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ )
__snake_case : Optional[Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
processor_fast.save_pretrained(self.tmpdirname )
__snake_case : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __magic_name__ )
self.assertIsInstance(processor_fast.tokenizer , __magic_name__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __magic_name__ )
self.assertIsInstance(processor_fast.image_processor , __magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : int = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__snake_case : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : int = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
__snake_case : Union[str, Any] = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = self.get_image_processor()
__snake_case : int = self.get_tokenizer()
__snake_case : Optional[Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
__snake_case : Dict = self.prepare_image_inputs()
__snake_case : int = image_processor(__magic_name__ , return_tensors="""np""" )
__snake_case : Optional[Any] = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__snake_case : List[str] = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Union[str, Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
__snake_case : Union[str, Any] = """lower newer"""
__snake_case : List[str] = processor(text=__magic_name__ )
__snake_case : List[str] = tokenizer(__magic_name__ , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : int = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Tuple = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
__snake_case : Any = """lower newer"""
__snake_case : Dict = self.prepare_image_inputs()
__snake_case : int = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : Dict = self.get_image_processor()
__snake_case : int = self.get_tokenizer()
__snake_case : Tuple = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
__snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : List[Any] = processor.batch_decode(__magic_name__ )
__snake_case : Optional[int] = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Union[str, Any] = self.get_image_processor()
__snake_case : Any = self.get_tokenizer()
__snake_case : Optional[Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
__snake_case : List[Any] = """lower newer"""
__snake_case : Union[str, Any] = self.prepare_image_inputs()
__snake_case : Optional[int] = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase = 3 , _lowerCamelCase = 7 , _lowerCamelCase = 100_0000 ) -> int:
"""simple docstring"""
__snake_case : Dict = 0
__snake_case : Tuple = 1
for current_denominator in range(1 , limit + 1 ):
__snake_case : List[str] = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__snake_case : int = current_numerator
__snake_case : int = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
__snake_case : Union[str, Any] = iter(_lowerCamelCase )
while True:
__snake_case : str = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) )
if not chunk:
return
yield chunk
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] )
__snake_case : List[Any] = """"""
if len(_lowerCamelCase ) < 2:
return dirty
for i in range(len(_lowerCamelCase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(_lowerCamelCase ) & 1:
clean += "X"
return clean
def _a ( _lowerCamelCase ) -> list[str]:
"""simple docstring"""
__snake_case : List[str] = """ABCDEFGHIKLMNOPQRSTUVWXYZ"""
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
__snake_case : Optional[Any] = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(_lowerCamelCase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(_lowerCamelCase )
return table
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : Dict = generate_table(_lowerCamelCase )
__snake_case : int = prepare_input(_lowerCamelCase )
__snake_case : List[Any] = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_lowerCamelCase , 2 ):
__snake_case , __snake_case : Union[str, Any] = divmod(table.index(_lowerCamelCase ) , 5 )
__snake_case , __snake_case : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = generate_table(_lowerCamelCase )
__snake_case : Tuple = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_lowerCamelCase , 2 ):
__snake_case , __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 )
__snake_case , __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
__UpperCamelCase = Mapping[str, np.ndarray]
__UpperCamelCase = Mapping[str, Any] # Is a nested dict.
__UpperCamelCase = 0.01
@dataclasses.dataclass(frozen=__lowercase )
class _A :
lowercase__: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowercase__: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowercase__: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowercase__: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowercase__: np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowercase__: Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowercase__: Optional[str] = None
# Templates used to generate this protein (prediction-only)
lowercase__: Optional[Sequence[str]] = None
# Chain corresponding to each parent
lowercase__: Optional[Sequence[int]] = None
def _a ( _lowerCamelCase ) -> Protein:
"""simple docstring"""
__snake_case : List[str] = R"""(\[[A-Z]+\]\n)"""
__snake_case : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0]
__snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] )
__snake_case : List[str] = ["N", "CA", "C"]
__snake_case : Dict = None
__snake_case : Any = None
__snake_case : Optional[int] = None
for g in groups:
if "[PRIMARY]" == g[0]:
__snake_case : Union[str, Any] = g[1][0].strip()
for i in range(len(_lowerCamelCase ) ):
if seq[i] not in residue_constants.restypes:
__snake_case : Any = """X""" # FIXME: strings are immutable
__snake_case : int = np.array(
[residue_constants.restype_order.get(_lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
__snake_case : List[List[float]] = []
for axis in range(3 ):
tertiary.append(list(map(_lowerCamelCase , g[1][axis].split() ) ) )
__snake_case : int = np.array(_lowerCamelCase )
__snake_case : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(_lowerCamelCase ):
__snake_case : Union[str, Any] = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
__snake_case : List[Any] = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) )
__snake_case : Tuple = np.zeros(
(
len(_lowerCamelCase ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(_lowerCamelCase ):
__snake_case : List[str] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=_lowerCamelCase , atom_mask=_lowerCamelCase , aatype=_lowerCamelCase , residue_index=np.arange(len(_lowerCamelCase ) ) , b_factors=_lowerCamelCase , )
def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> List[str]:
"""simple docstring"""
__snake_case : List[str] = []
__snake_case : Optional[int] = prot.remark
if remark is not None:
pdb_headers.append(F'''REMARK {remark}''' )
__snake_case : List[str] = prot.parents
__snake_case : List[str] = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
__snake_case : str = [p for i, p in zip(_lowerCamelCase , _lowerCamelCase ) if i == chain_id]
if parents is None or len(_lowerCamelCase ) == 0:
__snake_case : Optional[int] = ["""N/A"""]
pdb_headers.append(F'''PARENT {" ".join(_lowerCamelCase )}''' )
return pdb_headers
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : List[str] = []
__snake_case : Dict = pdb_str.split("""\n""" )
__snake_case : Dict = prot.remark
if remark is not None:
out_pdb_lines.append(F'''REMARK {remark}''' )
__snake_case : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
__snake_case : Dict = []
if prot.parents_chain_index is not None:
__snake_case : Dict[str, List[str]] = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(_lowerCamelCase ) , [] )
parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase )
__snake_case : Optional[Any] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
__snake_case : Any = parent_dict.get(str(_lowerCamelCase ) , ["""N/A"""] )
parents_per_chain.append(_lowerCamelCase )
else:
parents_per_chain.append(list(prot.parents ) )
else:
__snake_case : str = [["""N/A"""]]
def make_parent_line(_lowerCamelCase ) -> str:
return F'''PARENT {" ".join(_lowerCamelCase )}'''
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
__snake_case : str = 0
for i, l in enumerate(_lowerCamelCase ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(_lowerCamelCase )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(_lowerCamelCase ):
__snake_case : Any = parents_per_chain[chain_counter]
else:
__snake_case : Any = ["""N/A"""]
out_pdb_lines.append(make_parent_line(_lowerCamelCase ) )
return "\n".join(_lowerCamelCase )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : Tuple = residue_constants.restypes + ["""X"""]
def res_atoa(_lowerCamelCase ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , """UNK""" )
__snake_case : int = residue_constants.atom_types
__snake_case : List[str] = []
__snake_case : str = prot.atom_mask
__snake_case : int = prot.aatype
__snake_case : Optional[Any] = prot.atom_positions
__snake_case : int = prot.residue_index.astype(np.intaa )
__snake_case : List[str] = prot.b_factors
__snake_case : str = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("""Invalid aatypes.""" )
__snake_case : List[Any] = get_pdb_headers(_lowerCamelCase )
if len(_lowerCamelCase ) > 0:
pdb_lines.extend(_lowerCamelCase )
__snake_case : Any = aatype.shape[0]
__snake_case : str = 1
__snake_case : Any = 0
__snake_case : List[Any] = string.ascii_uppercase
__snake_case : Union[str, Any] = None
# Add all atom sites.
for i in range(_lowerCamelCase ):
__snake_case : Optional[Any] = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(_lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
__snake_case : List[str] = """ATOM"""
__snake_case : Dict = atom_name if len(_lowerCamelCase ) == 4 else F''' {atom_name}'''
__snake_case : int = """"""
__snake_case : List[Any] = """"""
__snake_case : Optional[Any] = 1.00
__snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works.
__snake_case : Tuple = """"""
__snake_case : List[str] = """A"""
if chain_index is not None:
__snake_case : Union[str, Any] = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
__snake_case : Optional[Any] = (
F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'''
F'''{res_name_a:>3} {chain_tag:>1}'''
F'''{residue_index[i]:>4}{insertion_code:>1} '''
F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'''
F'''{occupancy:>6.2f}{b_factor:>6.2f} '''
F'''{element:>2}{charge:>2}'''
)
pdb_lines.append(_lowerCamelCase )
atom_index += 1
__snake_case : str = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
__snake_case : int = True
__snake_case : List[Any] = chain_index[i + 1]
if should_terminate:
# Close the chain.
__snake_case : Optional[Any] = """TER"""
__snake_case : Optional[Any] = (
F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'''
)
pdb_lines.append(_lowerCamelCase )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(_lowerCamelCase , _lowerCamelCase ) )
pdb_lines.append("""END""" )
pdb_lines.append("""""" )
return "\n".join(_lowerCamelCase )
def _a ( _lowerCamelCase ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=_lowerCamelCase , remark=_lowerCamelCase , parents=_lowerCamelCase , parents_chain_index=_lowerCamelCase , )
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase = 200_0000 ) -> int:
"""simple docstring"""
__snake_case : Any = [0 for i in range(n + 1 )]
__snake_case : Union[str, Any] = 1
__snake_case : List[Any] = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , _lowerCamelCase ):
__snake_case : Any = 1
__snake_case : int = 0
for i in range(_lowerCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
__UpperCamelCase = None
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
__UpperCamelCase = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
},
"tokenizer_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json",
},
}
# TODO(PVP) - this should be removed in Transformers v5
__UpperCamelCase = {
"t5-small": 512,
"t5-base": 512,
"t5-large": 512,
"t5-3b": 512,
"t5-11b": 512,
}
class _A ( __lowercase ):
lowercase__: List[str] = VOCAB_FILES_NAMES
lowercase__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Any = ['''input_ids''', '''attention_mask''']
lowercase__: Any = TaTokenizer
lowercase__: List[int] = []
def __init__( self : List[str] , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]="</s>" , __magic_name__ : Any="<unk>" , __magic_name__ : Any="<pad>" , __magic_name__ : int=1_00 , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] , ) -> Tuple:
"""simple docstring"""
if extra_ids > 0 and additional_special_tokens is None:
__snake_case : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
__snake_case : Tuple = len(set(filter(lambda __magic_name__ : bool("""extra_id_""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
super().__init__(
__magic_name__ , tokenizer_file=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
__snake_case : Optional[int] = vocab_file
__snake_case : Any = False if not self.vocab_file else True
__snake_case : Union[str, Any] = extra_ids
@staticmethod
def lowercase__ ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str ) -> Union[str, Any]:
"""simple docstring"""
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
__snake_case : Dict = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __magic_name__ , )
return max_model_length
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : Dict = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ):
copyfile(self.vocab_file , __magic_name__ )
logger.info(f'''Copy vocab file to {out_vocab_file}''' )
return (out_vocab_file,)
def lowercase__ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Dict = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
__snake_case : int = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return list(
set(filter(lambda __magic_name__ : bool(re.search(r"""<extra_id_\d+>""" , __magic_name__ ) ) is not None , self.additional_special_tokens ) ) )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return [self.convert_tokens_to_ids(__magic_name__ ) for token in self.get_sentinel_tokens()]
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class _A :
def __init__( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=13 , __magic_name__ : Optional[int]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Any=16 , __magic_name__ : int=[1, 2, 1] , __magic_name__ : Dict=[2, 2, 4] , __magic_name__ : Optional[int]=2 , __magic_name__ : str=2.0 , __magic_name__ : str=True , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[str]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : Optional[int]=False , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=1E-5 , __magic_name__ : int=True , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]=True , __magic_name__ : int=10 , __magic_name__ : int=8 , __magic_name__ : str=["stage1", "stage2", "stage3"] , __magic_name__ : List[Any]=[1, 2, 3] , ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = parent
__snake_case : Optional[int] = batch_size
__snake_case : List[str] = image_size
__snake_case : Any = patch_size
__snake_case : str = num_channels
__snake_case : List[str] = embed_dim
__snake_case : Dict = depths
__snake_case : str = num_heads
__snake_case : str = window_size
__snake_case : List[Any] = mlp_ratio
__snake_case : Optional[int] = qkv_bias
__snake_case : Tuple = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : List[str] = drop_path_rate
__snake_case : Optional[Any] = hidden_act
__snake_case : List[str] = use_absolute_embeddings
__snake_case : List[str] = patch_norm
__snake_case : int = layer_norm_eps
__snake_case : int = initializer_range
__snake_case : int = is_training
__snake_case : Optional[Any] = scope
__snake_case : int = use_labels
__snake_case : Tuple = type_sequence_label_size
__snake_case : Optional[int] = encoder_stride
__snake_case : Union[str, Any] = out_features
__snake_case : int = out_indices
def lowercase__ ( self : Any ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = MaskFormerSwinModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : int = model(__magic_name__ )
__snake_case : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__snake_case : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Any = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(__magic_name__ ):
__snake_case : str = ["""stem"""]
__snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : List[str] = config_and_inputs
__snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: str = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowercase__: Union[str, Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {}
lowercase__: Any = False
lowercase__: Any = False
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Any = False
def lowercase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = MaskFormerSwinModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__magic_name__ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = model_class(__magic_name__ )
__snake_case : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[Any] = [*signature.parameters.keys()]
__snake_case : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Optional[Any] = outputs.hidden_states
__snake_case : Tuple = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
# Swin has a different seq_length
__snake_case : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__snake_case : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__snake_case : Any = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = 3
__snake_case : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__snake_case : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__snake_case : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__snake_case : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__snake_case : str = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowercase__ ( self : int ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__magic_name__ : Optional[Any] ):
__snake_case : Any = 0
return t
def check_equivalence(__magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int={} ):
with torch.no_grad():
__snake_case : Union[str, Any] = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ )
__snake_case : Tuple = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ).to_tuple()
def recursive_check(__magic_name__ : Dict , __magic_name__ : Tuple ):
if isinstance(__magic_name__ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__magic_name__ , __magic_name__ ):
recursive_check(__magic_name__ , __magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(__magic_name__ , __magic_name__ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__magic_name__ ) , set_nan_tensor_to_zero(__magic_name__ ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}. Dict has'''
f''' `nan`: {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}.'''
) , )
recursive_check(__magic_name__ , __magic_name__ )
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ )
check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ )
check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} )
__snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ )
check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} )
@require_torch
class _A ( unittest.TestCase , __lowercase ):
lowercase__: Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowercase__: Optional[Any] = MaskFormerSwinConfig
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = MaskFormerSwinModelTester(self )
def lowercase__ ( self : Dict ) -> Any:
"""simple docstring"""
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : int = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
__snake_case : Union[str, Any] = backbone_class(__magic_name__ )
backbone.to(__magic_name__ )
backbone.eval()
__snake_case : int = backbone(**__magic_name__ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __magic_name__ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__snake_case : List[Any] = backbone(**__magic_name__ , output_hidden_states=__magic_name__ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__snake_case , __snake_case , __snake_case : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__snake_case : Optional[int] = backbone(**__magic_name__ , output_attentions=__magic_name__ )
self.assertIsNotNone(outputs.attentions )
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: List[Any] = StableDiffusionPanoramaPipeline
lowercase__: Dict = TEXT_TO_IMAGE_PARAMS
lowercase__: Dict = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase__: Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
__snake_case : Optional[int] = DDIMScheduler()
torch.manual_seed(0 )
__snake_case : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
__snake_case : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__snake_case : Optional[Any] = CLIPTextModel(__magic_name__ )
__snake_case : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__snake_case : List[str] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowercase__ ( self : Optional[int] , __magic_name__ : Any , __magic_name__ : List[str]=0 ) -> int:
"""simple docstring"""
__snake_case : str = torch.manual_seed(__magic_name__ )
__snake_case : List[Any] = {
"""prompt""": """a photo of the dolomites""",
"""generator""": generator,
# Setting height and width to None to prevent OOMs on CPU.
"""height""": None,
"""width""": None,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
__snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__snake_case : List[str] = self.get_dummy_components()
__snake_case : List[str] = StableDiffusionPanoramaPipeline(**__magic_name__ )
__snake_case : Any = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ )
__snake_case : Union[str, Any] = sd_pipe(**__magic_name__ ).images
__snake_case : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : Union[str, Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
__snake_case : Optional[Any] = self.get_dummy_components()
__snake_case : Optional[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ )
__snake_case : str = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ )
__snake_case : Optional[int] = """french fries"""
__snake_case : Optional[int] = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ )
__snake_case : Optional[Any] = output.images
__snake_case : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__snake_case : int = self.get_dummy_components()
__snake_case : Dict = StableDiffusionPanoramaPipeline(**__magic_name__ )
__snake_case : Optional[int] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : int = self.get_dummy_inputs(__magic_name__ )
__snake_case : Optional[Any] = sd_pipe(**__magic_name__ , view_batch_size=2 )
__snake_case : Optional[int] = output.images
__snake_case : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : Any = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
__snake_case : str = self.get_dummy_components()
__snake_case : List[Any] = EulerAncestralDiscreteScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
__snake_case : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ )
__snake_case : List[str] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : Tuple = self.get_dummy_inputs(__magic_name__ )
__snake_case : List[Any] = sd_pipe(**__magic_name__ ).images
__snake_case : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : int ) -> Any:
"""simple docstring"""
__snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
__snake_case : str = self.get_dummy_components()
__snake_case : str = PNDMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=__magic_name__ )
__snake_case : Any = StableDiffusionPanoramaPipeline(**__magic_name__ )
__snake_case : List[Any] = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ )
__snake_case : Optional[int] = sd_pipe(**__magic_name__ ).images
__snake_case : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : str ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict , __magic_name__ : Optional[int]=0 ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = torch.manual_seed(__magic_name__ )
__snake_case : Dict = {
"""prompt""": """a photo of the dolomites""",
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = """stabilityai/stable-diffusion-2-base"""
__snake_case : List[str] = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" )
__snake_case : Dict = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
__snake_case : Any = self.get_inputs()
__snake_case : int = pipe(**__magic_name__ ).images
__snake_case : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
__snake_case : Union[str, Any] = np.array(
[
0.36968392,
0.27025372,
0.32446766,
0.28379387,
0.36363274,
0.30733347,
0.27100027,
0.27054125,
0.25536096,
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-2
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-base""" , safety_checker=__magic_name__ )
__snake_case : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
__snake_case : Tuple = self.get_inputs()
__snake_case : Tuple = pipe(**__magic_name__ ).images
__snake_case : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
__snake_case : Optional[Any] = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowercase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__snake_case : List[str] = 0
def callback_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : torch.FloatTensor ) -> None:
__snake_case : Union[str, Any] = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__snake_case : List[str] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
__snake_case : Optional[int] = latents[0, -3:, -3:, -1]
__snake_case : List[str] = np.array(
[
0.18681869,
0.33907816,
0.5361276,
0.14432865,
-0.02856611,
-0.73941123,
0.23397987,
0.47322682,
-0.37823164,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
__snake_case : List[str] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
__snake_case : int = latents[0, -3:, -3:, -1]
__snake_case : List[str] = np.array(
[
0.18539645,
0.33987248,
0.5378559,
0.14437142,
-0.02455261,
-0.7338317,
0.23990755,
0.47356272,
-0.3786505,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
__snake_case : Optional[Any] = False
__snake_case : List[Any] = """stabilityai/stable-diffusion-2-base"""
__snake_case : Any = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" )
__snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
__snake_case : List[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
__snake_case : List[Any] = self.get_inputs()
pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__snake_case : Tuple = """stabilityai/stable-diffusion-2-base"""
__snake_case : int = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" )
__snake_case : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ )
__snake_case : int = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__snake_case : Union[str, Any] = self.get_inputs()
__snake_case : Union[str, Any] = pipe(**__magic_name__ )
__snake_case : Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase ) -> list:
"""simple docstring"""
if len(_lowerCamelCase ) == 0:
return []
__snake_case , __snake_case : Tuple = min(_lowerCamelCase ), max(_lowerCamelCase )
__snake_case : List[Any] = int(max_value - min_value ) + 1
__snake_case : list[list] = [[] for _ in range(_lowerCamelCase )]
for i in my_list:
buckets[int(i - min_value )].append(_lowerCamelCase )
return [v for bucket in buckets for v in sorted(_lowerCamelCase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: List[str] = '''vision-encoder-decoder'''
lowercase__: List[Any] = True
def __init__( self : Union[str, Any] , **__magic_name__ : int ) -> List[Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f'''A configuraton of type {self.model_type} cannot be instantiated because '''
f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' )
__snake_case : str = kwargs.pop("""encoder""" )
__snake_case : Any = encoder_config.pop("""model_type""" )
__snake_case : Tuple = kwargs.pop("""decoder""" )
__snake_case : List[str] = decoder_config.pop("""model_type""" )
__snake_case : Union[str, Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ )
__snake_case : Dict = AutoConfig.for_model(__magic_name__ , **__magic_name__ )
__snake_case : List[str] = True
@classmethod
def lowercase__ ( cls : Dict , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Optional[int] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
__snake_case : Optional[Any] = True
__snake_case : int = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
__snake_case : List[str] = copy.deepcopy(self.__dict__ )
__snake_case : Tuple = self.encoder.to_dict()
__snake_case : Optional[Any] = self.decoder.to_dict()
__snake_case : str = self.__class__.model_type
return output
class _A ( __lowercase ):
lowercase__: Dict = version.parse('''1.11''' )
@property
def lowercase__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase__ ( self : List[Any] ) -> float:
"""simple docstring"""
return 1E-4
@property
def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} )
class _A ( __lowercase ):
@property
def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Any = OrderedDict()
__snake_case : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
__snake_case : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
__snake_case : int = {0: """batch""", 1: """encoder_sequence"""}
return common_inputs
def lowercase__ ( self : Tuple , __magic_name__ : "PreTrainedTokenizerBase" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
import torch
__snake_case : List[str] = OrderedDict()
__snake_case : List[str] = super().generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
__snake_case , __snake_case : List[Any] = dummy_input["""input_ids"""].shape
__snake_case : str = (batch, encoder_sequence, self._config.encoder_hidden_size)
__snake_case : Union[str, Any] = dummy_input.pop("""input_ids""" )
__snake_case : Dict = dummy_input.pop("""attention_mask""" )
__snake_case : Optional[Any] = torch.zeros(__magic_name__ )
return common_inputs
class _A ( __lowercase ):
@property
def lowercase__ ( self : str ) -> None:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] , __magic_name__ : PretrainedConfig ) -> OnnxConfig:
"""simple docstring"""
return VisionEncoderDecoderEncoderOnnxConfig(__magic_name__ )
def lowercase__ ( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" ) -> OnnxConfig:
"""simple docstring"""
__snake_case : str = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(__magic_name__ , __magic_name__ )
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _A ( __lowercase ):
lowercase__: List[Any] = (KDPMaDiscreteScheduler,)
lowercase__: List[str] = 10
def lowercase__ ( self : Union[str, Any] , **__magic_name__ : Dict ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = {
"""num_train_timesteps""": 11_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**__magic_name__ )
return config
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__magic_name__ )
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.scheduler_classes[0]
__snake_case : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" )
__snake_case : List[Any] = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(self.num_inference_steps )
__snake_case : Dict = self.dummy_model()
__snake_case : str = self.dummy_sample_deter * scheduler.init_noise_sigma
__snake_case : List[str] = sample.to(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
__snake_case : int = scheduler.scale_model_input(__magic_name__ , __magic_name__ )
__snake_case : List[str] = model(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : Tuple = output.prev_sample
__snake_case : Any = torch.sum(torch.abs(__magic_name__ ) )
__snake_case : Optional[Any] = torch.mean(torch.abs(__magic_name__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
if torch_device == "mps":
return
__snake_case : List[Any] = self.scheduler_classes[0]
__snake_case : Optional[Any] = self.get_scheduler_config()
__snake_case : Any = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(self.num_inference_steps )
__snake_case : List[Any] = self.dummy_model()
__snake_case : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
__snake_case : Dict = sample.to(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
__snake_case : Dict = scheduler.scale_model_input(__magic_name__ , __magic_name__ )
__snake_case : List[str] = model(__magic_name__ , __magic_name__ )
__snake_case : Any = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : List[Any] = output.prev_sample
__snake_case : Union[str, Any] = torch.sum(torch.abs(__magic_name__ ) )
__snake_case : Dict = torch.mean(torch.abs(__magic_name__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if torch_device == "mps":
return
__snake_case : Optional[int] = self.scheduler_classes[0]
__snake_case : Optional[int] = self.get_scheduler_config()
__snake_case : Union[str, Any] = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ )
__snake_case : Dict = self.dummy_model()
__snake_case : Dict = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__snake_case : str = scheduler.scale_model_input(__magic_name__ , __magic_name__ )
__snake_case : List[str] = model(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = output.prev_sample
__snake_case : str = torch.sum(torch.abs(__magic_name__ ) )
__snake_case : Optional[int] = torch.mean(torch.abs(__magic_name__ ) )
if str(__magic_name__ ).startswith("""cpu""" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _a ( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase )
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
AutoTokenizer.from_pretrained(_lowerCamelCase ).save_pretrained(_lowerCamelCase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
__UpperCamelCase = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> Optional[Any]:
"""simple docstring"""
if rng is None:
__snake_case : int = random.Random()
__snake_case : Dict = 1
for dim in shape:
total_dims *= dim
__snake_case : int = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
__snake_case : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Tuple:
"""simple docstring"""
__snake_case : Union[str, Any] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
__snake_case : Optional[Any] = 1
return attn_mask
@require_flax
class _A :
lowercase__: Optional[int] = None
lowercase__: str = ()
def lowercase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
__snake_case : Any = 2
__snake_case : Union[str, Any] = inputs["""input_ids"""].shape[-1] // 2
__snake_case : Union[str, Any] = inputs["""input_ids"""][:max_batch_size, :sequence_length]
__snake_case : Dict = jnp.ones_like(__magic_name__ )
__snake_case : Any = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
__snake_case : Optional[int] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
__snake_case : str = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : List[Any] = self._get_input_ids_and_config()
__snake_case : Union[str, Any] = False
__snake_case : Optional[Any] = max_length
__snake_case : List[str] = 0
for model_class in self.all_generative_model_classes:
__snake_case : Tuple = model_class(__magic_name__ )
__snake_case : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case : int = getattr(__magic_name__ , __magic_name__ )
__snake_case : Tuple = pt_model_class(__magic_name__ ).eval()
__snake_case : Optional[Any] = load_flax_weights_in_pytorch_model(__magic_name__ , flax_model.params )
__snake_case : str = flax_model.generate(__magic_name__ ).sequences
__snake_case : List[str] = pt_model.generate(torch.tensor(__magic_name__ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
__snake_case : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : int = self._get_input_ids_and_config()
__snake_case : Optional[int] = False
__snake_case : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
__snake_case : List[str] = model_class(__magic_name__ )
__snake_case : Dict = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : List[str] = jit(model.generate )
__snake_case : Optional[Any] = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config()
__snake_case : Tuple = True
__snake_case : int = max_length
for model_class in self.all_generative_model_classes:
__snake_case : Tuple = model_class(__magic_name__ )
__snake_case : Dict = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : str = jit(model.generate )
__snake_case : int = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : int = self._get_input_ids_and_config()
__snake_case : int = False
__snake_case : List[str] = max_length
__snake_case : str = 2
for model_class in self.all_generative_model_classes:
__snake_case : int = model_class(__magic_name__ )
__snake_case : Optional[Any] = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Union[str, Any] = jit(model.generate )
__snake_case : Optional[Any] = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config()
__snake_case : List[Any] = False
__snake_case : Tuple = max_length
__snake_case : Union[str, Any] = 2
__snake_case : Union[str, Any] = 2
for model_class in self.all_generative_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : List[Any] = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = self._get_input_ids_and_config()
__snake_case : int = True
__snake_case : Optional[int] = max_length
__snake_case : Any = 0.8
__snake_case : List[Any] = 10
__snake_case : Union[str, Any] = 0.3
__snake_case : str = 1
__snake_case : List[Any] = 8
__snake_case : str = 9
for model_class in self.all_generative_model_classes:
__snake_case : int = model_class(__magic_name__ )
__snake_case : Union[str, Any] = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Union[str, Any] = jit(model.generate )
__snake_case : Dict = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config()
__snake_case : Optional[int] = max_length
__snake_case : List[Any] = 1
__snake_case : Dict = 8
__snake_case : Any = 9
for model_class in self.all_generative_model_classes:
__snake_case : str = model_class(__magic_name__ )
__snake_case : List[str] = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Optional[int] = jit(model.generate )
__snake_case : List[str] = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Any = self._get_input_ids_and_config()
__snake_case : Tuple = max_length
__snake_case : Union[str, Any] = 2
__snake_case : Union[str, Any] = 1
__snake_case : int = 8
__snake_case : Optional[Any] = 9
for model_class in self.all_generative_model_classes:
__snake_case : Optional[int] = model_class(__magic_name__ )
__snake_case : Union[str, Any] = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Union[str, Any] = jit(model.generate )
__snake_case : Any = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : str = self._get_input_ids_and_config()
# pad attention mask on the left
__snake_case : Any = attention_mask.at[(0, 0)].set(0 )
__snake_case : Optional[int] = False
__snake_case : Tuple = max_length
for model_class in self.all_generative_model_classes:
__snake_case : List[Any] = model_class(__magic_name__ )
__snake_case : List[Any] = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Union[str, Any] = jit(model.generate )
__snake_case : int = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self._get_input_ids_and_config()
# pad attention mask on the left
__snake_case : int = attention_mask.at[(0, 0)].set(0 )
__snake_case : Optional[Any] = True
__snake_case : List[Any] = max_length
for model_class in self.all_generative_model_classes:
__snake_case : Tuple = model_class(__magic_name__ )
__snake_case : Optional[Any] = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : List[Any] = jit(model.generate )
__snake_case : Union[str, Any] = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = self._get_input_ids_and_config()
# pad attention mask on the left
__snake_case : str = attention_mask.at[(0, 0)].set(0 )
__snake_case : Tuple = 2
__snake_case : List[Any] = max_length
for model_class in self.all_generative_model_classes:
__snake_case : Dict = model_class(__magic_name__ )
__snake_case : str = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
__snake_case : Dict = jit(model.generate )
__snake_case : List[Any] = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class _A ( unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" )
__snake_case : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
__snake_case : Union[str, Any] = """Hello world"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""np""" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__magic_name__ , """do_samples""" ):
model.generate(__magic_name__ , do_samples=__magic_name__ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__magic_name__ , """foo""" ):
__snake_case : Optional[Any] = {"""foo""": """bar"""}
model.generate(__magic_name__ , **__magic_name__ )
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__snake_case : int = k.replace(_lowerCamelCase , _lowerCamelCase )
if k.startswith("""encoder""" ):
__snake_case : Optional[Any] = k.replace(""".attn""" , """.self_attn""" )
__snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
__snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
__snake_case : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" )
return k
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
__snake_case : Union[str, Any] = sd.pop(_lowerCamelCase )
__snake_case : List[Any] = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
__snake_case : Tuple = v
__UpperCamelCase = ["START"]
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" )
__snake_case : Tuple = model["""model"""]
__snake_case : Union[str, Any] = BlenderbotConfig.from_json_file(_lowerCamelCase )
__snake_case : Tuple = BlenderbotForConditionalGeneration(_lowerCamelCase )
__snake_case : Optional[Any] = m.model.state_dict().keys()
__snake_case : Optional[Any] = []
__snake_case : List[Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__snake_case : List[str] = rename_state_dict_key(_lowerCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__snake_case : str = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_lowerCamelCase )
m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
m.half()
m.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
__UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = XCLIPTextConfig()
# derive patch size from model name
__snake_case : Any = model_name.find("""patch""" )
__snake_case : int = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] )
__snake_case : str = XCLIPVisionConfig(patch_size=_lowerCamelCase , num_frames=_lowerCamelCase )
if "large" in model_name:
__snake_case : Optional[Any] = 768
__snake_case : Any = 3072
__snake_case : Dict = 12
__snake_case : Tuple = 1024
__snake_case : Optional[int] = 4096
__snake_case : Dict = 16
__snake_case : List[Any] = 24
__snake_case : Dict = 768
__snake_case : Optional[int] = 3072
if model_name == "xclip-large-patch14-16-frames":
__snake_case : Optional[int] = 336
__snake_case : Union[str, Any] = XCLIPConfig.from_text_vision_configs(_lowerCamelCase , _lowerCamelCase )
if "large" in model_name:
__snake_case : List[Any] = 768
return config
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
if name == "token_embedding.weight":
__snake_case : Union[str, Any] = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" )
if name == "positional_embedding":
__snake_case : Dict = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "ln_1" in name:
__snake_case : Tuple = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__snake_case : List[str] = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__snake_case : str = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__snake_case : Optional[Any] = name.replace("""c_proj""" , """fc2""" )
if name.startswith("""transformer.resblocks""" ):
__snake_case : List[str] = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" )
if "attn.out_proj" in name and "message" not in name:
__snake_case : int = name.replace("""attn.out_proj""" , """self_attn.out_proj""" )
if "ln_final" in name:
__snake_case : List[Any] = name.replace("""ln_final""" , """text_model.final_layer_norm""" )
# visual encoder
if name == "visual.class_embedding":
__snake_case : str = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" )
if name == "visual.positional_embedding":
__snake_case : Optional[int] = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" )
if name.startswith("""visual.transformer.resblocks""" ):
__snake_case : Optional[int] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" )
if "visual.conv1" in name:
__snake_case : List[str] = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" )
if "visual.ln_pre" in name:
__snake_case : List[Any] = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" )
if "visual.ln_post" in name:
__snake_case : List[Any] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" )
if "visual.proj" in name:
__snake_case : List[Any] = name.replace("""visual.proj""" , """visual_projection.weight""" )
if "text_projection" in name:
__snake_case : str = name.replace("""text_projection""" , """text_projection.weight""" )
# things on top
if "prompts_visual_proj" in name:
__snake_case : str = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" )
if "prompts_visual_ln" in name:
__snake_case : str = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" )
# mit
if name == "mit.positional_embedding":
__snake_case : Tuple = name.replace("""positional""" , """position""" )
if name.startswith("""mit.resblocks""" ):
__snake_case : Any = name.replace("""mit.resblocks""" , """mit.encoder.layers""" )
# prompts generator
if name.startswith("""prompts_generator.norm""" ):
__snake_case : Union[str, Any] = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" )
return name
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__snake_case : int = orig_state_dict.pop(_lowerCamelCase )
if "attn.in_proj" in key:
__snake_case : List[str] = key.split(""".""" )
if key.startswith("""visual""" ):
__snake_case : Optional[int] = key_split[3]
__snake_case : Any = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__snake_case : Optional[Any] = val[
:dim, :
]
__snake_case : str = val[
dim : dim * 2, :
]
__snake_case : List[str] = val[
-dim:, :
]
else:
__snake_case : Tuple = val[
:dim
]
__snake_case : Any = val[
dim : dim * 2
]
__snake_case : str = val[
-dim:
]
else:
if "weight" in key:
__snake_case : List[Any] = val[
:dim, :
]
__snake_case : str = val[
dim : dim * 2, :
]
__snake_case : List[Any] = val[
-dim:, :
]
else:
__snake_case : str = val[:dim]
__snake_case : Optional[int] = val[
dim : dim * 2
]
__snake_case : Dict = val[-dim:]
elif key.startswith("""mit""" ):
__snake_case : int = key_split[2]
__snake_case : Optional[Any] = config.vision_config.mit_hidden_size
if "weight" in key:
__snake_case : List[str] = val[:dim, :]
__snake_case : Dict = val[dim : dim * 2, :]
__snake_case : Optional[Any] = val[-dim:, :]
else:
__snake_case : Optional[Any] = val[:dim]
__snake_case : Optional[Any] = val[dim : dim * 2]
__snake_case : List[Any] = val[-dim:]
else:
__snake_case : Tuple = key_split[2]
__snake_case : Union[str, Any] = config.text_config.hidden_size
if "weight" in key:
__snake_case : Union[str, Any] = val[:dim, :]
__snake_case : Union[str, Any] = val[
dim : dim * 2, :
]
__snake_case : Optional[Any] = val[-dim:, :]
else:
__snake_case : List[str] = val[:dim]
__snake_case : Tuple = val[
dim : dim * 2
]
__snake_case : Any = val[-dim:]
else:
__snake_case : Optional[int] = rename_key(_lowerCamelCase )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__snake_case : Dict = val.T
__snake_case : List[Any] = val
return orig_state_dict
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
if num_frames == 8:
__snake_case : Optional[Any] = """eating_spaghetti_8_frames.npy"""
elif num_frames == 16:
__snake_case : Tuple = """eating_spaghetti.npy"""
elif num_frames == 32:
__snake_case : Union[str, Any] = """eating_spaghetti_32_frames.npy"""
__snake_case : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename=_lowerCamelCase , repo_type="""dataset""" , )
__snake_case : Dict = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = {
# fully supervised kinetics-400 checkpoints
"""xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""",
"""xclip-base-patch32-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"""
),
"""xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""",
"""xclip-base-patch16-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"""
),
"""xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb""",
"""xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f""",
# fully supervised kinetics-600 checkpoints
"""xclip-base-patch16-kinetics-600""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"""
),
"""xclip-base-patch16-kinetics-600-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"""
),
"""xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be""",
# few shot
"""xclip-base-patch16-hmdb-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"""
),
"""xclip-base-patch16-hmdb-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"""
),
"""xclip-base-patch16-hmdb-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"""
),
"""xclip-base-patch16-hmdb-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"""
),
"""xclip-base-patch16-ucf-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"""
),
"""xclip-base-patch16-ucf-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"""
),
"""xclip-base-patch16-ucf-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"""
),
"""xclip-base-patch16-ucf-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"""
),
# zero shot
"""xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""",
}
__snake_case : Tuple = model_to_url[model_name]
__snake_case : Dict = 8
if "16-frames" in model_name:
__snake_case : List[Any] = 16
elif "shot" in model_name:
__snake_case : Optional[int] = 32
__snake_case : List[Any] = get_xclip_config(_lowerCamelCase , _lowerCamelCase )
__snake_case : List[str] = XCLIPModel(_lowerCamelCase )
model.eval()
if "drive" in checkpoint_url:
__snake_case : int = """pytorch_model.bin"""
gdown.cached_download(_lowerCamelCase , _lowerCamelCase , quiet=_lowerCamelCase )
__snake_case : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" )["""model"""]
else:
__snake_case : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCamelCase )["""model"""]
__snake_case : str = convert_state_dict(_lowerCamelCase , _lowerCamelCase )
__snake_case : Optional[Any] = XCLIPModel(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__snake_case : List[str] = 336 if model_name == """xclip-large-patch14-16-frames""" else 224
__snake_case : str = VideoMAEImageProcessor(size=_lowerCamelCase )
__snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" )
__snake_case : int = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" )
__snake_case : Tuple = XCLIPProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase )
__snake_case : Tuple = prepare_video(_lowerCamelCase )
__snake_case : Optional[Any] = processor(
text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=_lowerCamelCase , return_tensors="""pt""" , padding=_lowerCamelCase )
print("""Shape of pixel values:""" , inputs.pixel_values.shape )
with torch.no_grad():
__snake_case : Dict = model(**_lowerCamelCase )
# Verify outputs
__snake_case : Tuple = outputs.logits_per_video
__snake_case : int = logits_per_video.softmax(dim=1 )
print("""Probs:""" , _lowerCamelCase )
# kinetics-400
if model_name == "xclip-base-patch32":
__snake_case : Optional[Any] = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] )
elif model_name == "xclip-base-patch32-16-frames":
__snake_case : str = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] )
elif model_name == "xclip-base-patch16":
__snake_case : Dict = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] )
elif model_name == "xclip-base-patch16-16-frames":
__snake_case : str = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] )
elif model_name == "xclip-large-patch14":
__snake_case : Union[str, Any] = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] )
elif model_name == "xclip-large-patch14-16-frames":
__snake_case : Tuple = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__snake_case : Dict = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__snake_case : int = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__snake_case : Optional[int] = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__snake_case : str = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__snake_case : Tuple = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__snake_case : Optional[Any] = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__snake_case : Optional[Any] = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__snake_case : str = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__snake_case : Any = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__snake_case : Tuple = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__snake_case : Optional[Any] = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__snake_case : Dict = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] )
else:
raise ValueError(F'''Model name {model_name} not supported''' )
assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowerCamelCase )
if push_to_hub:
print("""Pushing model, processor and slow tokenizer files to the hub...""" )
model.push_to_hub(_lowerCamelCase , organization="""nielsr""" )
processor.push_to_hub(_lowerCamelCase , organization="""nielsr""" )
slow_tokenizer.push_to_hub(_lowerCamelCase , organization="""nielsr""" )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="xclip-base-patch32",
type=str,
help="Name of the model.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
def _a ( ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = 0
for i in range(1 , 1001 ):
total += i**i
return str(_lowerCamelCase )[-10:]
if __name__ == "__main__":
print(solution())
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
import warnings
from functools import wraps
from typing import Callable
def _a ( _lowerCamelCase ) -> Callable:
"""simple docstring"""
@wraps(_lowerCamelCase )
def _inner_fn(*_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
(F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _lowerCamelCase , )
return fn(*_lowerCamelCase , **_lowerCamelCase )
return _inner_fn
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
__UpperCamelCase = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _A :
def __init__( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str]=13 , __magic_name__ : List[str]=30 , __magic_name__ : int=2 , __magic_name__ : Any=3 , __magic_name__ : List[str]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : List[str]=4 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : str=None , __magic_name__ : Dict=2 , ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = parent
__snake_case : Dict = batch_size
__snake_case : Optional[int] = image_size
__snake_case : Tuple = patch_size
__snake_case : str = num_channels
__snake_case : Any = is_training
__snake_case : List[Any] = use_labels
__snake_case : int = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : Tuple = intermediate_size
__snake_case : Dict = hidden_act
__snake_case : Tuple = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : int = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : List[Any] = scope
__snake_case : Any = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__snake_case : Dict = (image_size // patch_size) ** 2
__snake_case : Tuple = num_patches + 1
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : str = None
if self.use_labels:
__snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowercase__ ( self : int , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = ViTModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Any ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = ViTForMaskedImageModeling(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : List[str] = model(__magic_name__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__snake_case : Tuple = 1
__snake_case : Optional[Any] = ViTForMaskedImageModeling(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : Any = model(__magic_name__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.type_sequence_label_size
__snake_case : Optional[int] = ViTForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Any = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__snake_case : Dict = 1
__snake_case : Tuple = ViTForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : List[Any] = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[Any] = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
lowercase__: int = (
{'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification}
if is_torch_available()
else {}
)
lowercase__: Dict = True
lowercase__: str = False
lowercase__: Optional[int] = False
lowercase__: Tuple = False
def lowercase__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case : List[str] = ViTModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : int = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Tuple = [*signature.parameters.keys()]
__snake_case : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ )
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@slow
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = ViTModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None
@slow
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__magic_name__ )
__snake_case : int = self.default_image_processor
__snake_case : List[str] = prepare_img()
__snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : str = model(**__magic_name__ )
# verify the logits
__snake_case : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__magic_name__ )
__snake_case : Dict = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 )
__snake_case : List[Any] = prepare_img()
__snake_case : Optional[int] = image_processor(images=__magic_name__ , return_tensors="""pt""" )
__snake_case : str = inputs.pixel_values.to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : List[str] = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ )
# verify the logits
__snake_case : Optional[Any] = torch.Size((1, 36_01, 3_84) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Optional[int] = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : List[str] = prepare_img()
__snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" )
__snake_case : Any = inputs.pixel_values.to(__magic_name__ )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__snake_case : List[Any] = model(__magic_name__ )
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
__UpperCamelCase = range(2, 20 + 1)
__UpperCamelCase = [10**k for k in range(ks[-1] + 1)]
__UpperCamelCase = {}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) )
__snake_case : Dict = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) )
__snake_case , __snake_case : int = 0, 0
__snake_case : List[str] = n - i
__snake_case : Optional[Any] = memo.get(_lowerCamelCase )
if sub_memo is not None:
__snake_case : int = sub_memo.get(_lowerCamelCase )
if jumps is not None and len(_lowerCamelCase ) > 0:
# find and make the largest jump without going over
__snake_case : Optional[int] = -1
for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__snake_case : Dict = _k
break
if max_jump >= 0:
__snake_case , __snake_case , __snake_case : Any = jumps[max_jump]
# since the difference between jumps is cached, add c
__snake_case : int = diff + c
for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ):
__snake_case , __snake_case : int = divmod(_lowerCamelCase , 10 )
if new_c > 0:
add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
__snake_case : List[str] = []
else:
__snake_case : int = {c: []}
__snake_case : Optional[int] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__snake_case , __snake_case : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__snake_case , __snake_case : List[str] = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase )
diff += _diff
dn += terms_jumped
__snake_case : Union[str, Any] = sub_memo[c]
# keep jumps sorted by # of terms skipped
__snake_case : Union[str, Any] = 0
while j < len(_lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
if i >= n:
return 0, i
if k > len(_lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__snake_case : List[Any] = i
__snake_case , __snake_case , __snake_case : str = 0, 0, 0
for j in range(len(_lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__snake_case : Dict = ds_c + ds_b
diff += addend
__snake_case : List[Any] = 0
for j in range(_lowerCamelCase ):
__snake_case : str = a_i[j] + addend
__snake_case , __snake_case : Any = divmod(_lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return diff, i - start_i
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[Any] = digits[j] + addend
if s >= 10:
__snake_case , __snake_case : List[str] = divmod(_lowerCamelCase , 10 )
__snake_case : List[Any] = addend // 10 + quotient
else:
__snake_case : int = s
__snake_case : Optional[int] = addend // 10
if addend == 0:
break
while addend > 0:
__snake_case , __snake_case : Union[str, Any] = divmod(_lowerCamelCase , 10 )
digits.append(_lowerCamelCase )
def _a ( _lowerCamelCase = 10**15 ) -> int:
"""simple docstring"""
__snake_case : Dict = [1]
__snake_case : Dict = 1
__snake_case : List[Any] = 0
while True:
__snake_case , __snake_case : Any = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__snake_case : Optional[Any] = 0
for j in range(len(_lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__UpperCamelCase = TypeVar("T")
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
return (position - 1) // 2
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
return (2 * position) + 1
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
return (2 * position) + 2
class _A ( Generic[T] ):
def __init__( self : Any ) -> None:
"""simple docstring"""
__snake_case : list[tuple[T, int]] = []
__snake_case : dict[T, int] = {}
__snake_case : int = 0
def __len__( self : Any ) -> int:
"""simple docstring"""
return self.elements
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return str(self.heap )
def lowercase__ ( self : Optional[int] ) -> bool:
"""simple docstring"""
return self.elements == 0
def lowercase__ ( self : Any , __magic_name__ : T , __magic_name__ : int ) -> None:
"""simple docstring"""
self.heap.append((elem, weight) )
__snake_case : List[str] = self.elements
self.elements += 1
self._bubble_up(__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> T:
"""simple docstring"""
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__snake_case , __snake_case : int = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__snake_case , __snake_case : Dict = self.heap[0]
self._bubble_down(__magic_name__ )
return elem
def lowercase__ ( self : Dict , __magic_name__ : T , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case : List[Any] = self.position_map[elem]
__snake_case : Union[str, Any] = (elem, weight)
if position > 0:
__snake_case : List[Any] = get_parent_position(__magic_name__ )
__snake_case , __snake_case : str = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__magic_name__ )
else:
self._bubble_down(__magic_name__ )
else:
self._bubble_down(__magic_name__ )
def lowercase__ ( self : int , __magic_name__ : T ) -> None:
"""simple docstring"""
__snake_case : Tuple = self.position_map[elem]
if curr_pos == 0:
return None
__snake_case : Optional[Any] = get_parent_position(__magic_name__ )
__snake_case , __snake_case : Any = self.heap[curr_pos]
__snake_case , __snake_case : Union[str, Any] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__magic_name__ , __magic_name__ )
return self._bubble_up(__magic_name__ )
return None
def lowercase__ ( self : List[str] , __magic_name__ : T ) -> None:
"""simple docstring"""
__snake_case : Optional[int] = self.position_map[elem]
__snake_case , __snake_case : List[str] = self.heap[curr_pos]
__snake_case : List[Any] = get_child_left_position(__magic_name__ )
__snake_case : Union[str, Any] = get_child_right_position(__magic_name__ )
if child_left_position < self.elements and child_right_position < self.elements:
__snake_case , __snake_case : str = self.heap[child_left_position]
__snake_case , __snake_case : List[Any] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__magic_name__ , __magic_name__ )
return self._bubble_down(__magic_name__ )
if child_left_position < self.elements:
__snake_case , __snake_case : str = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__magic_name__ , __magic_name__ )
return self._bubble_down(__magic_name__ )
else:
return None
if child_right_position < self.elements:
__snake_case , __snake_case : Optional[int] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__magic_name__ , __magic_name__ )
return self._bubble_down(__magic_name__ )
return None
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case : str = self.heap[nodea_pos][0]
__snake_case : Tuple = self.heap[nodea_pos][0]
__snake_case , __snake_case : List[str] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__snake_case : str = nodea_pos
__snake_case : Any = nodea_pos
class _A ( Generic[T] ):
def __init__( self : Optional[Any] ) -> None:
"""simple docstring"""
__snake_case : dict[T, dict[T, int]] = {}
__snake_case : int = 0
def __repr__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return str(self.connections )
def __len__( self : Any ) -> int:
"""simple docstring"""
return self.nodes
def lowercase__ ( self : Optional[int] , __magic_name__ : T ) -> None:
"""simple docstring"""
if node not in self.connections:
__snake_case : str = {}
self.nodes += 1
def lowercase__ ( self : int , __magic_name__ : T , __magic_name__ : T , __magic_name__ : int ) -> None:
"""simple docstring"""
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
__snake_case : int = weight
__snake_case : str = weight
def _a ( _lowerCamelCase , ) -> tuple[dict[T, int], dict[T, T | None]]:
"""simple docstring"""
__snake_case : dict[T, int] = {node: maxsize for node in graph.connections}
__snake_case : dict[T, T | None] = {node: None for node in graph.connections}
__snake_case : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(_lowerCamelCase , _lowerCamelCase )
if priority_queue.is_empty():
return dist, parent
# initialization
__snake_case : List[str] = priority_queue.extract_min()
__snake_case : List[str] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__snake_case : Dict = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_lowerCamelCase , dist[neighbour] )
__snake_case : List[str] = node
# running prim's algorithm
while not priority_queue.is_empty():
__snake_case : Tuple = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__snake_case : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_lowerCamelCase , dist[neighbour] )
__snake_case : Optional[Any] = node
return dist, parent
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase = 100_0000 ) -> int:
"""simple docstring"""
__snake_case : str = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _A ( __lowercase ):
lowercase__: UNetaDModel
lowercase__: KarrasVeScheduler
def __init__( self : Tuple , __magic_name__ : UNetaDModel , __magic_name__ : KarrasVeScheduler ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ )
@torch.no_grad()
def __call__( self : List[Any] , __magic_name__ : int = 1 , __magic_name__ : int = 50 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , **__magic_name__ : Dict , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
__snake_case : Optional[Any] = self.unet.config.sample_size
__snake_case : Union[str, Any] = (batch_size, 3, img_size, img_size)
__snake_case : str = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
__snake_case : Optional[int] = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(__magic_name__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
__snake_case : str = self.scheduler.schedule[t]
__snake_case : Optional[int] = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
__snake_case , __snake_case : List[str] = self.scheduler.add_noise_to_input(__magic_name__ , __magic_name__ , generator=__magic_name__ )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
__snake_case : str = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
__snake_case : int = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
__snake_case : Tuple = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
__snake_case : Dict = self.scheduler.step_correct(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , step_output.prev_sample , step_output["""derivative"""] , )
__snake_case : Union[str, Any] = step_output.prev_sample
__snake_case : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 )
__snake_case : List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__snake_case : str = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__magic_name__ )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = len(_lowerCamelCase )
for i in range(length - 1 ):
__snake_case : Union[str, Any] = i
for k in range(i + 1 , _lowerCamelCase ):
if collection[k] < collection[least]:
__snake_case : int = k
if least != i:
__snake_case , __snake_case : Optional[int] = (collection[i], collection[least])
return collection
if __name__ == "__main__":
__UpperCamelCase = input("Enter numbers separated by a comma:\n").strip()
__UpperCamelCase = [int(item) for item in user_input.split(",")]
print(selection_sort(unsorted))
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class _A :
def __init__( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = {}
def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> None:
"""simple docstring"""
__snake_case : Union[str, Any] = {}
def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ) -> None:
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
__snake_case : Any = probability
def lowercase__ ( self : Tuple ) -> list[str]:
"""simple docstring"""
return list(self.connections )
def lowercase__ ( self : int , __magic_name__ : str ) -> str:
"""simple docstring"""
__snake_case : Optional[int] = 0
__snake_case : List[Any] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> dict[str, int]:
"""simple docstring"""
__snake_case : List[str] = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = Counter(graph.get_nodes() )
__snake_case : str = start
for _ in range(_lowerCamelCase ):
__snake_case : Any = graph.transition(_lowerCamelCase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase ) -> list:
"""simple docstring"""
__snake_case : Optional[int] = word.split()
def justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
__snake_case : List[Any] = max_width - width
__snake_case : List[str] = len(_lowerCamelCase )
if len(_lowerCamelCase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
__snake_case : str = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
__snake_case : Any = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
__snake_case : Optional[Any] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowerCamelCase ):
num_spaces_between_words_list[i] += 1
__snake_case : Union[str, Any] = []
for i in range(_lowerCamelCase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * """ """ )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowerCamelCase )
__snake_case : Any = []
__snake_case : list[str] = []
__snake_case : Dict = 0
for word in words:
if width + len(_lowerCamelCase ) + len(_lowerCamelCase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowerCamelCase )
width += len(_lowerCamelCase )
else:
# justify the line and add it to result
answer.append(justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) )
# reset new line and new width
__snake_case , __snake_case : Optional[int] = [word], len(_lowerCamelCase )
__snake_case : Optional[int] = max_width - width - len(_lowerCamelCase )
answer.append(""" """.join(_lowerCamelCase ) + (remaining_spaces + 1) * """ """ )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__UpperCamelCase = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class _A ( unittest.TestCase ):
def lowercase__ ( self : int , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )]
if identifier is not None:
__snake_case : Tuple = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__magic_name__ , __magic_name__ ):
for n_ in n_identifier:
__snake_case : List[Any] = [file for file in files if n_ not in file]
else:
__snake_case : Union[str, Any] = [file for file in files if n_identifier not in file]
__snake_case : Any = ignore_files or []
ignore_files.append("""__init__.py""" )
__snake_case : Union[str, Any] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , __magic_name__ )
if only_modules:
__snake_case : Dict = file.split(""".""" )[0]
try:
__snake_case : List[str] = getattr(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = doctest.DocTestSuite(__magic_name__ )
__snake_case : Tuple = unittest.TextTestRunner().run(__magic_name__ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
__snake_case : Optional[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = Path("""src/transformers""" )
__snake_case : List[str] = """modeling"""
__snake_case : List[str] = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = Path("""src/transformers""" )
__snake_case : List[Any] = """tokenization"""
self.analyze_directory(__magic_name__ , identifier=__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = Path("""src/transformers""" )
__snake_case : Optional[int] = """configuration"""
self.analyze_directory(__magic_name__ , identifier=__magic_name__ )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
__snake_case : Dict = Path("""src/transformers""" )
__snake_case : List[Any] = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Any = Path("""docs/source""" )
__snake_case : Optional[int] = ["""favicon.ico"""]
self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> list[int]:
"""simple docstring"""
if length <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError("""Length must be a positive integer.""" )
return [n * (2 * n - 1) for n in range(_lowerCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
import logging
from transformers import PretrainedConfig
__UpperCamelCase = logging.getLogger(__name__)
__UpperCamelCase = {
"bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: List[str] = '''bertabs'''
def __init__( self : Optional[Any] , __magic_name__ : Optional[int]=3_05_22 , __magic_name__ : List[Any]=5_12 , __magic_name__ : Any=6 , __magic_name__ : Dict=5_12 , __magic_name__ : Any=8 , __magic_name__ : Dict=5_12 , __magic_name__ : int=0.2 , __magic_name__ : str=6 , __magic_name__ : int=7_68 , __magic_name__ : Any=8 , __magic_name__ : List[Any]=20_48 , __magic_name__ : Any=0.2 , **__magic_name__ : Union[str, Any] , ) -> int:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : str = vocab_size
__snake_case : Union[str, Any] = max_pos
__snake_case : Any = enc_layers
__snake_case : List[str] = enc_hidden_size
__snake_case : int = enc_heads
__snake_case : Union[str, Any] = enc_ff_size
__snake_case : List[str] = enc_dropout
__snake_case : Union[str, Any] = dec_layers
__snake_case : List[str] = dec_hidden_size
__snake_case : Optional[int] = dec_heads
__snake_case : Optional[int] = dec_ff_size
__snake_case : Union[str, Any] = dec_dropout
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
__UpperCamelCase = 10
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
for i in range(_lowerCamelCase , _lowerCamelCase ):
if array[i] == target:
return i
return -1
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : List[Any] = 0
__snake_case : List[str] = len(_lowerCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : List[Any] = (left + right) // 3 + 1
__snake_case : str = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__snake_case : List[Any] = one_third - 1
elif array[two_third] < target:
__snake_case : Tuple = two_third + 1
else:
__snake_case : str = one_third + 1
__snake_case : Tuple = two_third - 1
else:
return -1
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : List[Any] = (left + right) // 3 + 1
__snake_case : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCamelCase = input("Enter numbers separated by comma:\n").strip()
__UpperCamelCase = [int(item.strip()) for item in user_input.split(",")]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
__UpperCamelCase = int(input("Enter the number to be found in the list:\n").strip())
__UpperCamelCase = ite_ternary_search(collection, target)
__UpperCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f"""Iterative search: {target} found at positions: {resulta}""")
print(f"""Recursive search: {target} found at positions: {resulta}""")
else:
print("Not found")
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
__UpperCamelCase = input("Enter image url: ").strip()
print(f"""Downloading image from {url} ...""")
__UpperCamelCase = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
__UpperCamelCase = soup.find("meta", {"property": "og:image"})["content"]
__UpperCamelCase = requests.get(image_url).content
__UpperCamelCase = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, "wb") as fp:
fp.write(image_data)
print(f"""Done. Image saved to disk as {file_name}.""")
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCamelCase = {
"configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"],
"tokenization_mvp": ["MvpTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["MvpTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MVP_PRETRAINED_MODEL_ARCHIVE_LIST",
"MvpForCausalLM",
"MvpForConditionalGeneration",
"MvpForQuestionAnswering",
"MvpForSequenceClassification",
"MvpModel",
"MvpPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "spiece.model"}
__UpperCamelCase = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class _A ( __lowercase ):
def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : int=True , __magic_name__ : Dict=False , __magic_name__ : Optional[Any]="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : Optional[Any]="<unk>" , __magic_name__ : int="<sep>" , __magic_name__ : int="<pad>" , __magic_name__ : List[Any]="<cls>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Tuple=["<eop>", "<eod>"] , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Any , ) -> None:
"""simple docstring"""
__snake_case : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
__snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
__snake_case : Dict = 3
__snake_case : Optional[int] = do_lower_case
__snake_case : str = remove_space
__snake_case : List[Any] = keep_accents
__snake_case : Dict = vocab_file
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
__snake_case : Optional[int] = jieba
__snake_case : int = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def lowercase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
return len(self.sp_model )
def lowercase__ ( self : int ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : List[Any] = self.__dict__.copy()
__snake_case : int = None
return state
def __setstate__( self : int , __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Union[str, Any] = {}
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Any:
"""simple docstring"""
if self.remove_space:
__snake_case : Optional[Any] = """ """.join(inputs.strip().split() )
else:
__snake_case : Any = inputs
__snake_case : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
__snake_case : Optional[Any] = unicodedata.normalize("""NFKD""" , __magic_name__ )
__snake_case : Dict = """""".join([c for c in outputs if not unicodedata.combining(__magic_name__ )] )
if self.do_lower_case:
__snake_case : Union[str, Any] = outputs.lower()
return outputs
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.preprocess_text(__magic_name__ )
__snake_case : str = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
__snake_case : str = []
for piece in pieces:
if len(__magic_name__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
__snake_case : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__snake_case : List[Any] = cur_pieces[1:]
else:
__snake_case : str = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__magic_name__ )
else:
new_pieces.append(__magic_name__ )
return new_pieces
def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> Dict:
"""simple docstring"""
return self.sp_model.PieceToId(__magic_name__ )
def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return self.sp_model.IdToPiece(__magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = """""".join(__magic_name__ ).replace(__magic_name__ , """ """ ).strip()
return out_string
def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : str = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is not None:
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1, 1]
return ([0] * len(__magic_name__ )) + [1, 1]
def lowercase__ ( self : Optional[int] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Tuple = [self.sep_token_id]
__snake_case : List[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__snake_case : List[str] = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
__snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def lowercase__ ( self : Dict , *__magic_name__ : Dict , **__magic_name__ : Union[str, Any] ) -> str:
"""simple docstring"""
__snake_case : Dict = super()._decode(*__magic_name__ , **__magic_name__ )
__snake_case : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
__snake_case , __snake_case : Optional[int] = get_aligned_output_features_output_indices(__magic_name__ , __magic_name__ , __magic_name__ )
self.assertEqual(__magic_name__ , ["""c"""] )
self.assertEqual(__magic_name__ , [2] )
# Out indices set to match out features
__snake_case , __snake_case : List[Any] = get_aligned_output_features_output_indices(["""a""", """c"""] , __magic_name__ , __magic_name__ )
self.assertEqual(__magic_name__ , ["""a""", """c"""] )
self.assertEqual(__magic_name__ , [0, 2] )
# Out features set to match out indices
__snake_case , __snake_case : Optional[int] = get_aligned_output_features_output_indices(__magic_name__ , [0, 2] , __magic_name__ )
self.assertEqual(__magic_name__ , ["""a""", """c"""] )
self.assertEqual(__magic_name__ , [0, 2] )
# Out features selected from negative indices
__snake_case , __snake_case : List[str] = get_aligned_output_features_output_indices(__magic_name__ , [-3, -1] , __magic_name__ )
self.assertEqual(__magic_name__ , ["""a""", """c"""] )
self.assertEqual(__magic_name__ , [-3, -1] )
def lowercase__ ( self : str ) -> List[Any]:
"""simple docstring"""
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __magic_name__ )
# Out features must be a list
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] )
# Out features must be a subset of stage names
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] )
# Out indices must be a list or tuple
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(__magic_name__ , 0 , ["""a""", """b"""] )
# Out indices must be a subset of stage names
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(__magic_name__ , (0, 1) , ["""a"""] )
# Out features and out indices must be the same length
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] )
# Out features should match out indices
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] )
# Out features and out indices should be in order
with self.assertRaises(__magic_name__ ):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] )
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] )
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__snake_case : Tuple = BackboneMixin()
__snake_case : Tuple = ["""a""", """b""", """c"""]
__snake_case : List[str] = ["""a""", """c"""]
__snake_case : Union[str, Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
__snake_case : Optional[Any] = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""] )
self.assertEqual(backbone.out_indices , [0, 1] )
__snake_case : str = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _A :
def __init__( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : int=13 , __magic_name__ : Dict=32 , __magic_name__ : List[str]=2 , __magic_name__ : int=3 , __magic_name__ : int=16 , __magic_name__ : str=[32, 64, 1_28] , __magic_name__ : Union[str, Any]=[1, 2, 1] , __magic_name__ : Any=[2, 2, 4] , __magic_name__ : List[Any]=2 , __magic_name__ : List[str]=2.0 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=True , __magic_name__ : int=None , __magic_name__ : str=True , __magic_name__ : int=10 , __magic_name__ : List[str]=8 , __magic_name__ : Optional[Any]=["stage1", "stage2"] , __magic_name__ : Tuple=[1, 2] , ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = parent
__snake_case : str = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[str] = patch_size
__snake_case : Tuple = num_channels
__snake_case : Optional[Any] = embed_dim
__snake_case : str = hidden_sizes
__snake_case : str = depths
__snake_case : str = num_heads
__snake_case : Dict = window_size
__snake_case : List[str] = mlp_ratio
__snake_case : Dict = qkv_bias
__snake_case : Tuple = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : List[Any] = drop_path_rate
__snake_case : List[str] = hidden_act
__snake_case : Union[str, Any] = use_absolute_embeddings
__snake_case : Tuple = patch_norm
__snake_case : Union[str, Any] = layer_norm_eps
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = is_training
__snake_case : Union[str, Any] = scope
__snake_case : Union[str, Any] = use_labels
__snake_case : Any = type_sequence_label_size
__snake_case : Any = encoder_stride
__snake_case : List[str] = out_features
__snake_case : Optional[Any] = out_indices
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Optional[int] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[Any] = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : int ) -> Dict:
"""simple docstring"""
__snake_case : Dict = FocalNetModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Union[str, Any] = model(__magic_name__ )
__snake_case : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__snake_case : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Dict ) -> Any:
"""simple docstring"""
__snake_case : str = FocalNetBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : str = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__snake_case : Optional[Any] = None
__snake_case : str = FocalNetBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = FocalNetForMaskedImageModeling(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__snake_case : List[Any] = 1
__snake_case : Tuple = FocalNetForMaskedImageModeling(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : Union[str, Any] = model(__magic_name__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = self.type_sequence_label_size
__snake_case : Optional[int] = FocalNetForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Dict = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__snake_case : Optional[int] = 1
__snake_case : Optional[Any] = FocalNetForImageClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : Any = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: int = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__: List[str] = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__: int = False
lowercase__: str = False
lowercase__: List[Any] = False
lowercase__: Optional[int] = False
lowercase__: Optional[Any] = False
def lowercase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = FocalNetModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 , has_text_modality=__magic_name__ )
def lowercase__ ( self : str ) -> List[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__snake_case : Any = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__snake_case : Optional[int] = model_class(__magic_name__ )
__snake_case : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Optional[Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Any = outputs.hidden_states
__snake_case : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
# FocalNet has a different seq_length
__snake_case : Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__snake_case : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__snake_case : Any = outputs.reshaped_hidden_states
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case , __snake_case , __snake_case , __snake_case : Dict = reshaped_hidden_states[0].shape
__snake_case : List[str] = (
reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__snake_case : Tuple = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : int = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = 3
__snake_case : Optional[int] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__snake_case : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__snake_case : List[Any] = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Optional[int] = True
self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : List[Any] = FocalNetModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = _config_zero_init(__magic_name__ )
for model_class in self.all_model_classes:
__snake_case : Optional[int] = model_class(config=__magic_name__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__magic_name__ )
__snake_case : Optional[int] = self.default_image_processor
__snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : int = model(**__magic_name__ )
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Optional[int] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__: str = FocalNetConfig
lowercase__: Dict = False
def lowercase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[Any] = FocalNetModelTester(self )
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _A ( metaclass=__lowercase ):
lowercase__: Union[str, Any] = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self : Dict , *__magic_name__ : List[str] , **__magic_name__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase__ ( cls : Any , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> str:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase__ ( cls : Union[str, Any] , *__magic_name__ : Dict , **__magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
__UpperCamelCase = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> Any:
"""simple docstring"""
model.train()
__snake_case : List[Any] = model(_lowerCamelCase )
__snake_case : Any = F.mse_loss(_lowerCamelCase , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]:
"""simple docstring"""
set_seed(42 )
__snake_case : Any = RegressionModel()
__snake_case : str = deepcopy(_lowerCamelCase )
__snake_case : List[Any] = RegressionDataset(length=80 )
__snake_case : Optional[int] = DataLoader(_lowerCamelCase , batch_size=16 )
model.to(accelerator.device )
if sched:
__snake_case : Optional[Any] = AdamW(params=model.parameters() , lr=1E-3 )
__snake_case : Tuple = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__snake_case : Optional[Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase : epoch**0.65 )
__snake_case : Tuple = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase : epoch**0.65 )
# Make a copy of `model`
if sched:
__snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
__snake_case , __snake_case : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[str] = get_training_setup(_lowerCamelCase )
# Use a single batch
__snake_case , __snake_case : Tuple = next(iter(_lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__snake_case , __snake_case : Optional[Any] = accelerator.gather((ddp_input, ddp_target) )
__snake_case , __snake_case : str = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase ):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__snake_case : str = ddp_input[torch.randperm(len(_lowerCamelCase ) )]
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : Dict = get_training_setup(_lowerCamelCase )
# Use a single batch
__snake_case , __snake_case : List[Any] = next(iter(_lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__snake_case , __snake_case : Tuple = accelerator.gather((ddp_input, ddp_target) )
__snake_case , __snake_case : str = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase ):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__snake_case : Optional[Any] = ddp_input[torch.randperm(len(_lowerCamelCase ) )]
def _a ( _lowerCamelCase=False , _lowerCamelCase=False ) -> Tuple:
"""simple docstring"""
__snake_case : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__snake_case , __snake_case , __snake_case : Tuple = get_training_setup(_lowerCamelCase )
for iteration, batch in enumerate(_lowerCamelCase ):
__snake_case , __snake_case : Union[str, Any] = batch.values()
# Gather the distributed inputs and targs for the base model
__snake_case , __snake_case : Tuple = accelerator.gather((ddp_input, ddp_target) )
__snake_case , __snake_case : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase ):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__snake_case : List[str] = ddp_input[torch.randperm(len(_lowerCamelCase ) )]
GradientState._reset_state()
def _a ( _lowerCamelCase=False , _lowerCamelCase=False ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = get_training_setup(_lowerCamelCase , _lowerCamelCase )
for iteration, batch in enumerate(_lowerCamelCase ):
__snake_case , __snake_case : List[str] = batch.values()
# Gather the distributed inputs and targs for the base model
__snake_case , __snake_case : Dict = accelerator.gather((ddp_input, ddp_target) )
__snake_case , __snake_case : Dict = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase ):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
__snake_case : Optional[int] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase ))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = Accelerator()
__snake_case : Optional[int] = RegressionDataset(length=80 )
__snake_case : Any = DataLoader(_lowerCamelCase , batch_size=16 )
__snake_case : Union[str, Any] = RegressionDataset(length=96 )
__snake_case : Any = DataLoader(_lowerCamelCase , batch_size=16 )
__snake_case , __snake_case : List[str] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase )
if iteration < len(_lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase )
if batch_num < len(_lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = Accelerator()
__snake_case : Union[str, Any] = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(_lowerCamelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(_lowerCamelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
__UpperCamelCase = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
__UpperCamelCase = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
__UpperCamelCase = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
__UpperCamelCase = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
__UpperCamelCase = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
__UpperCamelCase = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
__UpperCamelCase = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
__UpperCamelCase = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = [
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
__UpperCamelCase = [
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" )
return sd
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=rename_keys_prefix ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = OrderedDict()
__snake_case : Optional[Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[int] = key
for name_pair in rename_keys_prefix:
__snake_case : str = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
assert (
checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__snake_case : Tuple = """pretraining"""
if "vcr" in checkpoint_path:
__snake_case : Tuple = {"""visual_embedding_dim""": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : int = {"""visual_embedding_dim""": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Optional[int] = {"""visual_embedding_dim""": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : str = {"""visual_embedding_dim""": 1024}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__snake_case : str = {"""visual_embedding_dim""": 512}
__snake_case : Dict = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
__snake_case : int = {"""visual_embedding_dim""": 2048}
__snake_case : Dict = """vqa_advanced"""
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"""visual_embedding_dim""": 2048, """num_labels""": 3129}
__snake_case : List[Any] = """vqa"""
elif "nlvr" in checkpoint_path:
__snake_case : List[Any] = {
"""visual_embedding_dim""": 1024,
"""num_labels""": 2,
}
__snake_case : int = """nlvr"""
__snake_case : Optional[Any] = VisualBertConfig(**_lowerCamelCase )
# Load State Dict
__snake_case : List[Any] = load_state_dict(_lowerCamelCase )
__snake_case : Tuple = get_new_dict(_lowerCamelCase , _lowerCamelCase )
if model_type == "pretraining":
__snake_case : Tuple = VisualBertForPreTraining(_lowerCamelCase )
elif model_type == "vqa":
__snake_case : List[str] = VisualBertForQuestionAnswering(_lowerCamelCase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(_lowerCamelCase )
elif model_type == "multichoice":
__snake_case : Optional[Any] = VisualBertForMultipleChoice(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
# Save Checkpoints
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
__UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
def _a ( ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
__snake_case : Union[str, Any] = 6
__snake_case : int = 1
__snake_case : List[str] = 1901
__snake_case : Union[str, Any] = 0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
__snake_case : List[Any] = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
__snake_case : Dict = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
__snake_case : Dict = day - days_per_month[month - 2]
if month > 12:
year += 1
__snake_case : Union[str, Any] = 1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
class _A :
def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : bool = True , __magic_name__ : bool = False ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = scheduler
__snake_case : Any = optimizers if isinstance(__magic_name__ , (list, tuple) ) else [optimizers]
__snake_case : Any = split_batches
__snake_case : Dict = step_with_optimizer
__snake_case : str = GradientState()
def lowercase__ ( self : Optional[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__magic_name__ , **__magic_name__ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__magic_name__ , **__magic_name__ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__snake_case : str = AcceleratorState().num_processes
for _ in range(__magic_name__ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , """total_steps""" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__magic_name__ , **__magic_name__ )
else:
self.scheduler.step(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.scheduler.get_last_lr()
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.state_dict()
def lowercase__ ( self : Optional[int] , __magic_name__ : str ) -> int:
"""simple docstring"""
self.scheduler.load_state_dict(__magic_name__ )
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return self.scheduler.get_lr()
def lowercase__ ( self : Optional[int] , *__magic_name__ : Union[str, Any] , **__magic_name__ : int ) -> str:
"""simple docstring"""
return self.scheduler.print_lr(*__magic_name__ , **__magic_name__ )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"}
class _A ( __lowercase ):
lowercase__: int = '''ctrl'''
lowercase__: Optional[Any] = ['''past_key_values''']
lowercase__: Any = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : str , __magic_name__ : Optional[int]=24_65_34 , __magic_name__ : List[Any]=2_56 , __magic_name__ : List[Any]=12_80 , __magic_name__ : str=81_92 , __magic_name__ : Optional[int]=48 , __magic_name__ : int=16 , __magic_name__ : Tuple=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=1E-6 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Any=True , **__magic_name__ : Optional[int] , ) -> Tuple:
"""simple docstring"""
__snake_case : Any = vocab_size
__snake_case : Any = n_positions
__snake_case : Optional[int] = n_embd
__snake_case : List[str] = n_layer
__snake_case : int = n_head
__snake_case : Dict = dff
__snake_case : Optional[int] = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : List[Any] = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Any = use_cache
super().__init__(**__magic_name__ )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = FlaxAutoencoderKL
@property
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = 4
__snake_case : int = 3
__snake_case : Any = (32, 32)
__snake_case : Tuple = jax.random.PRNGKey(0 )
__snake_case : Dict = jax.random.uniform(__magic_name__ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : List[str] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
__snake_case : Dict = self.dummy_input
return init_dict, inputs_dict
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = BertJapaneseTokenizer
lowercase__: Any = False
lowercase__: List[Any] = True
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
__snake_case : int = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
__snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = """こんにちは、世界。 \nこんばんは、世界。"""
__snake_case : str = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def lowercase__ ( self : Tuple , __magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case , __snake_case : List[str] = self.get_input_output_texts(__magic_name__ )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Optional[int] = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )
return text, ids
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class(self.vocab_file )
__snake_case : str = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(__magic_name__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" )
self.assertIsNotNone(__magic_name__ )
__snake_case : int = """こんにちは、世界。\nこんばんは、世界。"""
__snake_case : List[str] = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__snake_case : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__magic_name__ , """wb""" ) as handle:
pickle.dump(__magic_name__ , __magic_name__ )
with open(__magic_name__ , """rb""" ) as handle:
__snake_case : Tuple = pickle.load(__magic_name__ )
__snake_case : Dict = tokenizer_new.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
try:
__snake_case : List[str] = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
try:
__snake_case : Optional[Any] = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = MecabTokenizer(do_lower_case=__magic_name__ , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
try:
__snake_case : Optional[Any] = MecabTokenizer(
do_lower_case=__magic_name__ , normalize_text=__magic_name__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = MecabTokenizer(normalize_text=__magic_name__ , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , )
@require_sudachi
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(__magic_name__ )
__snake_case : Any = """こんにちは、世界。\nこんばんは、世界。"""
__snake_case : List[Any] = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__snake_case : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__magic_name__ , """wb""" ) as handle:
pickle.dump(__magic_name__ , __magic_name__ )
with open(__magic_name__ , """rb""" ) as handle:
__snake_case : int = pickle.load(__magic_name__ )
__snake_case : str = tokenizer_new.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@require_sudachi
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : str = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def lowercase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : Dict = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] )
@require_sudachi
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] )
@require_sudachi
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : int = SudachiTokenizer(do_lower_case=__magic_name__ , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = SudachiTokenizer(normalize_text=__magic_name__ , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , )
@require_sudachi
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = SudachiTokenizer(trim_whitespace=__magic_name__ , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
@require_jumanpp
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(__magic_name__ )
__snake_case : int = """こんにちは、世界。\nこんばんは、世界。"""
__snake_case : int = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
__snake_case : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__magic_name__ , """wb""" ) as handle:
pickle.dump(__magic_name__ , __magic_name__ )
with open(__magic_name__ , """rb""" ) as handle:
__snake_case : Tuple = pickle.load(__magic_name__ )
__snake_case : Any = tokenizer_new.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@require_jumanpp
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Any = JumanppTokenizer(do_lower_case=__magic_name__ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case : Tuple = JumanppTokenizer(normalize_text=__magic_name__ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : List[Any] = JumanppTokenizer(trim_whitespace=__magic_name__ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , )
@require_jumanpp
def lowercase__ ( self : int ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[int] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , )
def lowercase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__snake_case : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
__snake_case : str = {}
for i, token in enumerate(__magic_name__ ):
__snake_case : Any = i
__snake_case : Any = WordpieceTokenizer(vocab=__magic_name__ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
__snake_case : str = tokenizer.subword_tokenizer
__snake_case : List[Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(__magic_name__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
__snake_case : Tuple = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(__magic_name__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
__snake_case : Tuple = tokenizer.encode("""ありがとう。""" , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__magic_name__ )
__snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
__snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[str] = BertJapaneseTokenizer
lowercase__: Union[str, Any] = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
super().setUp()
__snake_case : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
__snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__magic_name__ )
def lowercase__ ( self : int , __magic_name__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = """こんにちは、世界。 \nこんばんは、世界。"""
__snake_case : List[str] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
pass # TODO add if relevant
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__snake_case : List[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" )
__snake_case : Tuple = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
__magic_name__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
__snake_case : Optional[Any] = {}
for i, token in enumerate(__magic_name__ ):
__snake_case : int = i
__snake_case : str = CharacterTokenizer(vocab=__magic_name__ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
__snake_case : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__magic_name__ )
__snake_case : Tuple = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
__snake_case : Any = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = """cl-tohoku/bert-base-japanese"""
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained(__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
class _A ( unittest.TestCase ):
def lowercase__ ( self : int ) -> Any:
"""simple docstring"""
__snake_case : str = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(__magic_name__ )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
__snake_case : Optional[Any] = """bert-base-cased"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(__magic_name__ )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None:
"""simple docstring"""
if start is None:
__snake_case : Optional[Any] = 0
if end is None:
__snake_case : int = len(_lowerCamelCase ) - 1
if start >= end:
return
__snake_case : str = (start + end) // 2
slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase )
if sequence[end] < sequence[mid]:
__snake_case , __snake_case : List[str] = sequence[mid], sequence[end]
slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
def __init__( self : Tuple , *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> None:
"""simple docstring"""
warnings.warn(
"""The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use CLIPImageProcessor instead.""" , __magic_name__ , )
super().__init__(*__magic_name__ , **__magic_name__ )
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
class _A :
def __init__( self : str , __magic_name__ : Optional[Any]=None ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = data
__snake_case : int = None
def __repr__( self : Any ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = []
__snake_case : List[str] = self
while temp:
string_rep.append(f'''{temp.data}''' )
__snake_case : int = temp.next
return "->".join(__magic_name__ )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not elements_list:
raise Exception("""The Elements List is empty""" )
__snake_case : List[Any] = Node(elements_list[0] )
for i in range(1 , len(_lowerCamelCase ) ):
__snake_case : List[Any] = Node(elements_list[i] )
__snake_case : Union[str, Any] = current.next
return head
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
if head_node is not None and isinstance(_lowerCamelCase , _lowerCamelCase ):
print_reverse(head_node.next )
print(head_node.data )
def _a ( ) -> Any:
"""simple docstring"""
from doctest import testmod
testmod()
__snake_case : Dict = make_linked_list([14, 52, 14, 12, 43] )
print("""Linked List:""" )
print(_lowerCamelCase )
print("""Elements in Reverse:""" )
print_reverse(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _A ( unittest.TestCase ):
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : str = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ )
__snake_case : str = -1
__snake_case : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ )
__snake_case : int = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__snake_case : Union[str, Any] = TextStreamer(__magic_name__ )
model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ , streamer=__magic_name__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__snake_case : Dict = cs.out[:-1]
self.assertEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : str = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ )
__snake_case : Any = -1
__snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ )
__snake_case : Optional[Any] = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ )
__snake_case : Dict = tokenizer.decode(greedy_ids[0] )
__snake_case : List[Any] = TextIteratorStreamer(__magic_name__ )
__snake_case : Dict = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
__snake_case : List[str] = Thread(target=model.generate , kwargs=__magic_name__ )
thread.start()
__snake_case : Dict = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ )
__snake_case : int = -1
__snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ )
__snake_case : Optional[int] = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ )
__snake_case : Any = greedy_ids[:, input_ids.shape[1] :]
__snake_case : Any = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__snake_case : str = TextStreamer(__magic_name__ , skip_prompt=__magic_name__ )
model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ , streamer=__magic_name__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__snake_case : str = cs.out[:-1]
self.assertEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""distilgpt2""" )
__snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(__magic_name__ )
__snake_case : Any = -1
__snake_case : Union[str, Any] = torch.ones((1, 5) , device=__magic_name__ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__snake_case : Any = TextStreamer(__magic_name__ , skip_special_tokens=__magic_name__ )
model.generate(__magic_name__ , max_new_tokens=1 , do_sample=__magic_name__ , streamer=__magic_name__ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__snake_case : List[Any] = cs.out[:-1] # Remove the final "\n"
__snake_case : str = tokenizer(__magic_name__ , return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowercase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ )
__snake_case : Union[str, Any] = -1
__snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ )
__snake_case : str = TextIteratorStreamer(__magic_name__ , timeout=0.001 )
__snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
__snake_case : int = Thread(target=model.generate , kwargs=__magic_name__ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__magic_name__ ):
__snake_case : Tuple = """"""
for new_text in streamer:
streamer_text += new_text
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> list[list[int]]:
"""simple docstring"""
__snake_case : List[Any] = []
if len(_lowerCamelCase ) == 1:
return [nums.copy()]
for _ in range(len(_lowerCamelCase ) ):
__snake_case : int = nums.pop(0 )
__snake_case : Optional[int] = permute(_lowerCamelCase )
for perm in permutations:
perm.append(_lowerCamelCase )
result.extend(_lowerCamelCase )
nums.append(_lowerCamelCase )
return result
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
def backtrack(_lowerCamelCase ):
if start == len(_lowerCamelCase ) - 1:
output.append(nums[:] )
else:
for i in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case , __snake_case : Tuple = nums[i], nums[start]
backtrack(start + 1 )
__snake_case , __snake_case : Any = nums[i], nums[start] # backtrack
__snake_case : str = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
__UpperCamelCase = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
__UpperCamelCase = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
"""simple docstring"""
__snake_case : List[str] = x
__snake_case : Optional[Any] = y
for step in range(_lowerCamelCase ): # noqa: B007
__snake_case : Tuple = a * a - b * b + x
__snake_case : List[Any] = 2 * a * b + y
__snake_case : Dict = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _a ( _lowerCamelCase ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _a ( _lowerCamelCase ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCamelCase , 1 , 1 ) )
def _a ( _lowerCamelCase = 800 , _lowerCamelCase = 600 , _lowerCamelCase = -0.6 , _lowerCamelCase = 0 , _lowerCamelCase = 3.2 , _lowerCamelCase = 50 , _lowerCamelCase = True , ) -> Image.Image:
"""simple docstring"""
__snake_case : List[Any] = Image.new("""RGB""" , (image_width, image_height) )
__snake_case : Optional[int] = img.load()
# loop through the image-coordinates
for image_x in range(_lowerCamelCase ):
for image_y in range(_lowerCamelCase ):
# determine the figure-coordinates based on the image-coordinates
__snake_case : Tuple = figure_width / image_width * image_height
__snake_case : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
__snake_case : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
__snake_case : Any = get_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__snake_case : Union[str, Any] = get_color_coded_rgb(_lowerCamelCase )
else:
__snake_case : str = get_black_and_white_rgb(_lowerCamelCase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
__UpperCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
config.addinivalue_line(
"""markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" )
config.addinivalue_line(
"""markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" )
config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" )
config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" )
config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" )
config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" )
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
__snake_case : Dict = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
if exitstatus == 5:
__snake_case : List[Any] = 0
# Doctest custom flag to ignore output.
__UpperCamelCase = doctest.register_optionflag("IGNORE_RESULT")
__UpperCamelCase = doctest.OutputChecker
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> List[Any]:
"""simple docstring"""
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , __magic_name__ , __magic_name__ , __magic_name__ )
__UpperCamelCase = CustomOutputChecker
__UpperCamelCase = HfDoctestModule
__UpperCamelCase = HfDocTestParser
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class _A ( __lowercase ):
lowercase__: str = '''deit'''
def __init__( self : Any , __magic_name__ : str=7_68 , __magic_name__ : str=12 , __magic_name__ : List[Any]=12 , __magic_name__ : int=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Dict=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Union[str, Any]=1E-12 , __magic_name__ : Tuple=2_24 , __magic_name__ : List[str]=16 , __magic_name__ : int=3 , __magic_name__ : Any=True , __magic_name__ : Dict=16 , **__magic_name__ : Optional[Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : str = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : Optional[int] = num_attention_heads
__snake_case : List[Any] = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : Tuple = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Optional[int] = initializer_range
__snake_case : Dict = layer_norm_eps
__snake_case : Optional[int] = image_size
__snake_case : str = patch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = qkv_bias
__snake_case : int = encoder_stride
class _A ( __lowercase ):
lowercase__: List[Any] = version.parse('''1.11''' )
@property
def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase__ ( self : Optional[int] ) -> float:
"""simple docstring"""
return 1E-4
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase = 1000 ) -> int:
"""simple docstring"""
return sum(e for e in range(3 , _lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase = False ) -> str:
"""simple docstring"""
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Optional[int] = F'''Expected string as input, found {type(_lowerCamelCase )}'''
raise ValueError(_lowerCamelCase )
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Union[str, Any] = F'''Expected boolean as use_pascal parameter, found {type(_lowerCamelCase )}'''
raise ValueError(_lowerCamelCase )
__snake_case : List[Any] = input_str.split("""_""" )
__snake_case : List[Any] = 0 if use_pascal else 1
__snake_case : Any = words[start_index:]
__snake_case : List[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
__snake_case : Union[str, Any] = """""" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _A ( unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : str = tempfile.mkdtemp()
__snake_case : List[Any] = BlipImageProcessor()
__snake_case : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
__snake_case : List[Any] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
__snake_case : int = InstructBlipProcessor(__magic_name__ , __magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : int , **__magic_name__ : Any ) -> str:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowercase__ ( self : Any , **__magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowercase__ ( self : Union[str, Any] , **__magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).qformer_tokenizer
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[Any] ) -> int:
"""simple docstring"""
__snake_case : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__snake_case : Dict = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
__snake_case : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__snake_case : Tuple = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
__snake_case : Union[str, Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
self.assertIsInstance(processor.qformer_tokenizer , __magic_name__ )
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Tuple = self.get_image_processor()
__snake_case : str = self.get_tokenizer()
__snake_case : Optional[Any] = self.get_qformer_tokenizer()
__snake_case : Optional[Any] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : int = self.prepare_image_inputs()
__snake_case : Dict = image_processor(__magic_name__ , return_tensors="""np""" )
__snake_case : List[Any] = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Any = self.get_qformer_tokenizer()
__snake_case : List[Any] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : List[Any] = """lower newer"""
__snake_case : Tuple = processor(text=__magic_name__ )
__snake_case : Tuple = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
__snake_case : List[str] = qformer_tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def lowercase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__snake_case : str = self.get_image_processor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : Union[str, Any] = self.get_qformer_tokenizer()
__snake_case : Tuple = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : List[str] = """lower newer"""
__snake_case : Optional[int] = self.prepare_image_inputs()
__snake_case : int = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.get_image_processor()
__snake_case : List[str] = self.get_tokenizer()
__snake_case : int = self.get_qformer_tokenizer()
__snake_case : List[str] = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case : Optional[Any] = processor.batch_decode(__magic_name__ )
__snake_case : int = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowercase__ ( self : Dict ) -> str:
"""simple docstring"""
__snake_case : List[str] = self.get_image_processor()
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : int = self.get_qformer_tokenizer()
__snake_case : int = InstructBlipProcessor(
tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ )
__snake_case : Tuple = """lower newer"""
__snake_case : Optional[Any] = self.prepare_image_inputs()
__snake_case : Dict = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> list:
"""simple docstring"""
if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(_lowerCamelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCamelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
__UpperCamelCase = logging.get_logger(__name__)
# General docstring
__UpperCamelCase = "MobileNetV1Config"
# Base docstring
__UpperCamelCase = "google/mobilenet_v1_1.0_224"
__UpperCamelCase = [1, 1024, 7, 7]
# Image classification docstring
__UpperCamelCase = "google/mobilenet_v1_1.0_224"
__UpperCamelCase = "tabby, tabby cat"
__UpperCamelCase = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = {}
if isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : List[Any] = model.mobilenet_va
else:
__snake_case : int = model
__snake_case : Optional[int] = """MobilenetV1/Conv2d_0/"""
__snake_case : str = backbone.conv_stem.convolution.weight
__snake_case : List[str] = backbone.conv_stem.normalization.bias
__snake_case : Union[str, Any] = backbone.conv_stem.normalization.weight
__snake_case : str = backbone.conv_stem.normalization.running_mean
__snake_case : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
__snake_case : Dict = i + 1
__snake_case : Dict = i * 2
__snake_case : List[str] = backbone.layer[pt_index]
__snake_case : Optional[Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
__snake_case : Tuple = pointer.convolution.weight
__snake_case : Optional[Any] = pointer.normalization.bias
__snake_case : List[str] = pointer.normalization.weight
__snake_case : str = pointer.normalization.running_mean
__snake_case : Optional[Any] = pointer.normalization.running_var
__snake_case : Optional[Any] = backbone.layer[pt_index + 1]
__snake_case : Union[str, Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
__snake_case : Dict = pointer.convolution.weight
__snake_case : str = pointer.normalization.bias
__snake_case : Tuple = pointer.normalization.weight
__snake_case : List[Any] = pointer.normalization.running_mean
__snake_case : List[str] = pointer.normalization.running_var
if isinstance(_lowerCamelCase , _lowerCamelCase ):
__snake_case : Any = """MobilenetV1/Logits/Conv2d_1c_1x1/"""
__snake_case : List[Any] = model.classifier.weight
__snake_case : List[Any] = model.classifier.bias
return tf_to_pt_map
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"""Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """
"""https://www.tensorflow.org/install/ for installation instructions.""" )
raise
# Load weights from TF model
__snake_case : str = tf.train.list_variables(_lowerCamelCase )
__snake_case : List[Any] = {}
for name, shape in init_vars:
logger.info(F'''Loading TF weight {name} with shape {shape}''' )
__snake_case : int = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase )
__snake_case : int = array
# Build TF to PyTorch weights loading map
__snake_case : int = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for name, pointer in tf_to_pt_map.items():
logger.info(F'''Importing {name}''' )
if name not in tf_weights:
logger.info(F'''{name} not in tf pre-trained weights, skipping''' )
continue
__snake_case : List[Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info("""Transposing depthwise""" )
__snake_case : Optional[int] = np.transpose(_lowerCamelCase , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("""Transposing""" )
if len(pointer.shape ) == 2: # copying into linear layer
__snake_case : Union[str, Any] = array.squeeze().transpose()
else:
__snake_case : Union[str, Any] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' )
logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' )
__snake_case : List[Any] = torch.from_numpy(_lowerCamelCase )
tf_weights.pop(_lowerCamelCase , _lowerCamelCase )
tf_weights.pop(name + """/RMSProp""" , _lowerCamelCase )
tf_weights.pop(name + """/RMSProp_1""" , _lowerCamelCase )
tf_weights.pop(name + """/ExponentialMovingAverage""" , _lowerCamelCase )
logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' )
return model
def _a ( _lowerCamelCase , _lowerCamelCase ) -> torch.Tensor:
"""simple docstring"""
__snake_case , __snake_case : Dict = features.shape[-2:]
__snake_case , __snake_case : Optional[int] = conv_layer.stride
__snake_case , __snake_case : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
__snake_case : str = max(kernel_height - stride_height , 0 )
else:
__snake_case : int = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__snake_case : int = max(kernel_width - stride_width , 0 )
else:
__snake_case : Any = max(kernel_width - (in_width % stride_width) , 0 )
__snake_case : Dict = pad_along_width // 2
__snake_case : str = pad_along_width - pad_left
__snake_case : Tuple = pad_along_height // 2
__snake_case : Any = pad_along_height - pad_top
__snake_case : str = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , """constant""" , 0.0 )
class _A ( nn.Module ):
def __init__( self : int , __magic_name__ : MobileNetVaConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = 1 , __magic_name__ : Optional[int] = 1 , __magic_name__ : bool = False , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[bool or str] = True , ) -> None:
"""simple docstring"""
super().__init__()
__snake_case : Dict = config
if in_channels % groups != 0:
raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' )
if out_channels % groups != 0:
raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' )
__snake_case : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
__snake_case : int = nn.Convad(
in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=__magic_name__ , stride=__magic_name__ , padding=__magic_name__ , groups=__magic_name__ , bias=__magic_name__ , padding_mode="""zeros""" , )
if use_normalization:
__snake_case : List[str] = nn.BatchNormad(
num_features=__magic_name__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=__magic_name__ , track_running_stats=__magic_name__ , )
else:
__snake_case : Union[str, Any] = None
if use_activation:
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Dict = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __magic_name__ ):
__snake_case : List[Any] = ACTaFN[config.hidden_act]
else:
__snake_case : Optional[Any] = config.hidden_act
else:
__snake_case : str = None
def lowercase__ ( self : str , __magic_name__ : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
if self.config.tf_padding:
__snake_case : List[Any] = apply_tf_padding(__magic_name__ , self.convolution )
__snake_case : Any = self.convolution(__magic_name__ )
if self.normalization is not None:
__snake_case : Dict = self.normalization(__magic_name__ )
if self.activation is not None:
__snake_case : Union[str, Any] = self.activation(__magic_name__ )
return features
class _A ( __lowercase ):
lowercase__: Tuple = MobileNetVaConfig
lowercase__: int = load_tf_weights_in_mobilenet_va
lowercase__: Union[str, Any] = '''mobilenet_v1'''
lowercase__: Any = '''pixel_values'''
lowercase__: Optional[int] = False
def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[nn.Linear, nn.Convad] ) -> None:
"""simple docstring"""
if isinstance(__magic_name__ , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__magic_name__ , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
__UpperCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__UpperCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __lowercase , )
class _A ( __lowercase ):
def __init__( self : Optional[Any] , __magic_name__ : MobileNetVaConfig , __magic_name__ : bool = True ) -> Optional[int]:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Any = config
__snake_case : Optional[int] = 32
__snake_case : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth )
__snake_case : Dict = MobileNetVaConvLayer(
__magic_name__ , in_channels=config.num_channels , out_channels=__magic_name__ , kernel_size=3 , stride=2 , )
__snake_case : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__snake_case : Any = nn.ModuleList()
for i in range(13 ):
__snake_case : List[str] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__snake_case : str = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=3 , stride=strides[i] , groups=__magic_name__ , ) )
self.layer.append(
MobileNetVaConvLayer(
__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , kernel_size=1 , ) )
__snake_case : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> int:
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
"""simple docstring"""
__snake_case : List[str] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
__snake_case : List[Any] = self.conv_stem(__magic_name__ )
__snake_case : Union[str, Any] = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
__snake_case : List[Any] = layer_module(__magic_name__ )
if output_hidden_states:
__snake_case : Any = all_hidden_states + (hidden_states,)
__snake_case : List[str] = hidden_states
if self.pooler is not None:
__snake_case : Optional[int] = torch.flatten(self.pooler(__magic_name__ ) , start_dim=1 )
else:
__snake_case : Union[str, Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=__magic_name__ , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , __lowercase , )
class _A ( __lowercase ):
def __init__( self : List[str] , __magic_name__ : MobileNetVaConfig ) -> None:
"""simple docstring"""
super().__init__(__magic_name__ )
__snake_case : Union[str, Any] = config.num_labels
__snake_case : Optional[Any] = MobileNetVaModel(__magic_name__ )
__snake_case : str = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__snake_case : str = nn.Dropout(config.classifier_dropout_prob , inplace=__magic_name__ )
__snake_case : Dict = nn.Linear(__magic_name__ , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
__snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : int = self.mobilenet_va(__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ )
__snake_case : Dict = outputs.pooler_output if return_dict else outputs[1]
__snake_case : Any = self.classifier(self.dropout(__magic_name__ ) )
__snake_case : List[str] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case : Dict = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case : List[str] = """single_label_classification"""
else:
__snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
__snake_case : Optional[Any] = MSELoss()
if self.num_labels == 1:
__snake_case : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__snake_case : Tuple = loss_fct(__magic_name__ , __magic_name__ )
elif self.config.problem_type == "single_label_classification":
__snake_case : Optional[int] = CrossEntropyLoss()
__snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__snake_case : List[str] = BCEWithLogitsLoss()
__snake_case : str = loss_fct(__magic_name__ , __magic_name__ )
if not return_dict:
__snake_case : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states , )
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
import pytest
import datasets
# Import fixture modules as plugins
__UpperCamelCase = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"]
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ["""integration""", """unit"""] ):
continue
item.add_marker(pytest.mark.unit )
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" )
@pytest.fixture(autouse=_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = tmp_path_factory.getbasetemp() / """cache"""
__snake_case : List[str] = test_hf_cache_home / """datasets"""
__snake_case : Union[str, Any] = test_hf_cache_home / """metrics"""
__snake_case : Any = test_hf_cache_home / """modules"""
monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_lowerCamelCase ) )
monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_lowerCamelCase ) )
monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_lowerCamelCase ) )
__snake_case : List[str] = test_hf_datasets_cache / """downloads"""
monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_lowerCamelCase ) )
__snake_case : str = test_hf_datasets_cache / """downloads""" / """extracted"""
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_lowerCamelCase ) )
@pytest.fixture(autouse=_lowerCamelCase , scope="""session""" )
def _a ( ) -> List[Any]:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowerCamelCase )
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _lowerCamelCase )
@pytest.fixture
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _lowerCamelCase )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__UpperCamelCase = "https://api.github.com"
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__UpperCamelCase = BASE_URL + "/user"
# https://github.com/settings/tokens
__UpperCamelCase = os.environ.get("USER_TOKEN", "")
def _a ( _lowerCamelCase ) -> dict[Any, Any]:
"""simple docstring"""
__snake_case : str = {
"""Authorization""": F'''token {auth_token}''',
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f"""{key}: {value}""")
else:
raise ValueError("'USER_TOKEN' field cannot be empty.")
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[str]:
"""simple docstring"""
return [sentence[i : i + ngram_size] for i in range(len(_lowerCamelCase ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class _A ( __lowercase ):
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : int = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
with self.assertRaises(__magic_name__ ):
__snake_case : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def lowercase__ ( self : Any ) -> str:
"""simple docstring"""
with self.assertRaises(__magic_name__ ):
__snake_case : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowercase__ ( self : str ) -> int:
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
__snake_case : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def lowercase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : List[str] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
__snake_case : Any = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def lowercase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
import PIL.Image
__snake_case : List[Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__magic_name__ ) as mock_cast_to_python_objects:
__snake_case : Dict = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) )
__snake_case , __snake_case : Tuple = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __magic_name__ )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : List[Any] = pa.BufferReader(_lowerCamelCase ) if isinstance(_lowerCamelCase , pa.Buffer ) else pa.memory_map(_lowerCamelCase )
__snake_case : int = pa.ipc.open_stream(_lowerCamelCase )
__snake_case : pa.Table = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : int = pa.BufferOutputStream()
__snake_case : Optional[int] = pa.schema(_lowerCamelCase ) if fields else None
with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__snake_case , __snake_case : List[str] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__snake_case : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _a ( ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = pa.BufferOutputStream()
__snake_case : Dict = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_lowerCamelCase , features=_lowerCamelCase ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
__snake_case , __snake_case : Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
__snake_case : Optional[Any] = pa.BufferReader(output.getvalue() )
__snake_case : Optional[int] = pa.ipc.open_stream(_lowerCamelCase )
__snake_case : pa.Table = f.read_all()
__snake_case : Optional[int] = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_lowerCamelCase )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : int = pa.BufferOutputStream()
with ArrowWriter(
stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer:
with pytest.raises(_lowerCamelCase ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
__snake_case , __snake_case : Tuple = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Any = pa.BufferOutputStream()
with ArrowWriter(
stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer:
with pytest.raises(_lowerCamelCase ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 )
__snake_case , __snake_case : List[str] = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : int = pa.BufferOutputStream()
with ArrowWriter(
stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
__snake_case , __snake_case : List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
__snake_case : str = pa.BufferOutputStream()
__snake_case : Any = pa.schema(_lowerCamelCase ) if fields else None
with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
__snake_case , __snake_case : int = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__snake_case : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : int = pa.BufferOutputStream()
__snake_case : List[str] = pa.schema(_lowerCamelCase ) if fields else None
with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
__snake_case , __snake_case : Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__snake_case : str = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = pa.BufferOutputStream()
__snake_case : str = pa.schema(_lowerCamelCase ) if fields else None
with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
__snake_case , __snake_case : int = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
__snake_case : Optional[int] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _a ( ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
__snake_case : List[str] = os.path.join(_lowerCamelCase , """test.arrow""" )
with ArrowWriter(path=_lowerCamelCase , schema=pa.schema(_lowerCamelCase ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
__snake_case , __snake_case : Tuple = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata )
_check_output(_lowerCamelCase , 1 )
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
if pa.types.is_list(_lowerCamelCase ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
if isinstance(lst[0] , _lowerCamelCase ):
change_first_primitive_element_in_list(lst[0] , _lowerCamelCase )
else:
__snake_case : int = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = pa.array(TypedSequence(_lowerCamelCase , optimized_int_type=_lowerCamelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = pa.array(OptimizedTypedSequence(_lowerCamelCase , col=_lowerCamelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
__snake_case : Optional[int] = copy.deepcopy(_lowerCamelCase )
__snake_case : Dict = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_lowerCamelCase , _lowerCamelCase )
__snake_case : Dict = pa.array(OptimizedTypedSequence(_lowerCamelCase , col=_lowerCamelCase ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : int = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_lowerCamelCase ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : int = """mock://dataset-train.arrow"""
with ArrowWriter(path=_lowerCamelCase , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_lowerCamelCase ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__snake_case , __snake_case : Dict = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_lowerCamelCase )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : str = pa.BufferOutputStream()
with ParquetWriter(stream=_lowerCamelCase ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
__snake_case , __snake_case : List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
__snake_case : str = pa.BufferReader(output.getvalue() )
__snake_case : pa.Table = pq.read_table(_lowerCamelCase )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
import PIL.Image
__snake_case : Optional[Any] = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_lowerCamelCase , format="""png""" )
__snake_case : Union[str, Any] = pa.BufferOutputStream()
with ParquetWriter(
stream=_lowerCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=_lowerCamelCase ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
__snake_case : Any = pa.BufferReader(output.getvalue() )
__snake_case : pa.Table = pq.read_table(_lowerCamelCase )
__snake_case : Union[str, Any] = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _lowerCamelCase )
with open(_lowerCamelCase , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _a ( ) -> str:
"""simple docstring"""
__snake_case : List[Any] = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_lowerCamelCase )] )
__snake_case : Dict = pa.BufferOutputStream()
with ArrowWriter(stream=_lowerCamelCase ) as writer:
writer._build_writer(inferred_schema=_lowerCamelCase )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json",
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class _A ( __lowercase , __lowercase ):
lowercase__: Union[str, Any] = '''dinat'''
lowercase__: str = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Tuple , __magic_name__ : str=4 , __magic_name__ : str=3 , __magic_name__ : int=64 , __magic_name__ : Tuple=[3, 4, 6, 5] , __magic_name__ : Any=[2, 4, 8, 16] , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __magic_name__ : Tuple=3.0 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.02 , __magic_name__ : Union[str, Any]=1E-5 , __magic_name__ : str=0.0 , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , **__magic_name__ : int , ) -> str:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Optional[int] = patch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = embed_dim
__snake_case : List[str] = depths
__snake_case : List[Any] = len(__magic_name__ )
__snake_case : Optional[Any] = num_heads
__snake_case : List[Any] = kernel_size
__snake_case : Tuple = dilations
__snake_case : List[Any] = mlp_ratio
__snake_case : Optional[int] = qkv_bias
__snake_case : str = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : Optional[Any] = drop_path_rate
__snake_case : str = hidden_act
__snake_case : Tuple = layer_norm_eps
__snake_case : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__snake_case : str = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
__snake_case : str = layer_scale_init_value
__snake_case : Dict = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )]
__snake_case , __snake_case : str = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : str = [0 for i in range(r + 1 )]
# nc0 = 1
__snake_case : Union[str, Any] = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__snake_case : int = min(_lowerCamelCase , _lowerCamelCase )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : str = 0
__snake_case : Optional[int] = len(_lowerCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , _lowerCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( _lowerCamelCase ) -> Tuple:
"""simple docstring"""
if len(_lowerCamelCase ) <= 1:
return arr, 0
__snake_case : Any = len(_lowerCamelCase ) // 2
__snake_case : List[str] = arr[0:mid]
__snake_case : int = arr[mid:]
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase )
__snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase )
__snake_case : str = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : Any = []
__snake_case : List[str] = 0
while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_lowerCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_lowerCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , _lowerCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__snake_case : Any = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
# an empty list should also have zero inversions
__snake_case : List[Any] = []
__snake_case : List[Any] = count_inversions_bf(_lowerCamelCase )
__snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , _lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from collections.abc import Callable
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function
return a
elif function(_lowerCamelCase ) == 0:
return b
elif (
function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_lowerCamelCase ) == 0:
return mid
elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0:
__snake_case : Dict = mid
else:
__snake_case : Union[str, Any] = mid
__snake_case : Dict = start + (end - start) / 2.0
return mid
def _a ( _lowerCamelCase ) -> float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 13 | 1 |
'''simple docstring'''
from collections.abc import Callable
class _A :
def __init__( self : List[Any] , __magic_name__ : Callable | None = None ) -> None:
"""simple docstring"""
__snake_case : list = []
# Stores indexes of each item for supporting updates and deletion.
__snake_case : dict = {}
# Stores current size of heap.
__snake_case : List[Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__snake_case : Union[str, Any] = key or (lambda __magic_name__ : x)
def lowercase__ ( self : Any , __magic_name__ : int ) -> int | None:
"""simple docstring"""
return int((i - 1) / 2 ) if i > 0 else None
def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> int | None:
"""simple docstring"""
__snake_case : Optional[Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def lowercase__ ( self : Tuple , __magic_name__ : int ) -> int | None:
"""simple docstring"""
__snake_case : List[Any] = int(2 * i + 2 )
return right if 0 < right < self.size else None
def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case , __snake_case : List[Any] = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__snake_case , __snake_case : str = self.arr[j], self.arr[i]
def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int ) -> bool:
"""simple docstring"""
return self.arr[i][1] < self.arr[j][1]
def lowercase__ ( self : Dict , __magic_name__ : int ) -> int:
"""simple docstring"""
__snake_case : Any = self._left(__magic_name__ )
__snake_case : Optional[int] = self._right(__magic_name__ )
__snake_case : str = i
if left is not None and not self._cmp(__magic_name__ , __magic_name__ ):
__snake_case : Dict = left
if right is not None and not self._cmp(__magic_name__ , __magic_name__ ):
__snake_case : List[Any] = right
return valid_parent
def lowercase__ ( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case : Dict = self._parent(__magic_name__ )
while parent is not None and not self._cmp(__magic_name__ , __magic_name__ ):
self._swap(__magic_name__ , __magic_name__ )
__snake_case , __snake_case : Optional[int] = parent, self._parent(__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case : Dict = self._get_valid_parent(__magic_name__ )
while valid_parent != index:
self._swap(__magic_name__ , __magic_name__ )
__snake_case , __snake_case : Dict = valid_parent, self._get_valid_parent(__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
if item not in self.pos_map:
return
__snake_case : int = self.pos_map[item]
__snake_case : Union[str, Any] = [item, self.key(__magic_name__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(__magic_name__ )
self._heapify_down(__magic_name__ )
def lowercase__ ( self : Any , __magic_name__ : int ) -> None:
"""simple docstring"""
if item not in self.pos_map:
return
__snake_case : List[str] = self.pos_map[item]
del self.pos_map[item]
__snake_case : List[str] = self.arr[self.size - 1]
__snake_case : Dict = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(__magic_name__ )
self._heapify_down(__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
__snake_case : Optional[Any] = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(__magic_name__ )] )
else:
__snake_case : Dict = [item, self.key(__magic_name__ )]
__snake_case : Dict = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def lowercase__ ( self : str ) -> tuple | None:
"""simple docstring"""
return self.arr[0] if self.size else None
def lowercase__ ( self : Optional[Any] ) -> tuple | None:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _a ( ) -> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( __lowercase , unittest.TestCase ):
lowercase__: List[Any] = CanineTokenizer
lowercase__: Optional[int] = False
def lowercase__ ( self : Any ) -> Any:
"""simple docstring"""
super().setUp()
__snake_case : Dict = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
__snake_case : Optional[Any] = 10_24
return tokenizer
@require_torch
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = self.canine_tokenizer
__snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
__snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
__snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowercase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__snake_case : Any = self.canine_tokenizer
__snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
__snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.canine_tokenizer
__snake_case : Optional[Any] = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
__snake_case : Any = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : str = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
__snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
__snake_case : Optional[int] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__snake_case : List[Any] = chr(0xE007 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
__snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ )
__snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE005
__snake_case : Tuple = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
__snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
__snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
__snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : Dict = chr(0xE005 )
__snake_case : str = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
__snake_case : Tuple = tokenizer.tokenize(__magic_name__ )
__snake_case : Any = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__snake_case : Optional[Any] = 0xE006
__snake_case : List[str] = chr(__magic_name__ )
__snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Any = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__snake_case : Tuple = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
__snake_case : Tuple = 0xE006
__snake_case : int = chr(__magic_name__ )
__snake_case : List[Any] = [new_token_a]
__snake_case : Union[str, Any] = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__snake_case : Any = 0xE007
__snake_case : Any = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
__snake_case : Union[str, Any] = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : List[str] = """hello world"""
if self.space_between_special_tokens:
__snake_case : Union[str, Any] = """[CLS] hello world [SEP]"""
else:
__snake_case : List[Any] = input
__snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
__snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowercase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__snake_case : str = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
__snake_case : Dict = """a"""
__snake_case : Tuple = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
__snake_case : Dict = 0xE006
__snake_case : str = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 |
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class _A ( __lowercase , __lowercase ):
lowercase__: str = '''resnet'''
lowercase__: Dict = ['''basic''', '''bottleneck''']
def __init__( self : Dict , __magic_name__ : int=3 , __magic_name__ : Optional[int]=64 , __magic_name__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , __magic_name__ : Optional[int]=[3, 4, 6, 3] , __magic_name__ : List[Any]="bottleneck" , __magic_name__ : int="relu" , __magic_name__ : Union[str, Any]=False , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , **__magic_name__ : Any , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
__snake_case : Tuple = num_channels
__snake_case : List[Any] = embedding_size
__snake_case : int = hidden_sizes
__snake_case : List[Any] = depths
__snake_case : int = layer_type
__snake_case : Optional[Any] = hidden_act
__snake_case : List[Any] = downsample_in_first_stage
__snake_case : Tuple = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )]
__snake_case , __snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
class _A ( __lowercase ):
lowercase__: List[str] = version.parse('''1.11''' )
@property
def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase__ ( self : str ) -> float:
"""simple docstring"""
return 1E-3
| 13 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class _A ( __lowercase ):
lowercase__: str = '''codegen'''
lowercase__: Optional[int] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_ctx
__snake_case : int = n_positions
__snake_case : str = n_embd
__snake_case : Dict = n_layer
__snake_case : List[Any] = n_head
__snake_case : Any = n_inner
__snake_case : str = rotary_dim
__snake_case : List[str] = activation_function
__snake_case : Tuple = resid_pdrop
__snake_case : Dict = embd_pdrop
__snake_case : int = attn_pdrop
__snake_case : Tuple = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[Any] = use_cache
__snake_case : Dict = bos_token_id
__snake_case : Union[str, Any] = eos_token_id
super().__init__(
bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ )
class _A ( __lowercase ):
def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ )
if not getattr(self._config , """pad_token_id""" , __magic_name__ ):
# TODO: how to do that better?
__snake_case : List[str] = 0
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" )
__snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
__snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs(
__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ )
# We need to order the input in the way they appears in the forward()
__snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__snake_case , __snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__snake_case : Tuple = seqlen + 2
__snake_case : Union[str, Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__snake_case : List[str] = [
(torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers )
]
__snake_case : Optional[int] = common_inputs["""attention_mask"""]
if self.use_past:
__snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
__snake_case : Optional[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return 13
| 13 | 1 |
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
__UpperCamelCase = True
except (ImportError, AttributeError):
__UpperCamelCase = object
def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Any:
"""simple docstring"""
pass
__UpperCamelCase = False
__UpperCamelCase = logging.get_logger("transformers-cli/serving")
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : Tuple = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
return ServeCommand(_lowerCamelCase , args.host , args.port , args.workers )
class _A ( __lowercase ):
lowercase__: dict
class _A ( __lowercase ):
lowercase__: List[str]
lowercase__: Optional[List[int]]
class _A ( __lowercase ):
lowercase__: str
class _A ( __lowercase ):
lowercase__: Any
class _A ( __lowercase ):
@staticmethod
def lowercase__ ( __magic_name__ : ArgumentParser ) -> Dict:
"""simple docstring"""
__snake_case : int = parser.add_parser(
"""serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" )
serve_parser.add_argument(
"""--task""" , type=__magic_name__ , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , )
serve_parser.add_argument("""--host""" , type=__magic_name__ , default="""localhost""" , help="""Interface the server will listen on.""" )
serve_parser.add_argument("""--port""" , type=__magic_name__ , default=88_88 , help="""Port the serving will listen to.""" )
serve_parser.add_argument("""--workers""" , type=__magic_name__ , default=1 , help="""Number of http workers""" )
serve_parser.add_argument("""--model""" , type=__magic_name__ , help="""Model's name or path to stored model.""" )
serve_parser.add_argument("""--config""" , type=__magic_name__ , help="""Model's config name or path to stored model.""" )
serve_parser.add_argument("""--tokenizer""" , type=__magic_name__ , help="""Tokenizer name to use.""" )
serve_parser.add_argument(
"""--device""" , type=__magic_name__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , )
serve_parser.set_defaults(func=__magic_name__ )
def __init__( self : Any , __magic_name__ : Pipeline , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = pipeline
__snake_case : str = host
__snake_case : List[Any] = port
__snake_case : Any = workers
if not _serve_dependencies_installed:
raise RuntimeError(
"""Using serve command requires FastAPI and uvicorn. """
"""Please install transformers with [serving]: pip install \"transformers[serving]\"."""
"""Or install FastAPI and uvicorn separately.""" )
else:
logger.info(f'''Serving model over {host}:{port}''' )
__snake_case : int = FastAPI(
routes=[
APIRoute(
"""/""" , self.model_info , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""GET"""] , ),
APIRoute(
"""/tokenize""" , self.tokenize , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ),
APIRoute(
"""/detokenize""" , self.detokenize , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ),
APIRoute(
"""/forward""" , self.forward , response_model=__magic_name__ , response_class=__magic_name__ , methods=["""POST"""] , ),
] , timeout=6_00 , )
def lowercase__ ( self : int ) -> Dict:
"""simple docstring"""
run(self._app , host=self.host , port=self.port , workers=self.workers )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def lowercase__ ( self : Any , __magic_name__ : str = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) ) -> Any:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._pipeline.tokenizer.tokenize(__magic_name__ )
if return_ids:
__snake_case : Tuple = self._pipeline.tokenizer.convert_tokens_to_ids(__magic_name__ )
return ServeTokenizeResult(tokens=__magic_name__ , tokens_ids=__magic_name__ )
else:
return ServeTokenizeResult(tokens=__magic_name__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(__magic_name__ )} )
def lowercase__ ( self : Any , __magic_name__ : List[int] = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) , __magic_name__ : bool = Body(__magic_name__ , embed=__magic_name__ ) , ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Dict = self._pipeline.tokenizer.decode(__magic_name__ , __magic_name__ , __magic_name__ )
return ServeDeTokenizeResult(model="""""" , text=__magic_name__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(__magic_name__ )} )
async def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any]=Body(__magic_name__ , embed=__magic_name__ ) ) -> Optional[int]:
"""simple docstring"""
if len(__magic_name__ ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
__snake_case : Union[str, Any] = self._pipeline(__magic_name__ )
return ServeForwardResult(output=__magic_name__ )
except Exception as e:
raise HTTPException(5_00 , {"""error""": str(__magic_name__ )} )
| 13 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = KandinskyImgaImgPipeline
lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
lowercase__: int = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
lowercase__: List[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__: Any = False
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return 32
@property
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__snake_case : Tuple = MultilingualCLIP(__magic_name__ )
__snake_case : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__snake_case : Tuple = UNetaDConditionModel(**__magic_name__ )
return model
@property
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__snake_case : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : Tuple = self.dummy_text_encoder
__snake_case : Dict = self.dummy_tokenizer
__snake_case : Dict = self.dummy_unet
__snake_case : int = self.dummy_movq
__snake_case : List[Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.00085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__snake_case : Dict = DDIMScheduler(**__magic_name__ )
__snake_case : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
__snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ )
# create init_image
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
__snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : Optional[Any] = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : int ) -> str:
"""simple docstring"""
__snake_case : Dict = """cpu"""
__snake_case : Union[str, Any] = self.get_dummy_components()
__snake_case : List[str] = self.pipeline_class(**__magic_name__ )
__snake_case : Optional[Any] = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) )
__snake_case : List[str] = output.images
__snake_case : Any = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
__snake_case : Optional[int] = image[0, -3:, -3:, -1]
__snake_case : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__snake_case : int = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
__snake_case : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__snake_case : List[Any] = """A red cartoon frog, 4k"""
__snake_case : str = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__magic_name__ )
__snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
__snake_case : Any = pipeline.to(__magic_name__ )
pipeline.set_progress_bar_config(disable=__magic_name__ )
__snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case , __snake_case : Optional[Any] = pipe_prior(
__magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__snake_case : List[str] = pipeline(
__magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , )
__snake_case : Dict = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
| 13 | 1 |
'''simple docstring'''
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
__UpperCamelCase = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _A ( datasets.BuilderConfig ):
lowercase__: Optional[datasets.Features] = None
def _a ( _lowerCamelCase , _lowerCamelCase , ) -> Optional[int]:
"""simple docstring"""
import pyspark
def generate_fn():
__snake_case : List[str] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) )
for partition_id in partition_order:
__snake_case : List[str] = df_with_partition_id.select("""*""" ).where(F'''part_id = {partition_id}''' ).drop("""part_id""" )
__snake_case : Any = partition_df.collect()
__snake_case : int = 0
for row in rows:
yield F'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _A ( _BaseExamplesIterable ):
def __init__( self : Union[str, Any] , __magic_name__ : "pyspark.sql.DataFrame" , __magic_name__ : Union[str, Any]=None , ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = df
__snake_case : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__snake_case : Any = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : str ) -> int:
"""simple docstring"""
yield from self.generate_examples_fn()
def lowercase__ ( self : Optional[Any] , __magic_name__ : np.random.Generator ) -> "SparkExamplesIterable":
"""simple docstring"""
__snake_case : Any = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(__magic_name__ )
return SparkExamplesIterable(self.df , partition_order=__magic_name__ )
def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : int ) -> "SparkExamplesIterable":
"""simple docstring"""
__snake_case : int = self.split_shard_indices_by_worker(__magic_name__ , __magic_name__ )
return SparkExamplesIterable(self.df , partition_order=__magic_name__ )
@property
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
return len(self.partition_order )
class _A ( datasets.DatasetBuilder ):
lowercase__: Optional[int] = SparkConfig
def __init__( self : Union[str, Any] , __magic_name__ : "pyspark.sql.DataFrame" , __magic_name__ : str = None , __magic_name__ : str = None , **__magic_name__ : int , ) -> str:
"""simple docstring"""
import pyspark
__snake_case : Optional[Any] = pyspark.sql.SparkSession.builder.getOrCreate()
__snake_case : Optional[int] = df
__snake_case : Dict = working_dir
super().__init__(
cache_dir=__magic_name__ , config_name=str(self.df.semanticHash() ) , **__magic_name__ , )
def lowercase__ ( self : Any ) -> List[str]:
"""simple docstring"""
def create_cache_and_write_probe(__magic_name__ : Tuple ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=__magic_name__ )
__snake_case : List[Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(__magic_name__ , """a""" )
return [probe_file]
if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__snake_case : str = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__magic_name__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
"""When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" )
def lowercase__ ( self : Dict ) -> Dict:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def lowercase__ ( self : Any , __magic_name__ : datasets.download.download_manager.DownloadManager ) -> str:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def lowercase__ ( self : str , __magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
import pyspark
def get_arrow_batch_size(__magic_name__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} )
__snake_case : List[str] = self.df.count()
__snake_case : int = df_num_rows if df_num_rows <= 1_00 else 1_00
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__snake_case : Tuple = (
self.df.limit(__magic_name__ )
.repartition(1 )
.mapInArrow(__magic_name__ , """batch_bytes: long""" )
.agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__snake_case : Optional[Any] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__snake_case : str = min(__magic_name__ , int(approx_total_size / max_shard_size ) )
__snake_case : Optional[int] = self.df.repartition(__magic_name__ )
def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : str , __magic_name__ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
"""simple docstring"""
import pyspark
__snake_case : str = ParquetWriter if file_format == """parquet""" else ArrowWriter
__snake_case : Tuple = os.path.join(self._working_dir , os.path.basename(__magic_name__ ) ) if self._working_dir else fpath
__snake_case : List[Any] = file_format == """parquet"""
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__snake_case : Union[str, Any] = self.config.features
__snake_case : Dict = self._writer_batch_size
__snake_case : str = self._fs.storage_options
def write_arrow(__magic_name__ : Tuple ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__snake_case : Optional[Any] = pyspark.TaskContext().taskAttemptId()
__snake_case : Union[str, Any] = next(__magic_name__ , __magic_name__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
__snake_case : Any = 0
__snake_case : List[str] = writer_class(
features=__magic_name__ , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=__magic_name__ , storage_options=__magic_name__ , embed_local_files=__magic_name__ , )
__snake_case : Union[str, Any] = pa.Table.from_batches([first_batch] )
writer.write_table(__magic_name__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__snake_case , __snake_case : Optional[Any] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
shard_id += 1
__snake_case : int = writer_class(
features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=__magic_name__ , storage_options=__magic_name__ , embed_local_files=__magic_name__ , )
__snake_case : Optional[Any] = pa.Table.from_batches([batch] )
writer.write_table(__magic_name__ )
if writer._num_bytes > 0:
__snake_case , __snake_case : List[Any] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(__magic_name__ ) ):
__snake_case : Union[str, Any] = os.path.join(os.path.dirname(__magic_name__ ) , os.path.basename(__magic_name__ ) )
shutil.move(__magic_name__ , __magic_name__ )
__snake_case : Optional[int] = (
self.df.mapInArrow(__magic_name__ , """task_id: long, num_examples: long, num_bytes: long""" )
.groupBy("""task_id""" )
.agg(
pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def lowercase__ ( self : List[str] , __magic_name__ : "datasets.SplitGenerator" , __magic_name__ : str = "arrow" , __magic_name__ : Optional[Union[str, int]] = None , __magic_name__ : Optional[int] = None , **__magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
self._validate_cache_dir()
__snake_case : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(__magic_name__ )
__snake_case : str = not is_remote_filesystem(self._fs )
__snake_case : Optional[Any] = os.path.join if is_local else posixpath.join
__snake_case : int = """-TTTTT-SSSSS-of-NNNNN"""
__snake_case : int = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__snake_case : str = path_join(self._output_dir , __magic_name__ )
__snake_case : Any = 0
__snake_case : List[Any] = 0
__snake_case : Optional[int] = 0
__snake_case : Union[str, Any] = []
__snake_case : str = []
for task_id, content in self._prepare_split_single(__magic_name__ , __magic_name__ , __magic_name__ ):
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(__magic_name__ )
__snake_case : Optional[int] = total_num_examples
__snake_case : int = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__snake_case : Dict = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__snake_case : Any = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
__magic_name__ : int , __magic_name__ : int , __magic_name__ : int , ):
rename(
__magic_name__ , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , )
__snake_case : int = []
__snake_case : Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
__snake_case , __snake_case : Tuple = task_id_and_num_shards[i]
for shard_id in range(__magic_name__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(__magic_name__ , len(__magic_name__ ) ).map(lambda __magic_name__ : _rename_shard(*__magic_name__ ) ).collect()
else:
# don't use any pattern
__snake_case : Optional[int] = 0
__snake_case : Optional[Any] = task_id_and_num_shards[0][0]
self._rename(
fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(__magic_name__ , """""" ) , )
def lowercase__ ( self : Tuple , __magic_name__ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable:
"""simple docstring"""
return SparkExamplesIterable(self.df )
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__UpperCamelCase = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__UpperCamelCase = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
class _A ( __lowercase ):
lowercase__: Any = VOCAB_FILES_NAMES
lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask''']
lowercase__: List[str] = BartTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]:
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
__snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) )
__snake_case : str = add_prefix_space
__snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ )
__snake_case : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__snake_case : Any = """post_processor"""
__snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
__snake_case : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__snake_case : Tuple = tuple(state["""sep"""] )
if "cls" in state:
__snake_case : int = tuple(state["""cls"""] )
__snake_case : Optional[int] = False
if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space:
__snake_case : Optional[Any] = add_prefix_space
__snake_case : List[str] = True
if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets:
__snake_case : Optional[int] = trim_offsets
__snake_case : Any = True
if changes_to_apply:
__snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) )
__snake_case : List[Any] = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def lowercase__ ( self : List[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
__snake_case : Union[str, Any] = value
def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding:
"""simple docstring"""
__snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> int:
"""simple docstring"""
__snake_case : list[list[int]] = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__snake_case : Tuple = 1
for n in range(m + 1 ):
for k in range(1 , _lowerCamelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
__UpperCamelCase = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
__UpperCamelCase = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 13 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"google/vivit-b-16x2-kinetics400": (
"https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _A ( __lowercase ):
lowercase__: str = '''vivit'''
def __init__( self : Optional[int] , __magic_name__ : List[Any]=2_24 , __magic_name__ : Optional[int]=32 , __magic_name__ : Optional[Any]=[2, 16, 16] , __magic_name__ : List[Any]=3 , __magic_name__ : Any=7_68 , __magic_name__ : int=12 , __magic_name__ : Dict=12 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Dict="gelu_fast" , __magic_name__ : List[str]=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Optional[int]=1E-06 , __magic_name__ : Any=True , **__magic_name__ : Dict , ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Optional[Any] = intermediate_size
__snake_case : List[Any] = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : Union[str, Any] = image_size
__snake_case : Optional[int] = num_frames
__snake_case : Dict = tubelet_size
__snake_case : List[str] = num_channels
__snake_case : Optional[Any] = qkv_bias
super().__init__(**__magic_name__ )
| 13 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase = ["small", "medium", "large"]
__UpperCamelCase = "lm_head.decoder.weight"
__UpperCamelCase = "lm_head.weight"
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase )
__snake_case : Optional[int] = d.pop(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
__UpperCamelCase = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 13 | 1 |
'''simple docstring'''
import functools
def _a ( _lowerCamelCase , _lowerCamelCase ) -> int:
"""simple docstring"""
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(_lowerCamelCase ) == 0:
return 0
if min(_lowerCamelCase ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(_lowerCamelCase ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
__snake_case : int = set(_lowerCamelCase )
@functools.cache
def dynamic_programming(_lowerCamelCase ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> None:
"""simple docstring"""
__snake_case : Dict = input("""Enter message: """ )
__snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ )
__snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Any = """encrypt"""
__snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase )
elif mode.lower().startswith("""d""" ):
__snake_case : Optional[int] = """decrypt"""
__snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
__snake_case : str = []
__snake_case : Dict = 0
__snake_case : Optional[int] = key.upper()
for symbol in message:
__snake_case : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowerCamelCase ):
__snake_case : Tuple = 0
else:
translated.append(_lowerCamelCase )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
main()
| 13 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class _A ( __lowercase ):
lowercase__: Optional[int] = '''mctct'''
def __init__( self : List[str] , __magic_name__ : Dict=80_65 , __magic_name__ : Tuple=15_36 , __magic_name__ : Optional[Any]=36 , __magic_name__ : Dict=61_44 , __magic_name__ : List[Any]=4 , __magic_name__ : Optional[Any]=3_84 , __magic_name__ : Any=9_20 , __magic_name__ : Optional[int]=1E-5 , __magic_name__ : Tuple=0.3 , __magic_name__ : Dict="relu" , __magic_name__ : int=0.02 , __magic_name__ : Tuple=0.3 , __magic_name__ : Optional[int]=0.3 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[str]=0 , __magic_name__ : Dict=2 , __magic_name__ : str=1 , __magic_name__ : Any=0.3 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Union[str, Any]=(7,) , __magic_name__ : List[str]=(3,) , __magic_name__ : Dict=80 , __magic_name__ : List[str]=1 , __magic_name__ : Any=None , __magic_name__ : int="sum" , __magic_name__ : Dict=False , **__magic_name__ : Tuple , ) -> str:
"""simple docstring"""
super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ )
__snake_case : str = vocab_size
__snake_case : Optional[Any] = hidden_size
__snake_case : Tuple = num_hidden_layers
__snake_case : Any = intermediate_size
__snake_case : List[str] = num_attention_heads
__snake_case : Any = attention_head_dim
__snake_case : Any = max_position_embeddings
__snake_case : Any = layer_norm_eps
__snake_case : List[str] = layerdrop
__snake_case : str = hidden_act
__snake_case : Optional[int] = initializer_range
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : List[str] = attention_probs_dropout_prob
__snake_case : Dict = pad_token_id
__snake_case : Optional[int] = bos_token_id
__snake_case : List[str] = eos_token_id
__snake_case : Optional[Any] = conv_glu_dim
__snake_case : List[str] = conv_dropout
__snake_case : Union[str, Any] = num_conv_layers
__snake_case : Optional[int] = input_feat_per_channel
__snake_case : List[str] = input_channels
__snake_case : Any = conv_channels
__snake_case : Optional[Any] = ctc_loss_reduction
__snake_case : Optional[Any] = ctc_zero_infinity
# prevents config testing fail with exporting to json
__snake_case : List[str] = list(__magic_name__ )
__snake_case : List[str] = list(__magic_name__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 13 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for attribute in key.split(""".""" ):
__snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
__snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
__snake_case : List[str] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__snake_case : Union[str, Any] = value
elif weight_type == "weight_g":
__snake_case : str = value
elif weight_type == "weight_v":
__snake_case : Tuple = value
elif weight_type == "bias":
__snake_case : str = value
else:
__snake_case : List[Any] = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
__snake_case : Tuple = []
__snake_case : List[Any] = fairseq_model.state_dict()
__snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : Any = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
__snake_case : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
__snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__snake_case : Dict = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
__snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase )
if "weight_g" in name:
__snake_case : Dict = """weight_g"""
elif "weight_v" in name:
__snake_case : List[str] = """weight_v"""
elif "weight" in name:
__snake_case : str = """weight"""
elif "bias" in name:
__snake_case : int = """bias"""
else:
__snake_case : int = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Dict = full_name.split("""conv_layers.""" )[-1]
__snake_case : Optional[int] = name.split(""".""" )
__snake_case : Dict = int(items[0] )
__snake_case : Optional[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__snake_case : Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__snake_case : int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__snake_case : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__snake_case : List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[str] = SEWConfig()
if is_finetuned:
__snake_case : List[Any] = model.wav_encoder.wav_model.cfg
else:
__snake_case : Optional[Any] = model.cfg
__snake_case : Tuple = fs_config.conv_bias
__snake_case : List[Any] = eval(fs_config.conv_feature_layers )
__snake_case : List[Any] = [x[0] for x in conv_layers]
__snake_case : Dict = [x[1] for x in conv_layers]
__snake_case : Tuple = [x[2] for x in conv_layers]
__snake_case : List[str] = """gelu"""
__snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
__snake_case : Optional[int] = 0.0
__snake_case : Optional[Any] = fs_config.activation_fn.name
__snake_case : Dict = fs_config.encoder_embed_dim
__snake_case : Dict = 0.02
__snake_case : Any = fs_config.encoder_ffn_embed_dim
__snake_case : Tuple = 1E-5
__snake_case : Dict = fs_config.encoder_layerdrop
__snake_case : Any = fs_config.encoder_attention_heads
__snake_case : int = fs_config.conv_pos_groups
__snake_case : Tuple = fs_config.conv_pos
__snake_case : Optional[int] = len(_lowerCamelCase )
__snake_case : int = fs_config.encoder_layers
__snake_case : Optional[int] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__snake_case : Union[str, Any] = model.cfg
__snake_case : Tuple = fs_config.final_dropout
__snake_case : Tuple = fs_config.layerdrop
__snake_case : Any = fs_config.activation_dropout
__snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__snake_case : Tuple = fs_config.attention_dropout
__snake_case : List[Any] = fs_config.dropout_input
__snake_case : Optional[Any] = fs_config.dropout
__snake_case : str = fs_config.mask_channel_length
__snake_case : Any = fs_config.mask_channel_prob
__snake_case : int = fs_config.mask_length
__snake_case : str = fs_config.mask_prob
__snake_case : str = """Wav2Vec2FeatureExtractor"""
__snake_case : Dict = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int:
"""simple docstring"""
if is_finetuned:
__snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase )
else:
__snake_case : int = convert_config(model[0] , _lowerCamelCase )
__snake_case : Dict = model[0].eval()
__snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__snake_case : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if is_finetuned:
if dict_path:
__snake_case : str = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Union[str, Any] = target_dict.pad_index
__snake_case : Optional[Any] = target_dict.bos_index
__snake_case : Tuple = target_dict.pad_index
__snake_case : List[str] = target_dict.bos_index
__snake_case : Optional[Any] = target_dict.eos_index
__snake_case : List[str] = len(target_dict.symbols )
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , _lowerCamelCase )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , )
__snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
__snake_case : List[str] = SEWForCTC(_lowerCamelCase )
else:
__snake_case : List[str] = SEWModel(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class _A ( unittest.TestCase ):
def __init__( self : Optional[int] , __magic_name__ : Any , __magic_name__ : Tuple=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=99 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[Any]=5 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : int="gelu" , __magic_name__ : str=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Dict=5_12 , __magic_name__ : List[Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Optional[Any]=4 , ) -> Dict:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : Any = seq_length
__snake_case : Optional[int] = is_training
__snake_case : str = use_attention_mask
__snake_case : List[str] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : Optional[Any] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : List[Any] = intermediate_size
__snake_case : int = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : Optional[Any] = max_position_embeddings
__snake_case : str = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : str = initializer_range
__snake_case : Any = num_choices
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = None
if self.use_attention_mask:
__snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Optional[int] = None
if self.use_token_type_ids:
__snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Tuple = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs
__snake_case : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
__snake_case : str = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : int = config_and_inputs
__snake_case : str = True
__snake_case : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class _A ( __lowercase , unittest.TestCase ):
lowercase__: int = True
lowercase__: List[str] = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase__ ( self : int ) -> Tuple:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case : Optional[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ )
__snake_case : Union[str, Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ )
__snake_case : List[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
__snake_case : List[Any] = model(__magic_name__ )[0]
__snake_case : Optional[Any] = [1, 11, 5_02_65]
self.assertEqual(list(output.shape ) , __magic_name__ )
# compare the actual values for a slice.
__snake_case : List[Any] = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Tuple = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ )
__snake_case : Union[str, Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
__snake_case : Dict = model(__magic_name__ )[0]
# compare the actual values for a slice.
__snake_case : Dict = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> bool:
"""simple docstring"""
__snake_case : Optional[int] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def _a ( _lowerCamelCase = 5000 ) -> int:
"""simple docstring"""
__snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )]
for i, pentagonal_i in enumerate(_lowerCamelCase ):
for j in range(_lowerCamelCase , len(_lowerCamelCase ) ):
__snake_case : Optional[int] = pentagonal_nums[j]
__snake_case : str = pentagonal_i + pentagonal_j
__snake_case : List[Any] = pentagonal_j - pentagonal_i
if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 | 1 |
'''simple docstring'''
import os
import numpy
import onnx
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = a.name
__snake_case : Dict = b.name
__snake_case : Optional[int] = """"""
__snake_case : int = """"""
__snake_case : Any = a == b
__snake_case : List[Any] = name_a
__snake_case : List[str] = name_b
return res
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : Dict = list(model.graph.initializer )
__snake_case : List[Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
__snake_case : Tuple = inits[i].name
__snake_case : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : str = os.path.dirname(_lowerCamelCase )
__snake_case : Dict = os.path.basename(_lowerCamelCase )
__snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) )
__snake_case : Dict = list(model.graph.initializer )
__snake_case : Optional[int] = set()
__snake_case : Optional[Any] = {}
__snake_case : Tuple = []
__snake_case : List[Any] = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
__snake_case : List[Any] = inits[j].data_type
__snake_case : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , _lowerCamelCase )
total_reduced_size += mem_size
__snake_case : Any = inits[i].name
__snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
__snake_case : Dict = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
__snake_case : int = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__snake_case : str = """optimized_""" + model_file_name
__snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase )
onnx.save(_lowerCamelCase , _lowerCamelCase )
return new_model
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : List[Any] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case : int = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case : Optional[Any] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
__snake_case : Dict = output[output != -float("""inf""" )]
__snake_case : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@require_tf
class _A ( unittest.TestCase , __lowercase ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase__: Tuple = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
__snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Optional[int] = 2
__snake_case : str = 2
class _A ( tf.Module ):
def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Dict = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Tuple = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : int = [[2, 0], [1_02, 1_03]]
__snake_case : Tuple = [[1, 0], [1, 1]]
__snake_case : Union[str, Any] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for batch_size in range(1 , len(__magic_name__ ) + 1 ):
__snake_case : Union[str, Any] = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
__snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : Dict = 1
__snake_case : int = 2
class _A ( tf.Module ):
def __init__( self : Tuple , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
super(__magic_name__ , self ).__init__()
__snake_case : Optional[int] = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__magic_name__ , )
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.model.generate(
input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , )
return {"sequences": outputs["sequences"]}
__snake_case : Union[str, Any] = [[2], [1_02, 1_03]]
__snake_case : Tuple = [[1], [1, 1]]
__snake_case : List[str] = DummyModel(model=__magic_name__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} )
__snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""]
for input_row in range(len(__magic_name__ ) ):
__snake_case : Tuple = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
__snake_case : str = serving_func(**__magic_name__ )["""sequences"""]
__snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ )
tf.debugging.assert_equal(__magic_name__ , __magic_name__ )
@slow
@require_tensorflow_text
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ )
class _A ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ) -> int:
"""simple docstring"""
super().__init__()
__snake_case : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() )
__snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ )
__snake_case , __snake_case : List[Any] = text.pad_model_inputs(
__magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
__snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ )
return self.tokenizer.detokenize(__magic_name__ )
__snake_case : int = CompleteSentenceTransformer()
__snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
__snake_case : Tuple = complete_model(__magic_name__ )
__snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ )
keras_model.save(__magic_name__ )
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Dict = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
__snake_case : str = 14
__snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : int = """Hello, my dog is cute and"""
__snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" )
__snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
__snake_case : List[Any] = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
__snake_case : Dict = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
__snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowercase__ ( self : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : str = """Hugging Face is a technology company based in New York and Paris."""
__snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids
__snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : int = bart_model.generate(__magic_name__ ).numpy()
class _A ( __lowercase ):
def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
__snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) )
class _A ( bart_model.model.encoder.__class__ ):
def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict:
"""simple docstring"""
return super().call(__magic_name__ , **__magic_name__ )
__snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
__snake_case : Tuple = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case : Dict = bart_model.generate(__magic_name__ ).numpy()
with self.assertRaises(__magic_name__ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__magic_name__ , foo="""bar""" )
| 13 | 1 |
'''simple docstring'''
class _A :
def __init__( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Any = name
__snake_case : Dict = val
def __str__( self : List[Any] ) -> Tuple:
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self : Any , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
return self.val < other.val
class _A :
def __init__( self : Tuple , __magic_name__ : Any ) -> str:
"""simple docstring"""
__snake_case : Dict = {}
__snake_case : Dict = {}
__snake_case : Dict = self.build_heap(__magic_name__ )
def __getitem__( self : str , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return self.get_value(__magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
return (idx - 1) // 2
def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> Any:
"""simple docstring"""
return idx * 2 + 1
def lowercase__ ( self : Tuple , __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
return idx * 2 + 2
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
return self.heap_dict[key]
def lowercase__ ( self : Dict , __magic_name__ : Optional[int] ) -> Dict:
"""simple docstring"""
__snake_case : Dict = len(__magic_name__ ) - 1
__snake_case : Dict = self.get_parent_idx(__magic_name__ )
for idx, i in enumerate(__magic_name__ ):
__snake_case : Dict = idx
__snake_case : Tuple = i.val
for i in range(__magic_name__ , -1 , -1 ):
self.sift_down(__magic_name__ , __magic_name__ )
return array
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
while True:
__snake_case : Tuple = self.get_left_child_idx(__magic_name__ ) # noqa: E741
__snake_case : int = self.get_right_child_idx(__magic_name__ )
__snake_case : Union[str, Any] = idx
if l < len(__magic_name__ ) and array[l] < array[idx]:
__snake_case : List[Any] = l
if r < len(__magic_name__ ) and array[r] < array[smallest]:
__snake_case : Dict = r
if smallest != idx:
__snake_case , __snake_case : str = array[smallest], array[idx]
(
(
__snake_case
) , (
__snake_case
) ,
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
__snake_case : Optional[int] = smallest
else:
break
def lowercase__ ( self : int , __magic_name__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : str = self.get_parent_idx(__magic_name__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
__snake_case , __snake_case : int = self.heap[idx], self.heap[p]
__snake_case , __snake_case : List[Any] = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
__snake_case : Any = p
__snake_case : Optional[int] = self.get_parent_idx(__magic_name__ )
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
return self.heap[0]
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case , __snake_case : List[str] = self.heap[-1], self.heap[0]
__snake_case , __snake_case : str = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
__snake_case : str = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def lowercase__ ( self : str , __magic_name__ : Dict ) -> Dict:
"""simple docstring"""
self.heap.append(__magic_name__ )
__snake_case : Dict = len(self.heap ) - 1
__snake_case : Dict = node.val
self.sift_up(len(self.heap ) - 1 )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return len(self.heap ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
__snake_case : Tuple = new_value
__snake_case : Union[str, Any] = new_value
self.sift_up(self.idx_of_element[node] )
__UpperCamelCase = Node("R", -1)
__UpperCamelCase = Node("B", 6)
__UpperCamelCase = Node("A", 3)
__UpperCamelCase = Node("X", 1)
__UpperCamelCase = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__UpperCamelCase = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None:
"""simple docstring"""
__snake_case : int = len(_lowerCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowerCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , )
def _a ( _lowerCamelCase ) -> None:
"""simple docstring"""
__snake_case : list[list[str]] = []
depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(_lowerCamelCase )
print("""""" )
print(len(_lowerCamelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 13 | 1 |
'''simple docstring'''
import os
import jsonlines
import numpy as np
from tqdm import tqdm
__UpperCamelCase = 2048
__UpperCamelCase = 4096
__UpperCamelCase = 42
__UpperCamelCase = os.environ.pop("PROCESS_TRAIN", "false")
__UpperCamelCase = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def _a ( _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
def choose_first(_lowerCamelCase , _lowerCamelCase=False ):
assert isinstance(_lowerCamelCase , _lowerCamelCase )
if len(_lowerCamelCase ) == 1:
__snake_case : Any = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__snake_case : Union[str, Any] = {k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__snake_case : Union[str, Any] = {"""id""": example["""id"""]}
__snake_case : Any = example["""annotations"""]
__snake_case : List[Any] = annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__snake_case : Tuple = ["""yes"""] if 1 in yes_no_answer else ["""no"""]
__snake_case : Optional[Any] = []
__snake_case : Tuple = []
__snake_case : Optional[Any] = ["""<cls>"""]
else:
__snake_case : Union[str, Any] = ["""short"""]
__snake_case : Optional[Any] = choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__snake_case : Dict = ["""long"""]
__snake_case : str = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCamelCase )
__snake_case : Optional[int] = []
answer.update(_lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__snake_case : List[Any] = True
else:
__snake_case : int = False
__snake_case : Any = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , _lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _get_single_answer(_lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__snake_case : Optional[Any] = example["""document"""]["""tokens"""]
__snake_case : Union[str, Any] = []
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(_lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__snake_case : Union[str, Any] = ["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__snake_case : str = example["""document"""]["""tokens"""]
__snake_case : Any = answer["""start_token"""]
__snake_case : Optional[int] = answer["""end_token"""]
__snake_case : int = []
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__snake_case : Dict = """ """.join(context[start_token:end_token] )
# checking above code
if assertion:
__snake_case : str = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__snake_case : Union[str, Any] = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__snake_case : Dict = """ """.join([old[i] for i in range(len(_lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , _lowerCamelCase , end="""\n""" )
print("""Old:""" , _lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(_lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=2048 , _lowerCamelCase=4096 , _lowerCamelCase=True ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = get_context_and_ans(_lowerCamelCase , assertion=_lowerCamelCase )
__snake_case : Dict = out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__snake_case : List[Any] = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__snake_case : Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__snake_case : int = []
__snake_case : List[str] = []
__snake_case : Optional[int] = input_ids[:q_len]
__snake_case : Dict = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__snake_case : Dict = i + max_length - q_len
__snake_case : Tuple = input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(_lowerCamelCase ),
"end_token": [-100] * len(_lowerCamelCase ),
"category": category,
},
}
__snake_case : Optional[int] = out["""context"""].split()
__snake_case : Optional[int] = splitted_context[answer["""end_token"""]]
__snake_case : Any = len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCamelCase , ).input_ids )
__snake_case : Tuple = len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__snake_case : Tuple = len(tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__snake_case : Union[str, Any] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__snake_case : Optional[int] = answer["""start_token"""]
__snake_case : List[Any] = answer["""end_token"""]
if assertion:
__snake_case : Any = tokenizer.decode(_lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , _lowerCamelCase , end="""\n\n""" )
if len(_lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__snake_case : List[Any] = input_ids[:q_len]
__snake_case : Tuple = range(_lowerCamelCase , len(_lowerCamelCase ) , max_length - doc_stride )
__snake_case : Optional[Any] = []
__snake_case : List[Any] = []
__snake_case : Optional[int] = []
__snake_case : Tuple = [] # null, yes, no, long, short
for i in doc_start_indices:
__snake_case : Dict = i + max_length - q_len
__snake_case : Union[str, Any] = input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__snake_case : str = start_token - i + q_len
__snake_case : int = end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__snake_case : Optional[Any] = -100
__snake_case : Optional[Any] = -100
answers_category.append("""null""" )
__snake_case : List[str] = inputs[-1][start_token : end_token + 1]
answers_start_token.append(_lowerCamelCase )
answers_end_token.append(_lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(_lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(_lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=2048 , _lowerCamelCase=4096 , _lowerCamelCase=False ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = get_strided_contexts_and_ans(
_lowerCamelCase , _lowerCamelCase , doc_stride=_lowerCamelCase , max_length=_lowerCamelCase , assertion=_lowerCamelCase , )
return example
def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
with jsonlines.open(_lowerCamelCase , """a""" ) as writer:
for example in tqdm(_lowerCamelCase , total=len(_lowerCamelCase ) , desc="""Saving samples ... """ ):
__snake_case : int = example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
__UpperCamelCase = load_dataset("natural_questions")
__UpperCamelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
__UpperCamelCase = data["train" if PROCESS_TRAIN == "true" else "validation"]
__UpperCamelCase = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
__UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
__UpperCamelCase = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
__UpperCamelCase = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 13 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__UpperCamelCase = logging.getLogger(__name__)
class _A ( __lowercase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
super().__init__(
__magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , )
__snake_case : List[str] = None
def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]:
"""simple docstring"""
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__snake_case : List[Any] = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case : List[str] = str(distributed_port + 1 )
__snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowercase__ ( self : int ) -> int:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ )
dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group )
return target_tensor
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__snake_case : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ )
return ifname
def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ )
# distributed training
__snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__snake_case : Tuple = None
if self._is_main():
__snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )]
dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group )
# scatter logic
__snake_case : Optional[int] = question_hidden_states.shape[0]
__snake_case : Optional[Any] = []
__snake_case : Any = []
if self._is_main():
assert len(__magic_name__ ) == world_size
__snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ )
__snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa )
__snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def _a ( _lowerCamelCase ) -> Dict:
"""simple docstring"""
if isinstance(_lowerCamelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class _A :
def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
pass
def lowercase__ ( self : str , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any]=None , **__magic_name__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ )
__snake_case : List[str] = TFVisionTextDualEncoderModel(__magic_name__ )
__snake_case : int = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None , **__magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : Union[str, Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str=None , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : List[str] = {"""vision_model""": vision_model, """text_model""": text_model}
__snake_case : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ )
__snake_case : Union[str, Any] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int=None , **__magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
__snake_case , __snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : Tuple = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Any = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
__snake_case : str = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__magic_name__ )
__snake_case : str = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ )
__snake_case : Optional[int] = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ )
__snake_case : int = after_output[0].numpy()
__snake_case : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1E-5 )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None , **__magic_name__ : Dict ) -> str:
"""simple docstring"""
__snake_case , __snake_case : Dict = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : List[Any] = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Dict = model(
input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ )
__snake_case : Optional[Any] = output.vision_model_output.attentions
self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__snake_case : Any = to_atuple(vision_model.config.image_size )
__snake_case : Tuple = to_atuple(vision_model.config.patch_size )
__snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__snake_case : Union[str, Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__snake_case : Any = output.text_model_output.attentions
self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : float ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(__magic_name__ , __magic_name__ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def lowercase__ ( self : List[str] ) -> str:
"""simple docstring"""
__snake_case : Dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**__magic_name__ )
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : int = self.prepare_config_and_inputs()
self.check_save_load(**__magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : List[str] = self.get_pretrained_model_and_inputs()
__snake_case : Any = model_a(**__magic_name__ )
__snake_case : Any = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__magic_name__ )
__snake_case : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__magic_name__ )
__snake_case : Optional[int] = model_a(**__magic_name__ )
__snake_case : Union[str, Any] = after_outputs[0].numpy()
__snake_case : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1E-5 )
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Any ) -> Dict:
"""simple docstring"""
__snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" )
__snake_case : Tuple = 13
__snake_case : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Optional[Any] = random_attention_mask([batch_size, 4] )
__snake_case : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = TFViTModel(__magic_name__ , name="""vision_model""" )
__snake_case : int = TFBertModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Any = TFViTModelTester(self )
__snake_case : Optional[Any] = TFBertModelTester(self )
__snake_case : List[str] = vit_model_tester.prepare_config_and_inputs()
__snake_case : Tuple = bert_model_tester.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Optional[Any] = vision_config_and_inputs
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[str] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" )
__snake_case : int = 13
__snake_case : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Tuple = random_attention_mask([batch_size, 4] )
__snake_case : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Tuple=None , **__magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : Any = self.get_vision_text_model(__magic_name__ , __magic_name__ )
__snake_case : int = TFVisionTextDualEncoderModel(vision_model=__magic_name__ , text_model=__magic_name__ )
__snake_case : Any = model(
input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ )
__snake_case : List[str] = output.vision_model_output.attentions
self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__snake_case : Optional[int] = to_atuple(vision_model.config.image_size )
__snake_case : Optional[int] = to_atuple(vision_model.config.patch_size )
__snake_case : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__snake_case : List[str] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__snake_case : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TFDeiTModel(__magic_name__ , name="""vision_model""" )
__snake_case : Optional[Any] = TFRobertaModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__snake_case : Dict = TFDeiTModelTester(self )
__snake_case : Optional[int] = TFRobertaModelTester(self )
__snake_case : Dict = vit_model_tester.prepare_config_and_inputs()
__snake_case : Optional[int] = bert_model_tester.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : int = vision_config_and_inputs
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[int] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _A ( __lowercase , unittest.TestCase ):
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" )
__snake_case : Optional[int] = 13
__snake_case : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__snake_case : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__snake_case : Optional[int] = random_attention_mask([batch_size, 4] )
__snake_case : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
__snake_case : Tuple = TFCLIPVisionModel(__magic_name__ , name="""vision_model""" )
__snake_case : str = TFBertModel(__magic_name__ , name="""text_model""" )
return vision_model, text_model
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__snake_case : List[Any] = TFCLIPVisionModelTester(self )
__snake_case : Dict = TFBertModelTester(self )
__snake_case : str = clip_model_tester.prepare_config_and_inputs()
__snake_case : Tuple = bert_model_tester.prepare_config_and_inputs()
__snake_case , __snake_case : Optional[int] = vision_config_and_inputs
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__snake_case : int = TFVisionTextDualEncoderModel.from_pretrained(
"""clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__magic_name__ )
__snake_case : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
__snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__snake_case : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=__magic_name__ , padding=__magic_name__ , return_tensors="""np""" )
__snake_case : str = model(**__magic_name__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__snake_case : Optional[Any] = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __magic_name__ , atol=1E-3 ) )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class _A :
lowercase__: str
lowercase__: Optional[str] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
lowercase__: Optional[Union[str, int]] = None
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.major, self.minor, self.patch
def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' )
def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
try:
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Any:
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str:
"""simple docstring"""
__snake_case : List[str] = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
return self.version_str
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] )
def _a ( _lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return ".".join(str(_lowerCamelCase ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
def _a ( _lowerCamelCase=2_8123 ) -> int:
"""simple docstring"""
__snake_case : List[Any] = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
__snake_case : Dict = set()
__snake_case : Union[str, Any] = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(_lowerCamelCase )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 13 |
'''simple docstring'''
def _a ( _lowerCamelCase ) -> str:
"""simple docstring"""
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
__snake_case : Tuple = """"""
while len(_lowerCamelCase ) % 3 != 0:
__snake_case : Any = """0""" + bin_string
__snake_case : Tuple = [
bin_string[index : index + 3]
for index in range(len(_lowerCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Tuple = 0
for index, val in enumerate(_lowerCamelCase ):
oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) )
oct_string += str(_lowerCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
def _a ( _lowerCamelCase ) -> list[int]:
"""simple docstring"""
__snake_case : Any = [True] * limit
__snake_case : int = False
__snake_case : str = False
__snake_case : Dict = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
__snake_case : str = i * 2
while index < limit:
__snake_case : int = False
__snake_case : List[str] = index + i
__snake_case : Dict = [2]
for i in range(3 , _lowerCamelCase , 2 ):
if is_prime[i]:
primes.append(_lowerCamelCase )
return primes
def _a ( _lowerCamelCase = 100_0000 ) -> int:
"""simple docstring"""
__snake_case : Union[str, Any] = prime_sieve(_lowerCamelCase )
__snake_case : Dict = 0
__snake_case : Union[str, Any] = 0
for i in range(len(_lowerCamelCase ) ):
for j in range(i + length , len(_lowerCamelCase ) ):
__snake_case : Optional[Any] = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
__snake_case : Optional[int] = j - i
__snake_case : int = sol
return largest
if __name__ == "__main__":
print(f"""{solution() = }""")
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__UpperCamelCase = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__UpperCamelCase = TaTokenizerFast
__UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__UpperCamelCase = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from sklearn.metrics import recall_score
import datasets
__UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
__UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
__UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=1 , __magic_name__ : Optional[Any]="binary" , __magic_name__ : List[Any]=None , __magic_name__ : List[str]="warn" , ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = recall_score(
__magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , )
return {"recall": float(__magic_name__ ) if score.size == 1 else score}
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
__snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
__snake_case : Tuple = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""]
__snake_case : Any = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
__snake_case : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : str = AutoConfig.from_pretrained(_lowerCamelCase )
__snake_case : Optional[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase )
__snake_case : Optional[int] = checkpoints.load_tax_checkpoint(_lowerCamelCase )
__snake_case : int = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""]
if config.model_type == "t5":
__snake_case : Optional[Any] = """SelfAttention"""
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__snake_case : List[Any] = """LocalSelfAttention"""
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Tuple = """TransientGlobalSelfAttention"""
else:
raise ValueError(
"""Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"""
""" attribute with a value from ['local', 'transient-global].""" )
# Encoder
for layer_index in range(config.num_layers ):
__snake_case : str = F'''layers_{str(_lowerCamelCase )}'''
# Self-Attention
__snake_case : Optional[int] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""]
__snake_case : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""]
__snake_case : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""]
__snake_case : int = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Optional[int] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""]
# Layer Normalization
__snake_case : int = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""]
if split_mlp_wi:
__snake_case : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
__snake_case : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
__snake_case : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
__snake_case : Optional[int] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
__snake_case : List[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
__snake_case : int = flax_model.params["""encoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""]
__snake_case : Union[str, Any] = tax_attention_key
__snake_case : Dict = tax_attention_out
__snake_case : Optional[Any] = tax_attention_query
__snake_case : Optional[Any] = tax_attention_value
__snake_case : Union[str, Any] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Dict = tax_global_layer_norm
if split_mlp_wi:
__snake_case : List[str] = tax_mlp_wi_a
__snake_case : int = tax_mlp_wi_a
else:
__snake_case : Tuple = tax_mlp_wi
__snake_case : Any = tax_mlp_wo
__snake_case : Optional[int] = tax_mlp_layer_norm
__snake_case : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
__snake_case : Dict = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T
__snake_case : Dict = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Optional[int] = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T
__snake_case : Dict = tax_encoder_global_rel_embedding
# Assigning
__snake_case : Dict = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""]
__snake_case : str = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__snake_case : Dict = F'''layers_{str(_lowerCamelCase )}'''
# Self-Attention
__snake_case : Dict = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""]
__snake_case : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""]
__snake_case : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""]
__snake_case : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""]
# Layer Normalization
__snake_case : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][
"""scale"""
]
# Encoder-Decoder-Attention
__snake_case : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""]
__snake_case : Tuple = tax_enc_dec_attention_module["""key"""]["""kernel"""]
__snake_case : Optional[int] = tax_enc_dec_attention_module["""out"""]["""kernel"""]
__snake_case : Any = tax_enc_dec_attention_module["""query"""]["""kernel"""]
__snake_case : Optional[int] = tax_enc_dec_attention_module["""value"""]["""kernel"""]
# Layer Normalization
__snake_case : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""]
# MLP
if split_mlp_wi:
__snake_case : str = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""]
__snake_case : str = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""]
else:
__snake_case : int = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""]
__snake_case : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""]
# Layer Normalization
__snake_case : Tuple = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""]
# Assigning
__snake_case : List[str] = flax_model.params["""decoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""]
__snake_case : Optional[int] = tax_attention_key
__snake_case : Union[str, Any] = tax_attention_out
__snake_case : Any = tax_attention_query
__snake_case : List[str] = tax_attention_value
__snake_case : List[Any] = tax_pre_attention_layer_norm
__snake_case : List[str] = tax_enc_dec_attention_key
__snake_case : Union[str, Any] = tax_enc_dec_attention_out
__snake_case : Dict = tax_enc_dec_attention_query
__snake_case : int = tax_enc_dec_attention_value
__snake_case : Optional[Any] = tax_cross_layer_norm
if split_mlp_wi:
__snake_case : int = tax_mlp_wi_a
__snake_case : Any = tax_mlp_wi_a
else:
__snake_case : Any = tax_mlp_wi
__snake_case : str = tax_mlp_wo
__snake_case : Optional[Any] = txa_mlp_layer_norm
__snake_case : int = flax_model_decoder_layer_block
# Decoder Normalization
__snake_case : Any = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""]
__snake_case : Optional[Any] = txa_decoder_norm
# Only for layer 0:
__snake_case : Union[str, Any] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T
__snake_case : Union[str, Any] = tax_decoder_rel_embedding
# Token Embeddings
__snake_case : Optional[Any] = tax_model["""target"""]["""token_embedder"""]["""embedding"""]
__snake_case : Any = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__snake_case : Tuple = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""]
flax_model.save_pretrained(_lowerCamelCase )
print("""T5X Model was sucessfully converted!""" )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint."
)
parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.")
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
__UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 13 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _A :
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int:
"""simple docstring"""
__snake_case : Optional[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : List[Any] = num_channels
__snake_case : Dict = image_size
__snake_case : Tuple = patch_size
__snake_case : str = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : str = use_labels
__snake_case : Dict = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : Dict = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : int = max_position_embeddings
__snake_case : Optional[int] = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : int = initializer_range
__snake_case : Optional[int] = coordinate_size
__snake_case : List[Any] = shape_size
__snake_case : Tuple = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[Any] = scope
__snake_case : List[str] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : List[str] = text_seq_length
__snake_case : str = (image_size // patch_size) ** 2 + 1
__snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__snake_case : Optional[int] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Union[str, Any] = bbox[i, j, 3]
__snake_case : Union[str, Any] = bbox[i, j, 1]
__snake_case : Any = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Optional[Any] = bbox[i, j, 2]
__snake_case : Tuple = bbox[i, j, 0]
__snake_case : Optional[Any] = tmp_coordinate
__snake_case : Dict = tf.constant(__magic_name__ )
__snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ )
# text + image
__snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
__snake_case : List[str] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , )
__snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any:
"""simple docstring"""
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
__snake_case : str = self.num_labels
__snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ )
__snake_case : Tuple = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
__snake_case : Optional[int] = 2
__snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ )
__snake_case : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs
__snake_case : List[Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__: Union[str, Any] = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase__: Dict = False
lowercase__: int = False
lowercase__: Dict = False
def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
return True
def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict:
"""simple docstring"""
__snake_case : Any = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
__snake_case : Union[str, Any] = {
k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__magic_name__ ):
__snake_case : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : str = TFLayoutLMvaModelTester(self )
__snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Any = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0]
]
__snake_case : List[str] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = prepared_for_class.pop("""input_ids""" )
__snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : str = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__snake_case : str = prepared_for_class["""labels"""].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__snake_case : Dict = -1_00
__snake_case : str = tf.convert_to_tensor(__magic_name__ )
__snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
__snake_case : Tuple = model(__magic_name__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ )
# Get keys that were added with the _prepare_for_class function
__snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys()
__snake_case : Optional[Any] = inspect.signature(model.call ).parameters
__snake_case : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__snake_case : Union[str, Any] = {0: """input_ids"""}
for label_key in label_keys:
__snake_case : int = signature_names.index(__magic_name__ )
__snake_case : Optional[int] = label_key
__snake_case : Optional[int] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__snake_case : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__snake_case : List[str] = prepared_for_class[value]
__snake_case : str = tuple(__magic_name__ )
# Send to model
__snake_case : List[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Tuple = type
self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@slow
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def _a ( ) -> Optional[Any]:
"""simple docstring"""
__snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowercase__ ( self : str ) -> str:
"""simple docstring"""
__snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__snake_case : str = self.default_image_processor
__snake_case : Union[str, Any] = prepare_img()
__snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values
__snake_case : Tuple = tf.constant([[1, 2]] )
__snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ )
# verify the logits
__snake_case : List[str] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
__snake_case : Tuple = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Optional[int] = IFPipeline
lowercase__: Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
lowercase__: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__: List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=0 ) -> Dict:
"""simple docstring"""
if str(__magic_name__ ).startswith("""mps""" ):
__snake_case : str = torch.manual_seed(__magic_name__ )
else:
__snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
__snake_case : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def lowercase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowercase__ ( self : Tuple ) -> Dict:
"""simple docstring"""
self._test_save_load_local()
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case : int = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
__snake_case : int = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=__magic_name__ , tokenizer=__magic_name__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
__snake_case , __snake_case : Tuple = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
__snake_case : Dict = None
__snake_case : Dict = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
__snake_case : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
__snake_case : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
__snake_case : str = IFInpaintingPipeline(**pipe_a.components )
__snake_case : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_start_torch_memory_measurement()
__snake_case : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : str = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , num_inference_steps=2 , generator=__magic_name__ , output_type="""np""" , )
__snake_case : List[str] = output.images[0]
assert image.shape == (64, 64, 3)
__snake_case : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
__snake_case : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
# pipeline 2
_start_torch_memory_measurement()
__snake_case : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : Optional[int] = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , image=__magic_name__ , generator=__magic_name__ , num_inference_steps=2 , output_type="""np""" , )
__snake_case : int = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__snake_case : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__snake_case : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> int:
"""simple docstring"""
_start_torch_memory_measurement()
__snake_case : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : str = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : str = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , image=__magic_name__ , num_inference_steps=2 , generator=__magic_name__ , output_type="""np""" , )
__snake_case : str = output.images[0]
assert image.shape == (64, 64, 3)
__snake_case : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__snake_case : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
# pipeline 2
_start_torch_memory_measurement()
__snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : List[str] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : Optional[int] = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , image=__magic_name__ , original_image=__magic_name__ , generator=__magic_name__ , num_inference_steps=2 , output_type="""np""" , )
__snake_case : Optional[Any] = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__snake_case : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__snake_case : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Dict ) -> Optional[Any]:
"""simple docstring"""
_start_torch_memory_measurement()
__snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__magic_name__ )
__snake_case : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : Dict = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , num_inference_steps=2 , generator=__magic_name__ , output_type="""np""" , )
__snake_case : int = output.images[0]
assert image.shape == (64, 64, 3)
__snake_case : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__snake_case : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
# pipeline 2
_start_torch_memory_measurement()
__snake_case : Any = torch.Generator(device="""cpu""" ).manual_seed(0 )
__snake_case : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : Optional[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__magic_name__ )
__snake_case : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__magic_name__ )
__snake_case : int = pipe_a(
prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , original_image=__magic_name__ , generator=__magic_name__ , num_inference_steps=2 , output_type="""np""" , )
__snake_case : Tuple = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__snake_case : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__snake_case : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 13 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _A :
def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]:
"""simple docstring"""
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = image_size
__snake_case : List[Any] = num_channels
__snake_case : List[str] = patch_size
__snake_case : List[str] = num_frames
__snake_case : Union[str, Any] = is_training
__snake_case : List[str] = use_labels
__snake_case : str = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Optional[Any] = hidden_dropout_prob
__snake_case : Optional[int] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = attention_type
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scope
__snake_case : Optional[int] = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case : str = (image_size // patch_size) ** 2
__snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1
def lowercase__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_labels:
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case : str = self.num_labels
return config
def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int:
"""simple docstring"""
__snake_case : Optional[int] = TimesformerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Tuple = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Any = TimesformerForVideoClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
__snake_case : Optional[int] = model(__magic_name__ )
# verify the logits shape
__snake_case : Dict = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Tuple = config_and_inputs
__snake_case : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( __lowercase , __lowercase , unittest.TestCase ):
lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__: List[Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__: List[str] = False
lowercase__: List[Any] = False
lowercase__: Dict = False
lowercase__: int = False
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case : List[str] = TimesformerModelTester(self )
__snake_case : List[Any] = ConfigTester(
self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int:
"""simple docstring"""
__snake_case : Dict = copy.deepcopy(__magic_name__ )
if return_labels:
if model_class in get_values(__magic_name__ ):
__snake_case : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
return inputs_dict
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def lowercase__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def lowercase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : str = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) )
def lowercase__ ( self : Any ) -> int:
"""simple docstring"""
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(__magic_name__ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Union[str, Any] = [*signature.parameters.keys()]
__snake_case : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowercase__ ( self : str ) -> Dict:
"""simple docstring"""
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__magic_name__ )
@slow
def lowercase__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = TimesformerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowercase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : List[str] = self.model_tester.seq_length
__snake_case : Tuple = self.model_tester.num_frames
__snake_case : str = True
__snake_case : List[str] = False
__snake_case : Tuple = True
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : Dict = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Optional[int] = True
__snake_case : Any = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case : int = len(__magic_name__ )
# Check attention is always last and order is fine
__snake_case : Optional[int] = True
__snake_case : Optional[int] = True
__snake_case : Union[str, Any] = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
self.assertEqual(out_len + 1 , len(__magic_name__ ) )
__snake_case : List[Any] = outputs.attentions
self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def lowercase__ ( self : Dict ) -> int:
"""simple docstring"""
def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ):
__snake_case : str = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
__snake_case : int = outputs.hidden_states
__snake_case : Dict = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__magic_name__ ) , __magic_name__ )
__snake_case : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : str = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def _a ( ) -> List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__snake_case : List[Any] = np.load(_lowerCamelCase )
return list(_lowerCamelCase )
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__magic_name__ )
__snake_case : Union[str, Any] = self.default_image_processor
__snake_case : Dict = prepare_video()
__snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ )
# forward pass
with torch.no_grad():
__snake_case : Any = model(**__magic_name__ )
# verify the logits
__snake_case : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __magic_name__ )
__snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 13 | 1 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
__UpperCamelCase = "\nimport os\n"
__UpperCamelCase = "\ndef foo():\n import os\n return False\n"
__UpperCamelCase = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n"
__UpperCamelCase = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n"
__UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , _lowerCamelCase )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case : Union[str, Any] = os.path.join(_lowerCamelCase , """test_file.py""" )
with open(_lowerCamelCase , """w""" ) as _tmp_file:
_tmp_file.write(_lowerCamelCase )
__snake_case : List[str] = get_imports(_lowerCamelCase )
assert parsed_imports == ["os"]
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
__UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.