code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _A ( lowerCamelCase_ ): def __init__( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Dict = params __snake_case : Optional[Any] = np.array(_UpperCAmelCase ) __snake_case : Tuple = np.array([len(_UpperCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Optional[int] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return len(self.lengths ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.params.max_model_input_size __snake_case : List[str] = self.lengths > max_len logger.info(f'''Splitting {sum(_UpperCAmelCase )} too long sequences.''' ) def divide_chunks(__magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): return [l[i : i + n] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase )] __snake_case : Any = [] __snake_case : Optional[Any] = [] if self.params.mlm: __snake_case , __snake_case : Dict = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __snake_case , __snake_case : Optional[Any] = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __snake_case : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __snake_case : List[str] = np.insert(_UpperCAmelCase , 0 , _UpperCAmelCase ) if sub_s[-1] != sep_id: __snake_case : Tuple = np.insert(_UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) assert len(_UpperCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCAmelCase ) new_tok_ids.extend(_UpperCAmelCase ) new_lengths.extend([len(_UpperCAmelCase ) for l in sub_seqs] ) __snake_case : str = np.array(_UpperCAmelCase ) __snake_case : Tuple = np.array(_UpperCAmelCase ) def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : List[Any] = len(self ) __snake_case : Tuple = self.lengths > 11 __snake_case : int = self.token_ids[indices] __snake_case : Dict = self.lengths[indices] __snake_case : Optional[int] = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __snake_case : int = self.params.special_tok_ids["""unk_token"""] __snake_case : Union[str, Any] = len(self ) __snake_case : int = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __snake_case : str = (unk_occs / self.lengths) < 0.5 __snake_case : List[str] = self.token_ids[indices] __snake_case : Optional[int] = self.lengths[indices] __snake_case : Tuple = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowercase__ ( self : int , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [t[0] for t in batch] __snake_case : str = [t[1] for t in batch] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) # Max for paddings __snake_case : Optional[int] = max(_UpperCAmelCase ) # Pad token ids if self.params.mlm: __snake_case : int = self.params.special_tok_ids["""pad_token"""] else: __snake_case : str = self.params.special_tok_ids["""unk_token"""] __snake_case : str = [list(t.astype(_UpperCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCAmelCase ) assert all(len(_UpperCAmelCase ) == max_seq_len_ for t in tk_ ) __snake_case : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) __snake_case : List[Any] = torch.tensor(_UpperCAmelCase ) # (bs) return tk_t, lg_t
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( _a ): def __init__( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=None ) -> Dict: """simple docstring""" super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) __snake_case : Dict = None def lowercase__ ( self : str , __magic_name__ : int ) -> str: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : Union[str, Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[Any] = str(distributed_port + 1 ) __snake_case : List[str] = dist.new_group(ranks=__lowerCamelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=torch.floataa ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : List[Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __lowerCamelCase ) return ifname def lowercase__ ( self : Optional[int] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple: """simple docstring""" if not dist.is_initialized(): __snake_case : List[str] = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training __snake_case : List[Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic __snake_case : str = question_hidden_states.shape[0] __snake_case : Tuple = [] __snake_case : int = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size __snake_case : Dict = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) __snake_case : int = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) __snake_case : Optional[Any] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) __snake_case : Dict = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) __snake_case : Tuple = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : str = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
def _a ( _lowerCamelCase ) -> str: """simple docstring""" return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def _a ( _lowerCamelCase ) -> bytes: """simple docstring""" if (len(a__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid:\nData does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __snake_case : Any = os.path.abspath(_lowerCamelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) __snake_case : Optional[Any] = convert_pytorch_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __snake_case : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) return flax_state_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(_lowerCamelCase ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __snake_case : Dict = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __snake_case : Dict = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __snake_case : Union[str, Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __snake_case : Tuple = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __snake_case : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __snake_case : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __snake_case : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __snake_case : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __snake_case : str = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __snake_case : List[str] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __snake_case : List[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __snake_case : Union[str, Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __snake_case : str = pt_tuple_key[-2] + "_v" if name is not None: __snake_case : Union[str, Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __snake_case : List[str] = flax_model.params["params"] else: __snake_case : Dict = flax_model.params __snake_case : List[str] = flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case : str = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_lowerCamelCase ) __snake_case : str = {} __snake_case : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __snake_case : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __snake_case : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : int = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case : Any = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary __snake_case : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __snake_case : str = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __snake_case : Union[str, Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __snake_case : str = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" import torch # Load the index __snake_case : Any = {} for shard_file in shard_filenames: # load using msgpack utils __snake_case : Union[str, Any] = torch.load(_lowerCamelCase ) __snake_case : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case : List[Any] = flax_model.params["params"] __snake_case : Optional[int] = flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __snake_case : int = flax_model.params __snake_case : List[str] = flatten_dict(_lowerCamelCase ) __snake_case : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __snake_case : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __snake_case : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : int = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case : Dict = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary __snake_case : List[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __snake_case : Dict = jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: __snake_case : Any = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __snake_case : Optional[Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __snake_case : str = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Tuple = os.path.abspath(_lowerCamelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class __snake_case : Union[str, Any] = getattr(_lowerCamelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase , """rb""" ) as state_f: try: __snake_case : List[str] = from_bytes(_lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __snake_case : Any = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) __snake_case : Union[str, Any] = flatten_dict(_lowerCamelCase ) __snake_case : List[str] = pt_model.state_dict() __snake_case : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __snake_case : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __snake_case : Optional[Any] = [] __snake_case : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case : Tuple = flax_key_tuple[0] == pt_model.base_model_prefix __snake_case : Dict = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer __snake_case : int = flax_key_tuple[:-1] + ("weight",) __snake_case : int = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer __snake_case : Any = flax_key_tuple[:-1] + ("weight",) __snake_case : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case : Optional[int] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __snake_case : Dict = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: __snake_case : int = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: __snake_case : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __snake_case : Optional[int] = ".".join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __snake_case : List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __snake_case : int = key.split(""".""" ) __snake_case : int = None if key_components[-3::2] == ["parametrizations", "original0"]: __snake_case : Union[str, Any] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: __snake_case : Optional[Any] = key_components[-2] + "_v" if name is not None: __snake_case : List[Any] = key_components[:-3] + [name] __snake_case : List[Any] = ".".join(_lowerCamelCase ) __snake_case : List[Any] = key if flax_key in special_pt_names: __snake_case : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __snake_case : Union[str, Any] = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor __snake_case : List[Any] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list __snake_case : int = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(_lowerCamelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class _A ( __lowercase ): lowercase__: Any = '''informer''' lowercase__: int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] = None , __magic_name__ : Tuple = None , __magic_name__ : Optional[Any] = "student_t" , __magic_name__ : Tuple = "nll" , __magic_name__ : Dict = 1 , __magic_name__ : int = None , __magic_name__ : Any = "mean" , __magic_name__ : Any = 0 , __magic_name__ : Optional[int] = 0 , __magic_name__ : Union[str, Any] = 0 , __magic_name__ : List[str] = 0 , __magic_name__ : Any = None , __magic_name__ : Any = None , __magic_name__ : Optional[int] = 64 , __magic_name__ : List[Any] = 32 , __magic_name__ : Dict = 32 , __magic_name__ : int = 2 , __magic_name__ : Any = 2 , __magic_name__ : Any = 2 , __magic_name__ : str = 2 , __magic_name__ : Union[str, Any] = True , __magic_name__ : Tuple = "gelu" , __magic_name__ : List[str] = 0.05 , __magic_name__ : Dict = 0.1 , __magic_name__ : int = 0.1 , __magic_name__ : Union[str, Any] = 0.1 , __magic_name__ : Tuple = 0.1 , __magic_name__ : List[Any] = 1_00 , __magic_name__ : str = 0.02 , __magic_name__ : str=True , __magic_name__ : str = "prob" , __magic_name__ : Optional[int] = 5 , __magic_name__ : Optional[int] = True , **__magic_name__ : Any , ) -> Dict: """simple docstring""" __snake_case : List[Any] = prediction_length __snake_case : Dict = context_length or prediction_length __snake_case : Optional[int] = distribution_output __snake_case : List[str] = loss __snake_case : Any = input_size __snake_case : Dict = num_time_features __snake_case : Union[str, Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __snake_case : Dict = scaling __snake_case : List[Any] = num_dynamic_real_features __snake_case : Optional[int] = num_static_real_features __snake_case : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __snake_case : Tuple = cardinality else: __snake_case : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __snake_case : Optional[int] = embedding_dimension else: __snake_case : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case : Optional[int] = num_parallel_samples # Transformer architecture configuration __snake_case : Dict = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case : int = d_model __snake_case : List[Any] = encoder_attention_heads __snake_case : Any = decoder_attention_heads __snake_case : Union[str, Any] = encoder_ffn_dim __snake_case : List[Any] = decoder_ffn_dim __snake_case : Union[str, Any] = encoder_layers __snake_case : Union[str, Any] = decoder_layers __snake_case : Tuple = dropout __snake_case : Tuple = attention_dropout __snake_case : List[Any] = activation_dropout __snake_case : Any = encoder_layerdrop __snake_case : Optional[int] = decoder_layerdrop __snake_case : List[Any] = activation_function __snake_case : Union[str, Any] = init_std __snake_case : List[str] = use_cache # Informer __snake_case : Tuple = attention_type __snake_case : Union[str, Any] = sampling_factor __snake_case : List[Any] = distil super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCamelCase = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __UpperCamelCase = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __UpperCamelCase = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Any ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] = 1 , __magic_name__ : Optional[int] = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__magic_name__ , hypotheses=__magic_name__ , min_len=__magic_name__ , max_len=__magic_name__ ) }
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase__: List[str] = "convnextv2" def __init__( self : List[Any] , __magic_name__ : Any=3 , __magic_name__ : List[str]=4 , __magic_name__ : List[str]=4 , __magic_name__ : List[str]=None , __magic_name__ : Any=None , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=1E-12 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Dict=2_24 , __magic_name__ : Tuple=None , __magic_name__ : Union[str, Any]=None , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" super().__init__(**_snake_case ) __snake_case : List[Any] = num_channels __snake_case : Optional[int] = patch_size __snake_case : Optional[Any] = num_stages __snake_case : Any = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes __snake_case : Union[str, Any] = [3, 3, 9, 3] if depths is None else depths __snake_case : Union[str, Any] = hidden_act __snake_case : List[str] = initializer_range __snake_case : int = layer_norm_eps __snake_case : str = drop_path_rate __snake_case : Union[str, Any] = image_size __snake_case : Optional[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __snake_case : Dict = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names )
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _A ( __lowercase ): lowercase__: Dict = '''speech_to_text_2''' lowercase__: List[Any] = ['''past_key_values'''] lowercase__: int = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : str , __magic_name__ : Tuple=1_00_00 , __magic_name__ : Any=6 , __magic_name__ : int=20_48 , __magic_name__ : Optional[Any]=4 , __magic_name__ : int=0.0 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]="relu" , __magic_name__ : str=2_56 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Tuple=2 , __magic_name__ : int=10_24 , **__magic_name__ : Tuple , ) -> Tuple: """simple docstring""" __snake_case : List[Any] = vocab_size __snake_case : Optional[Any] = d_model __snake_case : Tuple = decoder_ffn_dim __snake_case : Optional[int] = decoder_layers __snake_case : Union[str, Any] = decoder_attention_heads __snake_case : List[Any] = dropout __snake_case : Optional[Any] = attention_dropout __snake_case : List[Any] = activation_dropout __snake_case : Any = activation_function __snake_case : List[str] = init_std __snake_case : int = decoder_layerdrop __snake_case : str = use_cache __snake_case : Optional[int] = decoder_layers __snake_case : Any = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : Optional[Any] = max_target_positions super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __UpperCamelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCamelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' __UpperCamelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> int: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" __snake_case : int = len(references[0] ) if any(len(__magic_name__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __snake_case : List[Any] = [[refs[i] for refs in references] for i in range(__magic_name__ )] __snake_case : Optional[int] = TER( normalized=__magic_name__ , no_punct=__magic_name__ , asian_support=__magic_name__ , case_sensitive=__magic_name__ , ) __snake_case : Union[str, Any] = sb_ter.corpus_score(__magic_name__ , __magic_name__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __UpperCamelCase = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __UpperCamelCase = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class _A ( lowerCamelCase__ ): lowercase__: Optional[Any] = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: str = PRETRAINED_INIT_CONFIGURATION lowercase__: Dict = RoFormerTokenizer def __init__( self : Tuple , __magic_name__ : Dict=None , __magic_name__ : Any=None , __magic_name__ : List[str]=True , __magic_name__ : Dict="[UNK]" , __magic_name__ : Optional[Any]="[SEP]" , __magic_name__ : int="[PAD]" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=None , **__magic_name__ : Dict , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) __snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __magic_name__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __magic_name__ ) != strip_accents ): __snake_case : Dict = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = do_lower_case __snake_case : int = strip_accents __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : Optional[Any] = do_lower_case def __getstate__( self : Any ) -> List[str]: """simple docstring""" __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : Tuple , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : Dict = d __snake_case : Optional[int] = self.__dict__["_tokenizer"].get_vocab() __snake_case : int = PreTokenizer.custom(JiebaPreTokenizer(__magic_name__ ) ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : List[str]=None ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> Any: """simple docstring""" __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> int: """simple docstring""" __snake_case : str = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None , __magic_name__ : Dict=False , **__magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = BertPreTokenizer() return super().save_pretrained(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
__UpperCamelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _A : def __init__( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int]=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[Any]=99 , __magic_name__ : Any=32 , __magic_name__ : Dict=2 , __magic_name__ : List[str]=4 , __magic_name__ : str=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : int=0.02 , __magic_name__ : Any=3 , __magic_name__ : Any=4 , __magic_name__ : Dict=None , ) -> List[Any]: """simple docstring""" __snake_case : Tuple = parent __snake_case : Optional[int] = 13 __snake_case : Optional[int] = 7 __snake_case : str = True __snake_case : Dict = True __snake_case : int = True __snake_case : Dict = True __snake_case : List[str] = 99 __snake_case : Optional[Any] = 32 __snake_case : str = 2 __snake_case : Optional[Any] = 4 __snake_case : Union[str, Any] = 37 __snake_case : Optional[Any] = """gelu""" __snake_case : Any = 0.1 __snake_case : List[str] = 0.1 __snake_case : List[Any] = 5_12 __snake_case : Union[str, Any] = 16 __snake_case : Any = 2 __snake_case : Dict = 0.02 __snake_case : Union[str, Any] = 3 __snake_case : Any = 4 __snake_case : List[Any] = None def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[Any] = None __snake_case : Any = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = TFRoFormerModel(config=lowercase_ ) __snake_case : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = [input_ids, input_mask] __snake_case : List[str] = model(lowercase_ ) __snake_case : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> str: """simple docstring""" __snake_case : List[Any] = True __snake_case : int = TFRoFormerForCausalLM(config=lowercase_ ) __snake_case : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : int = model(lowercase_ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> str: """simple docstring""" __snake_case : str = TFRoFormerForMaskedLM(config=lowercase_ ) __snake_case : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[Any] = TFRoFormerForSequenceClassification(config=lowercase_ ) __snake_case : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = self.num_choices __snake_case : int = TFRoFormerForMultipleChoice(config=lowercase_ ) __snake_case : Tuple = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) __snake_case : List[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : Optional[int] = TFRoFormerForTokenClassification(config=lowercase_ ) __snake_case : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = TFRoFormerForQuestionAnswering(config=lowercase_ ) __snake_case : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowercase__: List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase__: Union[str, Any] = False lowercase__: str = False def lowercase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = TFRoFormerModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : str = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(lowercase_ ) @require_tf class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : List[Any] = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case : str = model(lowercase_ )[0] # TODO Replace vocab size __snake_case : Dict = 5_00_00 __snake_case : Any = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __snake_case : str = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 ) @require_tf class _A ( unittest.TestCase ): lowercase__: List[str] = 1e-4 def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : str = tf.constant([[4, 10]] ) __snake_case : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __snake_case : Tuple = emba(input_ids.shape ) __snake_case : List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __snake_case : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class _A ( unittest.TestCase ): lowercase__: int = 1e-4 def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : str = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __snake_case : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __snake_case : Optional[Any] = embed_positions([2, 16, 7_68] )[None, None, :, :] __snake_case , __snake_case : str = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) __snake_case : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __snake_case : Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) __snake_case : Tuple = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __snake_case : int = 1 if upper_limit > 0: __snake_case : Optional[Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __UpperCamelCase = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __UpperCamelCase = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __UpperCamelCase = { '''facebook/s2t-small-librispeech-asr''': 1024, } __UpperCamelCase = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __UpperCamelCase = {'''mustc''': MUSTC_LANGS} class _A ( a_ ): lowercase__: Optional[Any] = VOCAB_FILES_NAMES lowercase__: Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__: Dict = MAX_MODEL_INPUT_SIZES lowercase__: Any = ['''input_ids''', '''attention_mask'''] lowercase__: Dict = [] def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : Dict="<pad>" , __magic_name__ : Any="<unk>" , __magic_name__ : Optional[int]=False , __magic_name__ : Optional[Any]=False , __magic_name__ : Any=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ) -> List[Any]: """simple docstring""" __snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , do_upper_case=lowercase_ , do_lower_case=lowercase_ , tgt_lang=lowercase_ , lang_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) __snake_case : Optional[int] = do_upper_case __snake_case : Dict = do_lower_case __snake_case : Dict = load_json(lowercase_ ) __snake_case : Union[str, Any] = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : List[str] = load_spm(lowercase_ , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : Optional[Any] = LANGUAGES[lang_codes] __snake_case : int = [f'''<lang:{lang}>''' for lang in self.langs] __snake_case : Tuple = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} __snake_case : List[str] = self.lang_tokens __snake_case : Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[Any] = {} @property def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" return len(self.encoder ) @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return self._tgt_lang @tgt_lang.setter def lowercase__ ( self : str , __magic_name__ : int ) -> Dict: """simple docstring""" __snake_case : List[str] = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase_ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : List[Any] = self.lang_code_to_id[tgt_lang] __snake_case : Union[str, Any] = [lang_code_id] def lowercase__ ( self : Dict , __magic_name__ : str ) -> List[Any]: """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.encoder.get(lowercase_ , self.encoder[self.unk_token] ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : int ) -> int: """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token ) def lowercase__ ( self : str , __magic_name__ : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = [] __snake_case : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Optional[int] = self.sp_model.decode(lowercase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : int = [] else: current_sub_tokens.append(lowercase_ ) __snake_case : Dict = self.sp_model.decode(lowercase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : List[Any]=None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> Optional[Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) __snake_case : int = [1] * len(self.prefix_tokens ) __snake_case : List[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self : List[str] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : List[str] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = Path(lowercase_ ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __snake_case : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowercase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase_ ) elif not os.path.isfile(self.spm_file ): with open(lowercase_ , """wb""" ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (str(lowercase_ ), str(lowercase_ )) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**A_ ) spm.Load(str(A_ ) ) return spm def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" with open(A_ , """r""" ) as f: return json.load(A_ ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" with open(A_ , """w""" ) as f: json.dump(A_ , A_ , indent=2 )
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=16 , __magic_name__ : Dict=13 , __magic_name__ : Optional[Any]=7 , __magic_name__ : Optional[Any]=14 , __magic_name__ : Optional[int]=10 , __magic_name__ : int=19 , __magic_name__ : Tuple=5 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=True , __magic_name__ : int=16 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Any=4 , __magic_name__ : str=4 , __magic_name__ : Tuple="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[Any]=[1, 2, 3, 4, 5] , __magic_name__ : Optional[int]=25 , __magic_name__ : List[Any]=5 , ) -> Tuple: """simple docstring""" __snake_case : List[Any] = d_model __snake_case : str = parent __snake_case : int = batch_size __snake_case : Optional[Any] = prediction_length __snake_case : Tuple = context_length __snake_case : Tuple = cardinality __snake_case : List[Any] = num_time_features __snake_case : Optional[int] = lags_sequence __snake_case : List[str] = embedding_dimension __snake_case : List[str] = is_training __snake_case : Any = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = context_length __snake_case : Optional[int] = prediction_length + label_length __snake_case : Tuple = label_length __snake_case : List[Any] = moving_average __snake_case : Union[str, Any] = autocorrelation_factor def lowercase__ ( self : Any ) -> int: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase__ ( self : Tuple , __magic_name__ : Any ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = config.context_length + max(config.lags_sequence ) __snake_case : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) __snake_case : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : int = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : List[Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : int = self.get_config() __snake_case : Any = self.prepare_autoformer_inputs_dict(__A ) return config, inputs_dict def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = AutoformerModel(config=__A ).to(__A ).eval() __snake_case : Optional[int] = model(**__A ) __snake_case : str = outputs.encoder_last_hidden_state __snake_case : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = model.get_encoder() encoder.save_pretrained(__A ) __snake_case : Tuple = AutoformerEncoder.from_pretrained(__A ).to(__A ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = model.create_network_inputs(**__A ) __snake_case , __snake_case : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=__A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = model.get_decoder() decoder.save_pretrained(__A ) __snake_case : Optional[int] = AutoformerDecoder.from_pretrained(__A ).to(__A ) __snake_case : str = decoder( trend=__A , inputs_embeds=__A , encoder_hidden_states=__A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__: Tuple = (AutoformerForPrediction,) if is_torch_available() else () lowercase__: str = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowercase__: Optional[int] = False lowercase__: List[str] = False lowercase__: Union[str, Any] = False lowercase__: int = False lowercase__: str = False lowercase__: Optional[Any] = False def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : str = AutoformerModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__A , has_text_modality=__A ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) __snake_case , __snake_case : Any = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = inspect.signature(getattr(__A , """forward""" ) ) # The main input is the name of the argument after `self` __snake_case : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __A ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__A ) __snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : Optional[int] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__A )] , __A ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True __snake_case : Optional[int] = getattr(self.model_tester , """seq_length""" , __A ) __snake_case : Any = getattr(self.model_tester , """decoder_seq_length""" , __A ) __snake_case : str = getattr(self.model_tester , """encoder_seq_length""" , __A ) __snake_case : Any = getattr(self.model_tester , """d_model""" , __A ) __snake_case : List[str] = getattr(self.model_tester , """num_attention_heads""" , __A ) __snake_case : Dict = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : Any = True __snake_case : Dict = False __snake_case : Optional[int] = True __snake_case : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__A , __A ) ) __snake_case : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : List[str] = True __snake_case : str = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__A , __A ) ) __snake_case : Tuple = outputs.encoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : Any = len(__A ) __snake_case : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__A , __A ) # decoder attentions __snake_case : int = outputs.decoder_attentions self.assertIsInstance(__A , (list, tuple) ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : Any = outputs.cross_attentions self.assertIsInstance(__A , (list, tuple) ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : str = True __snake_case : Tuple = True __snake_case : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 2 , len(__A ) ) __snake_case : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _a ( _lowerCamelCase : Union[str, Any]="train-batch.pt" ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowercase , repo_type="""dataset""" ) __snake_case : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) return batch @require_torch @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Optional[Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Union[str, Any] = prepare_batch() with torch.no_grad(): __snake_case : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __snake_case : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __A ) __snake_case : Any = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3] , __A , atol=__A ) ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Dict = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : List[str] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __snake_case : Union[str, Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __A ) __snake_case : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3] , __A , atol=__A ) ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Tuple = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __snake_case : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __A ) __snake_case : Optional[int] = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=__A ) __snake_case : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __A , rtol=1E-1 ) )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[Any] = 0 def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : int = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = Path(lowerCamelCase_ ) / """preprocessor_config.json""" __snake_case : Any = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Dict = Path(lowerCamelCase_ ) / """preprocessor_config.json""" __snake_case : Any = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) __snake_case : Any = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : Any = Path(lowerCamelCase_ ) / """preprocessor_config.json""" __snake_case : List[Any] = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) __snake_case : Tuple = CLIPImageProcessor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) __snake_case : Any = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved __snake_case : int = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Tuple = Path(lowerCamelCase_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) __snake_case : Dict = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): __snake_case : List[str] = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __snake_case : List[Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __snake_case : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" with self.assertRaises(lowerCamelCase_ ): __snake_case : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): __snake_case : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) __snake_case : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) __snake_case : Tuple = AutoImageProcessor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(lowerCamelCase_ ) / """preprocessor_config.json""" __snake_case : int = Path(lowerCamelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCamelCase_ , """w""" ) ) __snake_case : Tuple = CustomImageProcessor.from_pretrained(lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase_ ) __snake_case : List[Any] = AutoImageProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" class _A ( __lowercase ): lowercase__: str = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoImageProcessor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local __snake_case : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __snake_case : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __snake_case : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _A ( lowerCamelCase__ , unittest.TestCase ): lowercase__: Any = RoFormerTokenizer lowercase__: Optional[int] = RoFormerTokenizerFast lowercase__: List[Any] = True lowercase__: List[Any] = True def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" super().setUp() def lowercase__ ( self : List[str] , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **snake_case__ ) def lowercase__ ( self : Dict , **__magic_name__ : Optional[Any] ) -> List[str]: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **snake_case__ ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = '''永和服装饰品有限公司,今天天气非常好''' __snake_case : List[Any] = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : List[Any] = self.get_tokenizer() __snake_case : List[str] = self.get_chinese_input_output_texts() __snake_case : Tuple = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) __snake_case : str = tokens + [tokenizer.unk_token] __snake_case : str = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Union[str, Any] = self.get_chinese_input_output_texts() __snake_case : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) __snake_case : Optional[Any] = tokens + [tokenizer.unk_token] __snake_case : str = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : str ) -> int: """simple docstring""" pass
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _A ( unittest.TestCase ): def __init__( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Any=7 , __magic_name__ : List[str]=3 , __magic_name__ : Tuple=30 , __magic_name__ : Dict=4_00 , __magic_name__ : int=True , __magic_name__ : int=None , __magic_name__ : int=True , __magic_name__ : Tuple=1 / 2_55 , __magic_name__ : Any=True , __magic_name__ : Any=[0.5, 0.5, 0.5] , __magic_name__ : Dict=[0.5, 0.5, 0.5] , __magic_name__ : List[str]=True , ) -> Any: """simple docstring""" __snake_case : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} __snake_case : Optional[int] = parent __snake_case : Any = batch_size __snake_case : Any = num_channels __snake_case : List[str] = min_resolution __snake_case : Any = max_resolution __snake_case : Optional[Any] = do_resize __snake_case : List[Any] = size __snake_case : int = do_rescale __snake_case : Any = rescale_factor __snake_case : Union[str, Any] = do_normalize __snake_case : List[str] = image_mean __snake_case : Dict = image_std __snake_case : Any = do_pad def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int=False ) -> Any: """simple docstring""" if not batched: __snake_case : Dict = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __snake_case : Optional[int] = image.size else: __snake_case : str = image.shape[1], image.shape[2] if w < h: __snake_case : Any = int(self.size["""shortest_edge"""] * h / w ) __snake_case : Optional[int] = self.size["shortest_edge"] elif w > h: __snake_case : List[str] = self.size["shortest_edge"] __snake_case : int = int(self.size["""shortest_edge"""] * w / h ) else: __snake_case : Dict = self.size["shortest_edge"] __snake_case : Union[str, Any] = self.size["shortest_edge"] else: __snake_case : Union[str, Any] = [] for image in image_inputs: __snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : Dict = max(lowerCAmelCase__ , key=lambda __magic_name__ : item[0] )[0] __snake_case : Any = max(lowerCAmelCase__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( a__ , unittest.TestCase ): lowercase__: Dict = DetrImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : Optional[int] = DetrImageProcessingTester(self ) @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_pad""" ) ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" __snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) __snake_case : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) __snake_case : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[str] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __snake_case : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __snake_case : Union[str, Any] = json.loads(f.read() ) __snake_case : int = {"image_id": 3_97_69, "annotations": target} # encode them __snake_case : Optional[Any] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __snake_case : Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __snake_case : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) __snake_case : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __snake_case : Optional[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes __snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) __snake_case : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __snake_case : Optional[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels __snake_case : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify orig_size __snake_case : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size __snake_case : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) ) @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __snake_case : Optional[int] = json.loads(f.read() ) __snake_case : List[str] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} __snake_case : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __snake_case : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __snake_case : Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __snake_case : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase__ ) __snake_case : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area __snake_case : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase__ ) ) # verify boxes __snake_case : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase__ ) __snake_case : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id __snake_case : Optional[int] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase__ ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase__ ) ) # verify class_labels __snake_case : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase__ ) ) # verify masks __snake_case : Any = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase__ ) # verify orig_size __snake_case : Union[str, Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase__ ) ) # verify size __snake_case : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase__ ) )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Dict = {} __snake_case : Union[str, Any] = tokenizer(example["""content"""] , truncation=_lowerCamelCase )["""input_ids"""] __snake_case : Union[str, Any] = len(example["""content"""] ) / len(output["""input_ids"""] ) return output __UpperCamelCase = HfArgumentParser(PretokenizationArguments) __UpperCamelCase = parser.parse_args() if args.num_workers is None: __UpperCamelCase = multiprocessing.cpu_count() __UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCamelCase = time.time() __UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") __UpperCamelCase = time.time() __UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") __UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" if not head: return True # split the list to two parts __snake_case , __snake_case : str = head.next, head while fast and fast.next: __snake_case : List[str] = fast.next.next __snake_case : str = slow.next __snake_case : Dict = slow.next __snake_case : List[Any] = None # Don't forget here! But forget still works! # reverse the second part __snake_case : Dict = None while second: __snake_case : List[str] = second.next __snake_case : List[str] = node __snake_case : Any = second __snake_case : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __snake_case : int = node.next __snake_case : int = head.next return True def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __snake_case : Tuple = head while fast and fast.next: __snake_case , __snake_case : Any = fast.next.next, slow.next # 2. Push the second half into the stack __snake_case : Any = [slow.val] while slow.next: __snake_case : Any = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __snake_case : str = cur.next return True def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" if not head or not head.next: return True __snake_case : Tuple = {} __snake_case : Any = 0 while head: if head.val in d: d[head.val].append(snake_case__ ) else: __snake_case : Any = [pos] __snake_case : int = head.next pos += 1 __snake_case : List[str] = pos - 1 __snake_case : str = 0 for v in d.values(): if len(snake_case__ ) % 2 != 0: middle += 1 else: __snake_case : Optional[Any] = 0 for i in range(0 , len(snake_case__ ) ): if v[i] + v[len(snake_case__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __UpperCamelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = None # source code of `config_class` __snake_case : Dict = inspect.getsource(lowerCAmelCase__ ) __snake_case : Optional[Any] = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): __snake_case : Any = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __snake_case : Optional[Any] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __snake_case : Optional[int] = ckpt_name break return checkpoint def _a ( ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __snake_case : int = get_checkpoint_from_config_class(lowerCAmelCase__ ) __snake_case : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __snake_case : Union[str, Any] = """\n""".join(sorted(lowerCAmelCase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCamelCase = 250004 __UpperCamelCase = 250020 @require_sentencepiece @require_tokenizers class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase__: Union[str, Any] = MBartaaTokenizer lowercase__: Union[str, Any] = MBartaaTokenizerFast lowercase__: Any = True lowercase__: List[Any] = True def lowercase__ ( self : Dict ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : Union[str, Any] = MBartaaTokenizer(UpperCamelCase__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = '''<s>''' __snake_case : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCamelCase__ ) , 10_54 ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : Any = MBartaaTokenizer(UpperCamelCase__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCamelCase__ ) __snake_case : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __snake_case : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case : Tuple = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Any = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __snake_case : Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __snake_case : Union[str, Any] = tempfile.mkdtemp() __snake_case : str = tokenizer_r.save_pretrained(UpperCamelCase__ ) __snake_case : Tuple = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __snake_case : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way __snake_case : List[str] = tokenizer_r.from_pretrained(UpperCamelCase__ ) __snake_case : Tuple = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=True __snake_case : Union[str, Any] = tempfile.mkdtemp() __snake_case : Optional[Any] = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) __snake_case : str = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way __snake_case : Optional[int] = tokenizer_r.from_pretrained(UpperCamelCase__ ) __snake_case : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=False __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Union[str, Any] = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) __snake_case : Any = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case : Optional[Any] = tokenizer_r.from_pretrained(UpperCamelCase__ ) __snake_case : Tuple = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): lowercase__: Optional[int] = '''facebook/mbart-large-50-one-to-many-mmt''' lowercase__: str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowercase__: Any = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowercase__: Dict = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def lowercase__ ( cls : Optional[int] ) -> Dict: """simple docstring""" __snake_case : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __snake_case : List[str] = 1 return cls def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 25_00_38 ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) __snake_case : Optional[Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __snake_case : str = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) __snake_case : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , UpperCamelCase__ ) __snake_case : List[str] = 10 __snake_case : str = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0] self.assertEqual(ids[0] , UpperCamelCase__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_53, 25_00_01] ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = tempfile.mkdtemp() __snake_case : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase__ ) __snake_case : Optional[Any] = MBartaaTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ ) @require_torch def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors="""pt""" ) __snake_case : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __snake_case : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __snake_case : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : str = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors="""pt""" ) __snake_case : int = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10 , return_tensors="""pt""" ) __snake_case : List[Any] = targets['''input_ids'''] __snake_case : List[Any] = shift_tokens_right(UpperCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : int = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # en_XX, A, test, EOS """input_ids""": [[25_00_04, 62, 30_34, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _a ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = filter(lambda _lowerCamelCase : p.requires_grad , model.parameters() ) __snake_case : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase = logging.getLogger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if metric == "rouge2": __snake_case : int = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __snake_case : Optional[Any] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __snake_case : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) __snake_case : Dict = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class _A ( pl.Callback ): def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : str = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase__ ) @rank_zero_only def lowercase__ ( self : Dict , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule , __magic_name__ : str , __magic_name__ : Tuple=True ) -> None: """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) __snake_case : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __snake_case : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __snake_case : Union[str, Any] = od / """test_results.txt""" __snake_case : Union[str, Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __snake_case : Optional[int] = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' __snake_case : Any = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , """a+""" ) as writer: for key in sorted(UpperCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __snake_case : Optional[int] = metrics[key] if isinstance(UpperCamelCase__ , torch.Tensor ): __snake_case : List[Any] = val.item() __snake_case : Optional[int] = f'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase__ ) if not save_generations: return if "preds" in metrics: __snake_case : Optional[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(UpperCamelCase__ ) @rank_zero_only def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" try: __snake_case : int = pl_module.model.model.num_parameters() except AttributeError: __snake_case : Optional[Any] = pl_module.model.num_parameters() __snake_case : Optional[Any] = count_trainable_parameters(UpperCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def lowercase__ ( self : Dict , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> Union[str, Any]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase__ , UpperCamelCase__ , """test""" ) @rank_zero_only def lowercase__ ( self : Optional[Any] , __magic_name__ : pl.Trainer , __magic_name__ : Any ) -> Any: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = 'Hello world! cécé herlolip' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : str = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout __snake_case : Tuple = roberta.model.encoder.sentence_encoder __snake_case : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __snake_case : List[str] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , snake_case_ ) __snake_case : str = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings __snake_case : Dict = roberta_sent_encoder.embed_tokens.weight __snake_case : Any = roberta_sent_encoder.embed_positions.weight __snake_case : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __snake_case : Dict = roberta_sent_encoder.layer_norm.weight __snake_case : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __snake_case : int = model.roberta.encoder.layer[i] __snake_case : List[str] = roberta_sent_encoder.layers[i] __snake_case : int = layer.attention __snake_case : int = roberta_layer.self_attn_layer_norm.weight __snake_case : Union[str, Any] = roberta_layer.self_attn_layer_norm.bias # self attention __snake_case : List[str] = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __snake_case : str = roberta_layer.self_attn.q_proj.weight __snake_case : int = roberta_layer.self_attn.q_proj.bias __snake_case : Any = roberta_layer.self_attn.k_proj.weight __snake_case : Optional[Any] = roberta_layer.self_attn.k_proj.bias __snake_case : Dict = roberta_layer.self_attn.v_proj.weight __snake_case : str = roberta_layer.self_attn.v_proj.bias # self-attention output __snake_case : List[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __snake_case : List[Any] = roberta_layer.self_attn.out_proj.weight __snake_case : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __snake_case : Optional[Any] = roberta_layer.final_layer_norm.weight __snake_case : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate __snake_case : List[Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case : Optional[Any] = roberta_layer.fca.weight __snake_case : Optional[int] = roberta_layer.fca.bias # output __snake_case : Any = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case : Tuple = roberta_layer.fca.weight __snake_case : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: __snake_case : Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.weight __snake_case : int = roberta.model.classification_heads["""mnli"""].dense.bias __snake_case : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight __snake_case : List[str] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __snake_case : str = roberta.model.encoder.lm_head.dense.weight __snake_case : Optional[int] = roberta.model.encoder.lm_head.dense.bias __snake_case : Optional[int] = roberta.model.encoder.lm_head.layer_norm.weight __snake_case : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias __snake_case : List[str] = roberta.model.encoder.lm_head.weight __snake_case : str = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __snake_case : List[str] = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 __snake_case : int = model(snake_case_ )[0] if classification_head: __snake_case : Tuple = roberta.model.classification_heads["""mnli"""](roberta.extract_features(snake_case_ ) ) else: __snake_case : str = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) __snake_case : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 __snake_case : Dict = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
def _a ( _lowerCamelCase ) -> int: """simple docstring""" if isinstance(a__ , a__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(a__ , a__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __snake_case : Any = False if num < 0: __snake_case : Optional[Any] = True __snake_case : Union[str, Any] = -num __snake_case : str = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a__ ) for e in binary ) return "0b" + "".join(str(a__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase = logging.get_logger(__name__) # General docstring __UpperCamelCase = "RegNetConfig" # Base docstring __UpperCamelCase = "facebook/regnet-y-040" __UpperCamelCase = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase = "facebook/regnet-y-040" __UpperCamelCase = "tabby, tabby cat" __UpperCamelCase = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _A ( nn.Module ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , ) -> Tuple: """simple docstring""" super().__init__() __snake_case : Optional[Any] = nn.Convad( _A , _A , kernel_size=_A , stride=_A , padding=kernel_size // 2 , groups=_A , bias=_A , ) __snake_case : str = nn.BatchNormad(_A ) __snake_case : Any = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase__ ( self : List[str] , __magic_name__ : str ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = self.convolution(_A ) __snake_case : Dict = self.normalization(_A ) __snake_case : Any = self.activation(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig ) -> str: """simple docstring""" super().__init__() __snake_case : Optional[Any] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __snake_case : Optional[int] = config.num_channels def lowercase__ ( self : List[str] , __magic_name__ : str ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __snake_case : int = self.embedder(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 ) -> Tuple: """simple docstring""" super().__init__() __snake_case : str = nn.Convad(_A , _A , kernel_size=1 , stride=_A , bias=_A ) __snake_case : Tuple = nn.BatchNormad(_A ) def lowercase__ ( self : str , __magic_name__ : Tensor ) -> Tensor: """simple docstring""" __snake_case : Optional[Any] = self.convolution(_A ) __snake_case : List[str] = self.normalization(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" super().__init__() __snake_case : Dict = nn.AdaptiveAvgPoolad((1, 1) ) __snake_case : List[str] = nn.Sequential( nn.Convad(_A , _A , kernel_size=1 ) , nn.ReLU() , nn.Convad(_A , _A , kernel_size=1 ) , nn.Sigmoid() , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = self.pooler(_A ) __snake_case : Dict = self.attention(_A ) __snake_case : Optional[Any] = hidden_state * attention return hidden_state class _A ( nn.Module ): def __init__( self : Any , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __snake_case : List[str] = in_channels != out_channels or stride != 1 __snake_case : Tuple = max(1 , out_channels // config.groups_width ) __snake_case : Union[str, Any] = ( RegNetShortCut(_A , _A , stride=_A ) if should_apply_shortcut else nn.Identity() ) __snake_case : Any = nn.Sequential( RegNetConvLayer(_A , _A , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , stride=_A , groups=_A , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , kernel_size=1 , activation=_A ) , ) __snake_case : int = ACTaFN[config.hidden_act] def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hidden_state __snake_case : str = self.layer(_A ) __snake_case : str = self.shortcut(_A ) hidden_state += residual __snake_case : Tuple = self.activation(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : Dict , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 ) -> Union[str, Any]: """simple docstring""" super().__init__() __snake_case : Optional[int] = in_channels != out_channels or stride != 1 __snake_case : int = max(1 , out_channels // config.groups_width ) __snake_case : Dict = ( RegNetShortCut(_A , _A , stride=_A ) if should_apply_shortcut else nn.Identity() ) __snake_case : List[str] = nn.Sequential( RegNetConvLayer(_A , _A , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , stride=_A , groups=_A , activation=config.hidden_act ) , RegNetSELayer(_A , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_A , _A , kernel_size=1 , activation=_A ) , ) __snake_case : Dict = ACTaFN[config.hidden_act] def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : str = hidden_state __snake_case : Any = self.layer(_A ) __snake_case : Any = self.shortcut(_A ) hidden_state += residual __snake_case : Optional[Any] = self.activation(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : str , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __snake_case : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _A , _A , _A , stride=_A , ) , *[layer(_A , _A , _A ) for _ in range(depth - 1 )] , ) def lowercase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> int: """simple docstring""" __snake_case : Dict = self.layers(_A ) return hidden_state class _A ( nn.Module ): def __init__( self : Dict , __magic_name__ : RegNetConfig ) -> int: """simple docstring""" super().__init__() __snake_case : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_A , config.depths[1:] ): self.stages.append(RegNetStage(_A , _A , _A , depth=_A ) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __snake_case : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : Optional[int] = hidden_states + (hidden_state,) __snake_case : Tuple = stage_module(_A ) if output_hidden_states: __snake_case : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A , hidden_states=_A ) class _A ( snake_case_ ): lowercase__: int = RegNetConfig lowercase__: Optional[int] = "regnet" lowercase__: List[str] = "pixel_values" lowercase__: Dict = True def lowercase__ ( self : List[Any] , __magic_name__ : Dict ) -> Dict: """simple docstring""" if isinstance(_A , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(_A , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int=False ) -> Dict: """simple docstring""" if isinstance(_A , _A ): __snake_case : List[str] = value __UpperCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _A ( snake_case_ ): def __init__( self : Optional[Any] , __magic_name__ : str ) -> int: """simple docstring""" super().__init__(_A ) __snake_case : Any = config __snake_case : List[str] = RegNetEmbeddings(_A ) __snake_case : str = RegNetEncoder(_A ) __snake_case : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __snake_case : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = self.embedder(_A ) __snake_case : int = self.encoder( _A , output_hidden_states=_A , return_dict=_A ) __snake_case : Optional[Any] = encoder_outputs[0] __snake_case : Dict = self.pooler(_A ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _A ( snake_case_ ): def __init__( self : Optional[int] , __magic_name__ : int ) -> Dict: """simple docstring""" super().__init__(_A ) __snake_case : List[Any] = config.num_labels __snake_case : Optional[Any] = RegNetModel(_A ) # classification head __snake_case : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[torch.LongTensor] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __snake_case : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Union[str, Any] = self.regnet(_A , output_hidden_states=_A , return_dict=_A ) __snake_case : str = outputs.pooler_output if return_dict else outputs[1] __snake_case : str = self.classifier(_A ) __snake_case : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case : Union[str, Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case : int = 'single_label_classification' else: __snake_case : Dict = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case : List[str] = MSELoss() if self.num_labels == 1: __snake_case : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case : Union[str, Any] = loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case : Optional[int] = BCEWithLogitsLoss() __snake_case : List[Any] = loss_fct(_A , _A ) if not return_dict: __snake_case : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A , logits=_A , hidden_states=outputs.hidden_states )
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _a ( ) -> str: """simple docstring""" __snake_case : str = 10 __snake_case : List[str] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) __snake_case : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(A__ ) ), } , features=A__ , ) return dataset @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=A__ ) return filename # FILE_CONTENT + files __UpperCamelCase = "\\n Text data.\n Second line of data." @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" __snake_case : Union[str, Any] = FILE_CONTENT with open(A__ , """w""" ) as f: f.write(A__ ) return filename @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" import bza __snake_case : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" __snake_case : Tuple = bytes(A__ , """utf-8""" ) with bza.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" import gzip __snake_case : Dict = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) __snake_case : int = bytes(A__ , """utf-8""" ) with gzip.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" __snake_case : Optional[int] = bytes(A__ , """utf-8""" ) with lza.frame.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(A__ , """w""" ) as archive: archive.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" import tarfile __snake_case : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" import lzma __snake_case : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" __snake_case : Dict = bytes(A__ , """utf-8""" ) with lzma.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" import zipfile __snake_case : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" __snake_case : Tuple = bytes(A__ , """utf-8""" ) with zstd.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = tmp_path_factory.mktemp("""data""" ) / """file.xml""" __snake_case : Tuple = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(A__ , """w""" ) as f: f.write(A__ ) return filename __UpperCamelCase = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] __UpperCamelCase = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] __UpperCamelCase = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } __UpperCamelCase = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] __UpperCamelCase = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="""session""" ) def _a ( ) -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = datasets.Dataset.from_dict(A__ ) __snake_case : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(A__ ) ) as con: __snake_case : Any = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(A__ , """w""" , newline="""""" ) as f: __snake_case : Union[str, Any] = csv.DictWriter(A__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(A__ , """w""" , newline="""""" ) as f: __snake_case : Optional[int] = csv.DictWriter(A__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" import bza __snake_case : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(A__ , """rb""" ) as f: __snake_case : Optional[int] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(A__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) __snake_case : str = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(A__ , """wb""" ) as f: __snake_case : Optional[int] = pq.ParquetWriter(A__ , schema=A__ ) __snake_case : str = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(A__ ) )] for k in DATA[0]} , schema=A__ ) writer.write_table(A__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __snake_case : List[str] = {"""data""": DATA} with open(A__ , """w""" ) as f: json.dump(A__ , A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __snake_case : Tuple = {"""data""": DATA_DICT_OF_LISTS} with open(A__ , """w""" ) as f: json.dump(A__ , A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" import gzip __snake_case : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(A__ , """rb""" ) as orig_file: with gzip.open(A__ , """wb""" ) as zipped_file: zipped_file.writelines(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" import gzip __snake_case : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(A__ , """rb""" ) as orig_file: with gzip.open(A__ , """wb""" ) as zipped_file: zipped_file.writelines(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""nested""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.basename(A__ ) ) f.add(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.join("""nested""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[Any] = ["""0""", """1""", """2""", """3"""] __snake_case : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = ["""0""", """1""", """2""", """3"""] __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = ["""0""", """1""", """2""", """3"""] __snake_case : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(A__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) __snake_case : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def _a ( ) -> int: """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _a ( ) -> Dict: """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : int = x __snake_case : Dict = y for step in range(lowerCAmelCase__ ): # noqa: B007 __snake_case : Optional[int] = a * a - b * b + x __snake_case : Union[str, Any] = 2 * a * b + y __snake_case : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _a ( _lowerCamelCase ) -> str: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def _a ( _lowerCamelCase = 800 , _lowerCamelCase = 600 , _lowerCamelCase = -0.6 , _lowerCamelCase = 0 , _lowerCamelCase = 3.2 , _lowerCamelCase = 50 , _lowerCamelCase = True , ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = Image.new("""RGB""" , (image_width, image_height) ) __snake_case : Any = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates __snake_case : List[Any] = figure_width / image_width * image_height __snake_case : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width __snake_case : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __snake_case : Dict = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __snake_case : Union[str, Any] = get_color_coded_rgb(lowerCAmelCase__ ) else: __snake_case : List[Any] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __UpperCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _A ( __lowercase ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """num_attention_heads""" ) ) class _A : def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : str=13 , __magic_name__ : int=64 , __magic_name__ : str=3 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Any=[1_28, 2_56, 3_84] , __magic_name__ : List[Any]=[4, 6, 8] , __magic_name__ : Union[str, Any]=[2, 3, 4] , __magic_name__ : Union[str, Any]=[16, 16, 16] , __magic_name__ : Optional[Any]=0 , __magic_name__ : List[str]=[2, 2, 2] , __magic_name__ : int=[2, 2, 2] , __magic_name__ : List[str]=0.02 , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : Dict=2 , ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : str = batch_size __snake_case : Optional[Any] = image_size __snake_case : Dict = num_channels __snake_case : int = kernel_size __snake_case : List[Any] = stride __snake_case : Union[str, Any] = padding __snake_case : List[str] = hidden_sizes __snake_case : int = num_attention_heads __snake_case : List[Any] = depths __snake_case : Tuple = key_dim __snake_case : List[str] = drop_path_rate __snake_case : Tuple = patch_size __snake_case : List[str] = attention_ratio __snake_case : Tuple = mlp_ratio __snake_case : int = initializer_range __snake_case : Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __snake_case : List[Any] = is_training __snake_case : List[Any] = use_labels __snake_case : Dict = num_labels __snake_case : str = initializer_range def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = LevitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ ) __snake_case : Optional[Any] = (self.image_size, self.image_size) __snake_case , __snake_case : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): __snake_case : Dict = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __snake_case : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : int = self.num_labels __snake_case : Optional[int] = LevitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__: List[Any] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__: Optional[int] = False lowercase__: str = False lowercase__: List[Any] = False lowercase__: Optional[int] = False lowercase__: Tuple = False def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : str = LevitModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def lowercase__ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[Any] ): __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Tuple = (self.model_tester.image_size, self.model_tester.image_size) __snake_case , __snake_case : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): __snake_case : List[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __snake_case : Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any]=False ) -> Tuple: """simple docstring""" __snake_case : Dict = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__magic_name__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __snake_case : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = model(**__magic_name__ ).loss loss.backward() def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case : int = False __snake_case : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__magic_name__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __snake_case : Any = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() __snake_case : List[str] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Dict = model(**__magic_name__ ).loss loss.backward() def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__magic_name__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): __snake_case : Tuple = problem_type["""title"""] __snake_case : Optional[int] = problem_type["""num_labels"""] __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if problem_type["num_labels"] > 1: __snake_case : Dict = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __snake_case : str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__magic_name__ ) as warning_list: __snake_case : List[Any] = model(**__magic_name__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = LevitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __magic_name__ ) __snake_case : Optional[int] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : Union[str, Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Optional[int] = model(**__magic_name__ ) # verify the logits __snake_case : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : lowercase__: str lowercase__: List[str] lowercase__: Optional[List[str]] @dataclass class _A : lowercase__: List[int] lowercase__: List[int] lowercase__: Optional[List[int]] = None lowercase__: Optional[List[int]] = None class _A ( lowercase_ ): lowercase__: str = "train" lowercase__: Optional[int] = "dev" lowercase__: Union[str, Any] = "test" class _A : @staticmethod def lowercase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def lowercase__ ( __magic_name__ : Any ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def lowercase__ ( __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str="[SEP]" , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=0 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Dict=-1_00 , __magic_name__ : Any=0 , __magic_name__ : Any=True , ) -> List[InputFeatures]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(a__ )} __snake_case : Union[str, Any] = [] for ex_index, example in enumerate(a__ ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , a__ , len(a__ ) ) __snake_case : Dict = [] __snake_case : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): __snake_case : List[str] = tokenizer.tokenize(a__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(a__ ) > 0: tokens.extend(a__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(a__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __snake_case : Optional[int] = tokenizer.num_special_tokens_to_add() if len(a__ ) > max_seq_length - special_tokens_count: __snake_case : Tuple = tokens[: (max_seq_length - special_tokens_count)] __snake_case : Dict = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __snake_case : Dict = [sequence_a_segment_id] * len(a__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __snake_case : Any = [cls_token] + tokens __snake_case : Union[str, Any] = [pad_token_label_id] + label_ids __snake_case : List[str] = [cls_token_segment_id] + segment_ids __snake_case : Tuple = tokenizer.convert_tokens_to_ids(a__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __snake_case : Any = [1 if mask_padding_with_zero else 0] * len(a__ ) # Zero-pad up to the sequence length. __snake_case : Tuple = max_seq_length - len(a__ ) if pad_on_left: __snake_case : Optional[Any] = ([pad_token] * padding_length) + input_ids __snake_case : List[Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __snake_case : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids __snake_case : Tuple = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(a__ ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(a__ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(a__ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(a__ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(a__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : int = None features.append( InputFeatures( input_ids=a__ , attention_mask=a__ , token_type_ids=a__ , label_ids=a__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _A ( lowercase_ ): lowercase__: List[InputFeatures] lowercase__: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] = None , __magic_name__ : Any=False , __magic_name__ : Tuple = Split.train , ) -> str: """simple docstring""" __snake_case : Dict = os.path.join( a__ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(a__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : Optional[Any] = cached_features_file + """.lock""" with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __snake_case : str = torch.load(a__ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __snake_case : Dict = token_classification_task.read_examples_from_file(a__ , a__ ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : Any = token_classification_task.convert_examples_to_features( a__ , a__ , a__ , a__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , a__ ) def __len__( self : Dict ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , __magic_name__ : List[str] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class _A : lowercase__: List[InputFeatures] lowercase__: int = -100 def __init__( self : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Dict = None , __magic_name__ : Dict=False , __magic_name__ : Optional[Any] = Split.train , ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = token_classification_task.read_examples_from_file(a__ , a__ ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : str = token_classification_task.convert_examples_to_features( a__ , a__ , a__ , a__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : Optional[int] = tf.data.Dataset.from_generator( a__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __snake_case : Optional[int] = tf.data.Dataset.from_generator( a__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : str ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Dict , __magic_name__ : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i]
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _a ( _lowerCamelCase ) -> int: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _a ( ) -> str: """simple docstring""" with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : List[str] = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = [1, 2] __snake_case : Dict = {"""a""": 1, """b""": 2} __snake_case : int = {"""a""": [1, 2], """b""": [3, 4]} __snake_case : Tuple = {"""a""": {"""1""": 1}, """b""": 2} __snake_case : Dict = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __snake_case : Tuple = [2, 3] __snake_case : int = {"""a""": 2, """b""": 3} __snake_case : str = {"""a""": [2, 3], """b""": [4, 5]} __snake_case : str = {"""a""": {"""1""": 2}, """b""": 3} __snake_case : Union[str, Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def _a ( _lowerCamelCase ) -> Any: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ) -> Tuple: """simple docstring""" __snake_case : Any = 2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def _a ( _lowerCamelCase = 200_0000 ) -> Optional[int]: """simple docstring""" return sum(takewhile(lambda _lowerCamelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: Any = """swin2sr""" lowercase__: Optional[Any] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[int] , __magic_name__ : str=64 , __magic_name__ : Optional[Any]=1 , __magic_name__ : str=3 , __magic_name__ : Optional[int]=1_80 , __magic_name__ : Any=[6, 6, 6, 6, 6, 6] , __magic_name__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , __magic_name__ : List[str]=8 , __magic_name__ : Union[str, Any]=2.0 , __magic_name__ : str=True , __magic_name__ : List[str]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : str="gelu" , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=0.02 , __magic_name__ : List[str]=1E-5 , __magic_name__ : str=2 , __magic_name__ : List[Any]=1.0 , __magic_name__ : Tuple="1conv" , __magic_name__ : Dict="pixelshuffle" , **__magic_name__ : Optional[int] , ) -> Optional[int]: """simple docstring""" super().__init__(**_A ) __snake_case : Optional[int] = image_size __snake_case : Tuple = patch_size __snake_case : List[Any] = num_channels __snake_case : Tuple = embed_dim __snake_case : Optional[int] = depths __snake_case : Dict = len(_A ) __snake_case : List[str] = num_heads __snake_case : Optional[Any] = window_size __snake_case : Optional[Any] = mlp_ratio __snake_case : Dict = qkv_bias __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Dict = drop_path_rate __snake_case : str = hidden_act __snake_case : Union[str, Any] = use_absolute_embeddings __snake_case : Any = layer_norm_eps __snake_case : List[str] = initializer_range __snake_case : str = upscale __snake_case : Any = img_range __snake_case : List[str] = resi_connection __snake_case : Optional[Any] = upsampler
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' from random import randint, random def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = 5 , ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = [[-1] * number_of_cells] # Create a highway without any car __snake_case : Optional[int] = 0 __snake_case : int = max(_A , 0 ) while i < number_of_cells: __snake_case : Optional[Any] = ( randint(0 , _A ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Dict = 0 __snake_case : Optional[int] = highway_now[car_index + 1 :] for cell in range(len(_A ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_A , -1 ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Any = len(_A ) # Beforce calculations, the highway is empty __snake_case : Dict = [-1] * number_of_cells for car_index in range(_A ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __snake_case : Tuple = min(highway_now[car_index] + 1 , _A ) # Number of empty cell before the next car __snake_case : Optional[Any] = get_distance(_A , _A ) - 1 # We can't have the car causing an accident __snake_case : List[Any] = min(next_highway[car_index] , _A ) if random() < probability: # Randomly, a driver will slow down __snake_case : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = len(highway[0] ) for i in range(_A ): __snake_case : Optional[int] = update(highway[i] , _A , _A ) __snake_case : List[str] = [-1] * number_of_cells for car_index in range(_A ): __snake_case : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __snake_case : List[Any] = (car_index + speed) % number_of_cells # Commit the change of position __snake_case : Optional[Any] = speed highway.append(_A ) return highway if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _A ( SCREAMING_SNAKE_CASE__ ): lowercase__: int = '''vivit''' def __init__( self : Optional[Any] , __magic_name__ : List[Any]=2_24 , __magic_name__ : Dict=32 , __magic_name__ : Dict=[2, 16, 16] , __magic_name__ : List[str]=3 , __magic_name__ : Union[str, Any]=7_68 , __magic_name__ : Tuple=12 , __magic_name__ : Dict=12 , __magic_name__ : str=30_72 , __magic_name__ : Tuple="gelu_fast" , __magic_name__ : Tuple=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=1E-06 , __magic_name__ : Dict=True , **__magic_name__ : str , ) -> Any: """simple docstring""" __snake_case : Tuple = hidden_size __snake_case : int = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : Any = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Union[str, Any] = initializer_range __snake_case : int = layer_norm_eps __snake_case : str = image_size __snake_case : Optional[int] = num_frames __snake_case : Tuple = tubelet_size __snake_case : Dict = num_channels __snake_case : List[str] = qkv_bias super().__init__(**A__ )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __a ): def __init__( self : Optional[int] , __magic_name__ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> List[str]: """simple docstring""" super().__init__() __snake_case : Optional[Any] = nn.ModuleList(a__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : Union[torch.Tensor, float, int] , __magic_name__ : torch.Tensor , __magic_name__ : List[torch.tensor] , __magic_name__ : List[float] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[Dict[str, Any]] = None , __magic_name__ : bool = False , __magic_name__ : bool = True , ) -> int: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a__ , a__ , self.nets ) ): __snake_case , __snake_case : Union[str, Any] = controlnet( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) # merge samples if i == 0: __snake_case , __snake_case : int = down_samples, mid_sample else: __snake_case : Union[str, Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a__ , a__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase__ ( self : List[str] , __magic_name__ : Union[str, os.PathLike] , __magic_name__ : bool = True , __magic_name__ : Callable = None , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , ) -> Tuple: """simple docstring""" __snake_case : Any = 0 __snake_case : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( a__ , is_main_process=a__ , save_function=a__ , safe_serialization=a__ , variant=a__ , ) idx += 1 __snake_case : List[Any] = model_path_to_save + f'''_{idx}''' @classmethod def lowercase__ ( cls : Optional[int] , __magic_name__ : Optional[Union[str, os.PathLike]] , **__magic_name__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = 0 __snake_case : Any = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __snake_case : Optional[Any] = pretrained_model_path while os.path.isdir(a__ ): __snake_case : Optional[int] = ControlNetModel.from_pretrained(a__ , **a__ ) controlnets.append(a__ ) idx += 1 __snake_case : Any = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(a__ )} controlnets loaded from {pretrained_model_path}.''' ) if len(a__ ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(a__ )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(a__ )
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=_lowerCamelCase ) __snake_case : Any = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_lowerCamelCase ) EnvironmentCommand.register_subcommand(_lowerCamelCase ) TestCommand.register_subcommand(_lowerCamelCase ) RunBeamCommand.register_subcommand(_lowerCamelCase ) DummyDataCommand.register_subcommand(_lowerCamelCase ) # Parse args __snake_case : str = parser.parse_known_args() if not hasattr(_lowerCamelCase , """func""" ): parser.print_help() exit(1 ) __snake_case : str = parse_unknown_args(_lowerCamelCase ) # Run __snake_case : int = args.func(_lowerCamelCase , **_lowerCamelCase ) service.run() if __name__ == "__main__": main()
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case , __snake_case : Any = analyze_text(__snake_case ) __snake_case : List[str] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __snake_case : Optional[int] = sum(single_char_strings.values() ) # one length string __snake_case : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __snake_case : Optional[int] = single_char_strings[ch] __snake_case : Optional[int] = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __snake_case : Optional[Any] = sum(two_char_strings.values() ) __snake_case : Union[str, Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __snake_case : Optional[int] = cha + cha if sequence in two_char_strings: __snake_case : Tuple = two_char_strings[sequence] __snake_case : List[str] = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _a ( _lowerCamelCase ) -> tuple[dict, dict]: """simple docstring""" __snake_case : Any = Counter() # type: ignore __snake_case : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _a ( ) -> Dict: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( _lowerCamelCase = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(UpperCAmelCase__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) __snake_case : str = QuantumRegister(UpperCAmelCase__ , """qr""" ) __snake_case : int = ClassicalRegister(UpperCAmelCase__ , """cr""" ) __snake_case : Optional[Any] = QuantumCircuit(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Optional[Any] = number_of_qubits for i in range(UpperCAmelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCAmelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCAmelCase__ , UpperCAmelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCAmelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCAmelCase__ , UpperCAmelCase__ ) # simulate with 10000 shots __snake_case : List[str] = Aer.get_backend("""qasm_simulator""" ) __snake_case : Tuple = execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1_0000 ) return job.result().get_counts(UpperCAmelCase__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __UpperCamelCase = True except (ImportError, AttributeError): __UpperCamelCase = object def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]: """simple docstring""" pass __UpperCamelCase = False __UpperCamelCase = logging.get_logger("transformers-cli/serving") def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE_ , args.host , args.port , args.workers ) class _A ( snake_case__ ): lowercase__: dict class _A ( snake_case__ ): lowercase__: List[str] lowercase__: Optional[List[int]] class _A ( snake_case__ ): lowercase__: str class _A ( snake_case__ ): lowercase__: Any class _A ( snake_case__ ): @staticmethod def lowercase__ ( __magic_name__ : Any ) -> int: """simple docstring""" __snake_case : List[str] = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=_A , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=_A , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=_A , default=88_88 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=_A , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=_A , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=_A , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=_A , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=_A , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=_A ) def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = pipeline __snake_case : Optional[int] = host __snake_case : str = port __snake_case : Union[str, Any] = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f'''Serving model over {host}:{port}''' ) __snake_case : Any = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=_A , response_class=_A , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=_A , response_class=_A , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=_A , response_class=_A , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=_A , response_class=_A , methods=["""POST"""] , ), ] , timeout=6_00 , ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase__ ( self : Tuple , __magic_name__ : int = Body(_A , embed=_A ) , __magic_name__ : str = Body(_A , embed=_A ) ) -> str: """simple docstring""" try: __snake_case : List[str] = self._pipeline.tokenizer.tokenize(_A ) if return_ids: __snake_case : Optional[int] = self._pipeline.tokenizer.convert_tokens_to_ids(_A ) return ServeTokenizeResult(tokens=_A , tokens_ids=_A ) else: return ServeTokenizeResult(tokens=_A ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(_A )} ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] = Body(_A , embed=_A ) , __magic_name__ : Optional[Any] = Body(_A , embed=_A ) , __magic_name__ : Optional[Any] = Body(_A , embed=_A ) , ) -> Any: """simple docstring""" try: __snake_case : Optional[int] = self._pipeline.tokenizer.decode(_A , _A , _A ) return ServeDeTokenizeResult(model="""""" , text=_A ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(_A )} ) async def lowercase__ ( self : str , __magic_name__ : Optional[Any]=Body(_A , embed=_A ) ) -> Union[str, Any]: """simple docstring""" if len(_A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __snake_case : List[Any] = self._pipeline(_A ) return ServeForwardResult(output=_A ) except Exception as e: raise HTTPException(5_00 , {"""error""": str(_A )} )
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _A ( a__ ): def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """depth_multiplier""" ) ) class _A : def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Dict=13 , __magic_name__ : Any=3 , __magic_name__ : Tuple=32 , __magic_name__ : List[Any]=0.25 , __magic_name__ : int=8 , __magic_name__ : Union[str, Any]=8 , __magic_name__ : Any=6 , __magic_name__ : Optional[Any]=32 , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]="relu6" , __magic_name__ : Any=12_80 , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : str=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" __snake_case : str = parent __snake_case : str = batch_size __snake_case : List[str] = num_channels __snake_case : Any = image_size __snake_case : Union[str, Any] = depth_multiplier __snake_case : Optional[int] = depth_divisible_by __snake_case : Dict = min_depth __snake_case : Dict = expand_ratio __snake_case : Optional[Any] = tf_padding __snake_case : str = output_stride __snake_case : Union[str, Any] = first_layer_is_expansion __snake_case : Optional[Any] = finegrained_output __snake_case : Optional[int] = hidden_act __snake_case : Tuple = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __snake_case : Dict = classifier_dropout_prob __snake_case : Tuple = use_labels __snake_case : Optional[int] = is_training __snake_case : List[Any] = num_labels __snake_case : Union[str, Any] = initializer_range __snake_case : int = scope def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : str = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowercase__ ( self : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.num_labels __snake_case : Any = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case : List[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = self.num_labels __snake_case : Optional[int] = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case : str = config_and_inputs __snake_case : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _A ( a__ , a__ , unittest.TestCase ): lowercase__: Dict = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowercase__: int = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__: Dict = False lowercase__: Union[str, Any] = False lowercase__: Union[str, Any] = False lowercase__: Dict = False def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = MobileNetVaModelTester(self ) __snake_case : str = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) __snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : str ): __snake_case : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case : List[Any] = outputs.hidden_states __snake_case : List[str] = 16 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _a ( ) -> Dict: """simple docstring""" __snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : Any = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(SCREAMING_SNAKE_CASE_ ) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case : List[Any] = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case : Optional[Any] = torch.tensor([0.2445, -1.1993, 0.1905] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __snake_case : Tuple = model.to(SCREAMING_SNAKE_CASE_ ) __snake_case : Union[str, Any] = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __snake_case : Dict = prepare_img() __snake_case : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**SCREAMING_SNAKE_CASE_ ) __snake_case : Union[str, Any] = outputs.logits # verify the logits __snake_case : Tuple = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case : Dict = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class _A ( _SCREAMING_SNAKE_CASE ): lowercase__: List[str] = '''canine''' def __init__( self : Tuple , __magic_name__ : List[str]=7_68 , __magic_name__ : Dict=12 , __magic_name__ : Optional[int]=12 , __magic_name__ : Optional[int]=30_72 , __magic_name__ : Any="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : Any=1_63_84 , __magic_name__ : List[Any]=16 , __magic_name__ : Dict=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Tuple=0 , __magic_name__ : int=0xE000 , __magic_name__ : List[Any]=0xE001 , __magic_name__ : Any=4 , __magic_name__ : Optional[int]=4 , __magic_name__ : Union[str, Any]=8 , __magic_name__ : List[str]=1_63_84 , __magic_name__ : Tuple=1_28 , **__magic_name__ : List[Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Optional[int] = max_position_embeddings __snake_case : str = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Any = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Dict = initializer_range __snake_case : Tuple = type_vocab_size __snake_case : Optional[Any] = layer_norm_eps # Character config: __snake_case : Optional[int] = downsampling_rate __snake_case : Any = upsampling_kernel_size __snake_case : List[str] = num_hash_functions __snake_case : List[Any] = num_hash_buckets __snake_case : Dict = local_transformer_stride
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class _A : def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any] = None ) -> str: """simple docstring""" __snake_case : Optional[int] = value __snake_case : Node | None = None # Added in order to delete a node easier __snake_case : Node | None = None __snake_case : Node | None = None def __repr__( self : Dict ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class _A : def __init__( self : Dict , __magic_name__ : List[Any] = None ) -> Optional[int]: """simple docstring""" __snake_case : str = root def __str__( self : Optional[int] ) -> str: """simple docstring""" return str(self.root ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[str] ) -> None: """simple docstring""" if new_children is not None: # reset its kids __snake_case : str = node.parent if node.parent is not None: # reset its parent if self.is_right(__lowercase ): # If it is the right children __snake_case : Optional[int] = new_children else: __snake_case : Tuple = new_children else: __snake_case : Union[str, Any] = new_children def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowercase__ ( self : Dict ) -> bool: """simple docstring""" return self.root is None def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> None: """simple docstring""" __snake_case : Tuple = Node(__lowercase ) # create a new Node if self.empty(): # if Tree is empty __snake_case : Optional[int] = new_node # set its root else: # Tree is not empty __snake_case : Any = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __snake_case : Optional[Any] = new_node # We insert the new node in a leaf break else: __snake_case : Any = parent_node.left else: if parent_node.right is None: __snake_case : str = new_node break else: __snake_case : Any = parent_node.right __snake_case : Tuple = parent_node def lowercase__ ( self : Tuple , *__magic_name__ : Any ) -> None: """simple docstring""" for value in values: self.__insert(__lowercase ) def lowercase__ ( self : List[Any] , __magic_name__ : Dict ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: __snake_case : List[str] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __snake_case : List[Any] = node.left if value < node.value else node.right return node def lowercase__ ( self : Tuple , __magic_name__ : int = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None __snake_case : Union[str, Any] = self.root if not self.empty(): while node.right is not None: __snake_case : str = node.right return node def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] = None ) -> Node | None: """simple docstring""" if node is None: __snake_case : Optional[Any] = self.root if self.root is None: return None if not self.empty(): __snake_case : Dict = self.root while node.left is not None: __snake_case : List[str] = node.left return node def lowercase__ ( self : Dict , __magic_name__ : str ) -> None: """simple docstring""" __snake_case : List[Any] = self.search(__lowercase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__lowercase , __lowercase ) elif node.left is None: # Has only right children self.__reassign_nodes(__lowercase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__lowercase , node.left ) else: __snake_case : List[Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __snake_case : Tuple = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase__ ( self : int , __magic_name__ : List[str] ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase__ ( self : str , __magic_name__ : int=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[Any] ) -> None: """simple docstring""" if node: self.inorder(__lowercase , node.left ) arr.append(node.value ) self.inorder(__lowercase , node.right ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : list[int] = [] self.inorder(__lowercase , __lowercase ) # append all values to list using inorder traversal return arr[k - 1] def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = [] if curr_node is not None: __snake_case : List[str] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _a ( ) -> str: """simple docstring""" __snake_case : Optional[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __snake_case : Union[str, Any] = BinarySearchTree() for i in testlist: t.insert(_lowerCamelCase ) # Prints all the elements of the list in order traversal print(_lowerCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn\'t exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn\'t exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(_lowerCamelCase ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = {'facebook/bart-base': BartForConditionalGeneration} __UpperCamelCase = {'facebook/bart-base': BartTokenizer} def _a ( ) -> str: """simple docstring""" __snake_case : Tuple = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=snake_case_ , default=snake_case_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=snake_case_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=snake_case_ , default=snake_case_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=snake_case_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , ) parser.add_argument( """--config_name""" , type=snake_case_ , default=snake_case_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=snake_case_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=snake_case_ , default=snake_case_ , help="""Where to store the final ONNX file.""" ) __snake_case : Dict = parser.parse_args() return args def _a ( _lowerCamelCase , _lowerCamelCase="cpu" ) -> Dict: """simple docstring""" __snake_case : str = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) __snake_case : Tuple = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = None __snake_case : Any = 0 return huggingface_model, tokenizer def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" model.eval() __snake_case : int = None __snake_case : List[Any] = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): __snake_case : Optional[Any] = """My friends are cool but they eat too many carbs.""" __snake_case : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) __snake_case : str = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=snake_case_ , ) logger.info("""Model exported to {}""".format(snake_case_ ) ) __snake_case : Any = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(snake_case_ ) ) __snake_case : Union[str, Any] = onnxruntime.InferenceSession(snake_case_ ) __snake_case : Optional[Any] = ort_sess.run( snake_case_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(snake_case_ ), """max_length""": np.array(snake_case_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _a ( ) -> int: """simple docstring""" __snake_case : List[Any] = parse_args() __snake_case : Optional[Any] = 5 __snake_case : Optional[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __snake_case : Optional[int] = torch.device(args.device ) __snake_case , __snake_case : Tuple = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(snake_case_ ) if args.max_length: __snake_case : List[str] = args.max_length if args.num_beams: __snake_case : Optional[Any] = args.num_beams if args.output_file_path: __snake_case : int = args.output_file_path else: __snake_case : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) -> str: """simple docstring""" if attention_mask is None: __snake_case : Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __snake_case : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __snake_case : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _A : def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[str]=13 , __magic_name__ : int=7 , __magic_name__ : Any=True , __magic_name__ : int=False , __magic_name__ : List[Any]=99 , __magic_name__ : Optional[int]=16 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Dict=4 , __magic_name__ : Dict=4 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Dict=32 , __magic_name__ : int=2 , __magic_name__ : str=1 , __magic_name__ : List[Any]=0 , __magic_name__ : List[str]=0.02 , ) -> Dict: """simple docstring""" __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = seq_length __snake_case : Any = is_training __snake_case : str = use_labels __snake_case : int = vocab_size __snake_case : Tuple = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Tuple = eos_token_id __snake_case : Tuple = pad_token_id __snake_case : Optional[int] = bos_token_id __snake_case : Optional[int] = initializer_range def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __snake_case : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __snake_case : Optional[int] = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __snake_case : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , ) __snake_case : str = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> int: """simple docstring""" __snake_case : List[Any] = 20 __snake_case : List[Any] = model_class_name(_UpperCAmelCase ) __snake_case : Any = model.encode(inputs_dict["""input_ids"""] ) __snake_case : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __snake_case : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __snake_case : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Tuple = model.decode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = 20 __snake_case : Dict = model_class_name(_UpperCAmelCase ) __snake_case : str = model.encode(inputs_dict["""input_ids"""] ) __snake_case : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __snake_case : Dict = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case : Any = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __snake_case : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Union[str, Any] = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) __snake_case : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class _A ( unittest.TestCase ): lowercase__: Union[str, Any] = 99 def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __snake_case : List[str] = input_ids.shape[0] __snake_case : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" __snake_case : Optional[Any] = self._get_config_and_data() __snake_case : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) __snake_case : str = lm_model(input_ids=_UpperCAmelCase ) __snake_case : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __snake_case : Dict = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) __snake_case : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __snake_case : List[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __snake_case : int = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) __snake_case : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __snake_case : Tuple = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __snake_case : Union[str, Any] = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() __snake_case : str = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _A ( _UpperCamelCase , unittest.TestCase , _UpperCamelCase ): lowercase__: Union[str, Any] = True lowercase__: Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowercase__: List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : List[Any] = FlaxBlenderbotSmallModelTester(self ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[int] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(__magic_name__ : List[Any] , __magic_name__ : List[str]=None , **__magic_name__ : str ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): __snake_case : str = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __snake_case : Tuple = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Union[str, Any] = model_class(_UpperCAmelCase ) __snake_case : List[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __snake_case : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): __snake_case : Union[str, Any] = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __snake_case : Dict = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: __snake_case : Dict = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __snake_case : Any = np.ones((1, 1) ) * model.config.eos_token_id __snake_case : List[str] = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _A ( __snake_case ): lowercase__: List[str] = """xlm-roberta""" def __init__( self : str , __magic_name__ : Optional[int]=3_05_22 , __magic_name__ : List[str]=7_68 , __magic_name__ : List[Any]=12 , __magic_name__ : List[str]=12 , __magic_name__ : int=30_72 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : int=2 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : str=1E-12 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : int=0 , __magic_name__ : Dict=2 , __magic_name__ : List[Any]="absolute" , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=None , **__magic_name__ : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __snake_case : str = vocab_size __snake_case : Dict = hidden_size __snake_case : Any = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : List[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : str = initializer_range __snake_case : List[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Tuple = use_cache __snake_case : Union[str, Any] = classifier_dropout class _A ( __snake_case ): @property def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _a ( _lowerCamelCase ) -> int: """simple docstring""" if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> str: """simple docstring""" pass def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" pass def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int=None , **__magic_name__ : Optional[int] ) -> Any: """simple docstring""" __snake_case : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__snake_case , __snake_case ) __snake_case : Union[str, Any] = TFVisionTextDualEncoderModel(__snake_case ) __snake_case : str = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase__ ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict=None , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.get_vision_text_model(__snake_case , __snake_case ) __snake_case : Dict = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case ) __snake_case : int = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Optional[Any]=None , **__magic_name__ : Optional[int] ) -> Any: """simple docstring""" __snake_case , __snake_case : str = self.get_vision_text_model(__snake_case , __snake_case ) __snake_case : List[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __snake_case : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__snake_case ) __snake_case : Tuple = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Union[str, Any]=None , **__magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.get_vision_text_model(__snake_case , __snake_case ) __snake_case : str = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case ) __snake_case : List[str] = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case ) __snake_case : str = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ) __snake_case : Tuple = TFVisionTextDualEncoderModel.from_pretrained(__snake_case ) __snake_case : Tuple = model(input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case ) __snake_case : Optional[Any] = after_output[0].numpy() __snake_case : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case , 1E-5 ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Tuple=None , **__magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.get_vision_text_model(__snake_case , __snake_case ) __snake_case : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case ) __snake_case : str = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case ) __snake_case : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Any = to_atuple(vision_model.config.image_size ) __snake_case : Optional[Any] = to_atuple(vision_model.config.patch_size ) __snake_case : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __snake_case : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __snake_case : Tuple = output.text_model_output.attentions self.assertEqual(len(__snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : float ) -> int: """simple docstring""" __snake_case : str = np.abs((a - b) ).max() self.assertLessEqual(__snake_case , __snake_case , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__snake_case ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__snake_case ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__snake_case ) def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : str = self.prepare_config_and_inputs() self.check_save_load(**__snake_case ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__snake_case ) @slow def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.get_pretrained_model_and_inputs() __snake_case : Optional[Any] = model_a(**__snake_case ) __snake_case : Optional[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__snake_case ) __snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(__snake_case ) __snake_case : List[str] = model_a(**__snake_case ) __snake_case : Any = after_outputs[0].numpy() __snake_case : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case , 1E-5 ) @require_tf class _A ( lowerCamelCase_ , unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __snake_case : int = 13 __snake_case : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Union[str, Any] = random_attention_mask([batch_size, 4] ) __snake_case : Optional[int] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" __snake_case : Any = TFViTModel(__snake_case , name="""vision_model""" ) __snake_case : Tuple = TFBertModel(__snake_case , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = TFViTModelTester(self ) __snake_case : int = TFBertModelTester(self ) __snake_case : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() __snake_case : str = bert_model_tester.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = vision_config_and_inputs ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( lowerCamelCase_ , unittest.TestCase ): def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __snake_case : Any = 13 __snake_case : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Dict = random_attention_mask([batch_size, 4] ) __snake_case : Optional[int] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict=None , **__magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.get_vision_text_model(__snake_case , __snake_case ) __snake_case : int = TFVisionTextDualEncoderModel(vision_model=__snake_case , text_model=__snake_case ) __snake_case : List[str] = model( input_ids=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , output_attentions=__snake_case ) __snake_case : List[str] = output.vision_model_output.attentions self.assertEqual(len(__snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __snake_case : List[str] = to_atuple(vision_model.config.image_size ) __snake_case : str = to_atuple(vision_model.config.patch_size ) __snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __snake_case : Optional[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __snake_case : Tuple = output.text_model_output.attentions self.assertEqual(len(__snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[str] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = TFDeiTModel(__snake_case , name="""vision_model""" ) __snake_case : Optional[int] = TFRobertaModel(__snake_case , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = TFDeiTModelTester(self ) __snake_case : str = TFRobertaModelTester(self ) __snake_case : Dict = vit_model_tester.prepare_config_and_inputs() __snake_case : Tuple = bert_model_tester.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : str = vision_config_and_inputs ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( lowerCamelCase_ , unittest.TestCase ): def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __snake_case : Optional[Any] = 13 __snake_case : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __snake_case : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __snake_case : Tuple = random_attention_mask([batch_size, 4] ) __snake_case : Any = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : str ) -> Optional[int]: """simple docstring""" __snake_case : int = TFCLIPVisionModel(__snake_case , name="""vision_model""" ) __snake_case : Dict = TFBertModel(__snake_case , name="""text_model""" ) return vision_model, text_model def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Dict = TFCLIPVisionModelTester(self ) __snake_case : Tuple = TFBertModelTester(self ) __snake_case : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() __snake_case : Dict = bert_model_tester.prepare_config_and_inputs() __snake_case , __snake_case : str = vision_config_and_inputs ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__snake_case ) __snake_case : List[str] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__snake_case , padding=__snake_case , return_tensors="""np""" ) __snake_case : Optional[Any] = model(**__snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __snake_case : Optional[int] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __snake_case , atol=1E-3 ) )
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class _A ( _SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : Any ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) def __call__( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __snake_case : Dict = 1 __snake_case : List[Any] = self.unet(A_ , A_ ).sample __snake_case : Optional[Any] = self.scheduler.step(A_ , A_ , A_ ).prev_sample __snake_case : Optional[Any] = scheduler_output - scheduler_output + torch.ones_like(A_ ) return result
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _A ( unittest.TestCase ): def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : str = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ ) __snake_case : str = -1 __snake_case : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ ) __snake_case : int = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : Union[str, Any] = TextStreamer(__magic_name__ ) model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ , streamer=__magic_name__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : Dict = cs.out[:-1] self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : str = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ ) __snake_case : Any = -1 __snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ ) __snake_case : Optional[Any] = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ ) __snake_case : Dict = tokenizer.decode(greedy_ids[0] ) __snake_case : List[Any] = TextIteratorStreamer(__magic_name__ ) __snake_case : Dict = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : List[str] = Thread(target=model.generate , kwargs=__magic_name__ ) thread.start() __snake_case : Dict = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ ) __snake_case : int = -1 __snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ ) __snake_case : Optional[int] = model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ ) __snake_case : Any = greedy_ids[:, input_ids.shape[1] :] __snake_case : Any = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __snake_case : str = TextStreamer(__magic_name__ , skip_prompt=__magic_name__ ) model.generate(__magic_name__ , max_new_tokens=10 , do_sample=__magic_name__ , streamer=__magic_name__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : str = cs.out[:-1] self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""distilgpt2""" ) __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(__magic_name__ ) __snake_case : Any = -1 __snake_case : Union[str, Any] = torch.ones((1, 5) , device=__magic_name__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case : Any = TextStreamer(__magic_name__ , skip_special_tokens=__magic_name__ ) model.generate(__magic_name__ , max_new_tokens=1 , do_sample=__magic_name__ , streamer=__magic_name__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case : List[Any] = cs.out[:-1] # Remove the final "\n" __snake_case : str = tokenizer(__magic_name__ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__magic_name__ ) __snake_case : Union[str, Any] = -1 __snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__magic_name__ ) __snake_case : str = TextIteratorStreamer(__magic_name__ , timeout=0.001 ) __snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __snake_case : int = Thread(target=model.generate , kwargs=__magic_name__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__magic_name__ ): __snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=3 , __magic_name__ : List[Any]=32 , __magic_name__ : int=3 , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Optional[int]=[10, 20, 30, 40] , __magic_name__ : Union[str, Any]=[1, 1, 2, 1] , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[str]="relu" , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = parent __snake_case : List[str] = batch_size __snake_case : Dict = image_size __snake_case : Tuple = num_channels __snake_case : int = embeddings_size __snake_case : Optional[int] = hidden_sizes __snake_case : Any = depths __snake_case : Optional[int] = is_training __snake_case : Optional[int] = use_labels __snake_case : Tuple = hidden_act __snake_case : Dict = num_labels __snake_case : int = scope __snake_case : Optional[int] = len(__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = RegNetModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : List[str] = self.num_labels __snake_case : List[str] = RegNetForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : Optional[int] = config_and_inputs __snake_case : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase__: Dict = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) lowercase__: List[Any] = False lowercase__: int = False lowercase__: Tuple = False lowercase__: Optional[int] = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = RegNetModelTester(self ) __snake_case : Optional[int] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(__magic_name__ ) __snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Dict = [*signature.parameters.keys()] __snake_case : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(config=__magic_name__ ) for name, module in model.named_modules(): if isinstance(__magic_name__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str ): __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Any = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Union[str, Any] = layer_type __snake_case : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def lowercase__ ( self : Dict ) -> str: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = RegNetModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ) -> Any: """simple docstring""" __snake_case : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : int = prepare_img() __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : List[Any] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Dict = checkpoint __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = vae_state_dict["""encoder.conv_in.weight"""] __snake_case : str = vae_state_dict["""encoder.conv_in.bias"""] __snake_case : List[Any] = vae_state_dict["""encoder.conv_out.weight"""] __snake_case : Dict = vae_state_dict["""encoder.conv_out.bias"""] __snake_case : List[str] = vae_state_dict["""encoder.norm_out.weight"""] __snake_case : Tuple = vae_state_dict["""encoder.norm_out.bias"""] __snake_case : Dict = vae_state_dict["""decoder.conv_in.weight"""] __snake_case : Union[str, Any] = vae_state_dict["""decoder.conv_in.bias"""] __snake_case : List[str] = vae_state_dict["""decoder.conv_out.weight"""] __snake_case : List[Any] = vae_state_dict["""decoder.conv_out.bias"""] __snake_case : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""] __snake_case : Optional[int] = vae_state_dict["""decoder.norm_out.bias"""] __snake_case : Tuple = vae_state_dict["""quant_conv.weight"""] __snake_case : List[Any] = vae_state_dict["""quant_conv.bias"""] __snake_case : Any = vae_state_dict["""post_quant_conv.weight"""] __snake_case : Union[str, Any] = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only __snake_case : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) __snake_case : int = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(_lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only __snake_case : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) __snake_case : str = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(_lowerCamelCase ) } for i in range(_lowerCamelCase ): __snake_case : List[Any] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __snake_case : List[Any] = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) __snake_case : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) __snake_case : Optional[Any] = renew_vae_resnet_paths(_lowerCamelCase ) __snake_case : Tuple = {"""old""": F'''down.{i}.block''', """new""": F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) __snake_case : str = [key for key in vae_state_dict if """encoder.mid.block""" in key] __snake_case : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Dict = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] __snake_case : Tuple = renew_vae_resnet_paths(_lowerCamelCase ) __snake_case : List[Any] = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) __snake_case : int = [key for key in vae_state_dict if """encoder.mid.attn""" in key] __snake_case : int = renew_vae_attention_paths(_lowerCamelCase ) __snake_case : Optional[int] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) conv_attn_to_linear(_lowerCamelCase ) for i in range(_lowerCamelCase ): __snake_case : Optional[Any] = num_up_blocks - 1 - i __snake_case : Optional[Any] = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __snake_case : Optional[int] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] __snake_case : List[Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] __snake_case : Tuple = renew_vae_resnet_paths(_lowerCamelCase ) __snake_case : List[Any] = {"""old""": F'''up.{block_id}.block''', """new""": F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) __snake_case : Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key] __snake_case : Optional[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Union[str, Any] = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] __snake_case : Dict = renew_vae_resnet_paths(_lowerCamelCase ) __snake_case : str = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) __snake_case : List[Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key] __snake_case : List[str] = renew_vae_attention_paths(_lowerCamelCase ) __snake_case : Tuple = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) conv_attn_to_linear(_lowerCamelCase ) return new_checkpoint def _a ( _lowerCamelCase , _lowerCamelCase , ) -> List[Any]: """simple docstring""" __snake_case : List[str] = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) __snake_case : int = io.BytesIO(r.content ) __snake_case : List[Any] = OmegaConf.load(_lowerCamelCase ) __snake_case : Union[str, Any] = 512 __snake_case : str = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open __snake_case : Any = {} with safe_open(_lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): __snake_case : List[str] = f.get_tensor(_lowerCamelCase ) else: __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )["""state_dict"""] # Convert the VAE model. __snake_case : str = create_vae_diffusers_config(_lowerCamelCase , image_size=_lowerCamelCase ) __snake_case : Any = custom_convert_ldm_vae_checkpoint(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = AutoencoderKL(**_lowerCamelCase ) vae.load_state_dict(_lowerCamelCase ) vae.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") __UpperCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __snake_case : Dict = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" if exitstatus == 5: __snake_case : List[Any] = 0 # Doctest custom flag to ignore output. __UpperCamelCase = doctest.register_optionflag("IGNORE_RESULT") __UpperCamelCase = doctest.OutputChecker class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> List[Any]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __magic_name__ , __magic_name__ , __magic_name__ ) __UpperCamelCase = CustomOutputChecker __UpperCamelCase = HfDoctestModule __UpperCamelCase = HfDocTestParser
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( __lowercase ): def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """num_attention_heads""" ) ) class _A : def __init__( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=13 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[int]=6_40 , __magic_name__ : Dict=4 , __magic_name__ : Tuple="silu" , __magic_name__ : Optional[int]=3 , __magic_name__ : Any=32 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : Any=True , __magic_name__ : str=10 , __magic_name__ : Tuple=None , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = parent __snake_case : List[str] = batch_size __snake_case : Any = image_size __snake_case : List[Any] = patch_size __snake_case : Union[str, Any] = num_channels __snake_case : Dict = last_hidden_size __snake_case : Dict = num_attention_heads __snake_case : Any = hidden_act __snake_case : int = conv_kernel_size __snake_case : Tuple = output_stride __snake_case : str = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : Any = use_labels __snake_case : str = is_training __snake_case : int = num_labels __snake_case : int = initializer_range __snake_case : int = scope def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Dict ) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = MobileViTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : Optional[Any] = MobileViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Tuple = self.num_labels __snake_case : str = MobileViTForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Any = self.prepare_config_and_inputs() __snake_case : List[str] = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase__: Optional[int] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__: Union[str, Any] = False lowercase__: Optional[int] = False lowercase__: int = False lowercase__: int = False def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Dict = MobileViTModelTester(self ) __snake_case : Union[str, Any] = MobileViTConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def lowercase__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(__magic_name__ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[int] ): __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : Union[str, Any] = 5 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Union[str, Any] = 2 for i in range(len(__magic_name__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = MobileViTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(__magic_name__ ) __snake_case : Tuple = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Optional[int] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : int = model.to(__magic_name__ ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Union[str, Any] = prepare_img() __snake_case : int = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) __snake_case : Optional[int] = outputs.logits # verify the logits __snake_case : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __magic_name__ ) __snake_case : Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Tuple = model.to(__magic_name__ ) __snake_case : Any = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : List[str] = prepare_img() __snake_case : List[str] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : int = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(50, 60)] ) __snake_case : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) __snake_case : str = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) __snake_case : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __lowercase ): def __init__( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[Any]=13 , __magic_name__ : str=7 , __magic_name__ : List[str]=True , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[int]=False , __magic_name__ : str=False , __magic_name__ : Tuple=False , __magic_name__ : int=2 , __magic_name__ : int=99 , __magic_name__ : Dict=0 , __magic_name__ : str=32 , __magic_name__ : Union[str, Any]=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[str]=12 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : int=3 , __magic_name__ : str=4 , __magic_name__ : Any="last" , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = parent __snake_case : Tuple = batch_size __snake_case : Any = seq_length __snake_case : List[Any] = is_training __snake_case : Dict = use_input_lengths __snake_case : Tuple = use_token_type_ids __snake_case : List[str] = use_labels __snake_case : Tuple = gelu_activation __snake_case : Optional[Any] = sinusoidal_embeddings __snake_case : int = causal __snake_case : Dict = asm __snake_case : Any = n_langs __snake_case : Optional[int] = vocab_size __snake_case : Dict = n_special __snake_case : Dict = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : List[Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : int = num_labels __snake_case : List[str] = num_choices __snake_case : int = summary_type __snake_case : List[Any] = use_proj __snake_case : Union[str, Any] = scope def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_input_lengths: __snake_case : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __snake_case : str = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __snake_case : Optional[int] = None __snake_case : List[Any] = None __snake_case : int = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , 2 ).float() __snake_case : Dict = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = FlaubertModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ , lengths=__magic_name__ , langs=__magic_name__ ) __snake_case : Any = model(__magic_name__ , langs=__magic_name__ ) __snake_case : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : List[Any] , ) -> int: """simple docstring""" __snake_case : List[Any] = FlaubertWithLMHeadModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Any , ) -> Tuple: """simple docstring""" __snake_case : List[Any] = FlaubertForQuestionAnsweringSimple(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Dict = model(__magic_name__ ) __snake_case : Dict = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , ) -> int: """simple docstring""" __snake_case : List[str] = FlaubertForQuestionAnswering(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) __snake_case : Optional[Any] = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , p_mask=__magic_name__ , ) __snake_case : int = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , ) (__snake_case ) : int = result_with_labels.to_tuple() __snake_case : int = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) (__snake_case ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : str , ) -> str: """simple docstring""" __snake_case : Any = FlaubertForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ ) __snake_case : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : int , ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = FlaubertForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , ) -> Tuple: """simple docstring""" __snake_case : Dict = self.num_choices __snake_case : int = FlaubertForMultipleChoice(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( __snake_case ) : Optional[int] = config_and_inputs __snake_case : Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase__: List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Tuple=False ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) __snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : int = FlaubertModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , emb_dim=37 ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__magic_name__ ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__magic_name__ ) @slow def lowercase__ ( self : str ) -> Any: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = FlaubertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow @require_torch_gpu def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __snake_case : Any = True __snake_case : List[Any] = model_class(config=__magic_name__ ) __snake_case : List[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : List[str] = torch.jit.trace( __magic_name__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__magic_name__ , os.path.join(__magic_name__ , """traced_model.pt""" ) ) __snake_case : Optional[int] = torch.jit.load(os.path.join(__magic_name__ , """traced_model.pt""" ) , map_location=__magic_name__ ) loaded(inputs_dict["""input_ids"""].to(__magic_name__ ) , inputs_dict["""attention_mask"""].to(__magic_name__ ) ) @require_torch class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : str = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __snake_case : Tuple = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __snake_case : Optional[Any] = model(__magic_name__ )[0] __snake_case : int = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Optional[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' import os import sys import transformers __UpperCamelCase = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_lowerCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _A ( unittest.TestCase ): def __init__( self : Optional[int] , __magic_name__ : Any , __magic_name__ : Tuple=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=99 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[Any]=5 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : int="gelu" , __magic_name__ : str=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Dict=5_12 , __magic_name__ : List[Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Optional[Any]=4 , ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : Any = seq_length __snake_case : Optional[int] = is_training __snake_case : str = use_attention_mask __snake_case : List[str] = use_token_type_ids __snake_case : Any = use_labels __snake_case : Optional[Any] = vocab_size __snake_case : List[str] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : str = initializer_range __snake_case : Any = num_choices def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_attention_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : List[str] = config_and_inputs __snake_case : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : str = self.prepare_config_and_inputs() __snake_case : int = config_and_inputs __snake_case : str = True __snake_case : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _A ( __lowercase , unittest.TestCase ): lowercase__: int = True lowercase__: List[str] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Optional[int] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase__ ( self : int ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: __snake_case : Optional[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ ) __snake_case : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class _A ( unittest.TestCase ): @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ ) __snake_case : List[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __snake_case : List[Any] = model(__magic_name__ )[0] __snake_case : Optional[Any] = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , __magic_name__ ) # compare the actual values for a slice. __snake_case : List[Any] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__magic_name__ ) __snake_case : Union[str, Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __snake_case : Dict = model(__magic_name__ )[0] # compare the actual values for a slice. __snake_case : Dict = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _A ( __lowercase , __lowercase ): lowercase__: int = 1 @register_to_config def __init__( self : Dict , __magic_name__ : int = 10_00 , __magic_name__ : Optional[Union[np.ndarray, List[float]]] = None ) -> int: """simple docstring""" self.set_timesteps(__magic_name__ ) # standard deviation of the initial noise distribution __snake_case : List[str] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __snake_case : int = 4 # running values __snake_case : Any = [] def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : Union[str, torch.device] = None ) -> Union[str, Any]: """simple docstring""" __snake_case : str = num_inference_steps __snake_case : List[str] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __snake_case : List[Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __snake_case : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __snake_case : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 __snake_case : List[str] = (1.0 - self.betas**2) ** 0.5 __snake_case : Any = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __snake_case : List[Any] = timesteps.to(__magic_name__ ) __snake_case : str = [] def lowercase__ ( self : Tuple , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __snake_case : Optional[Any] = (self.timesteps == timestep).nonzero().item() __snake_case : List[str] = timestep_index + 1 __snake_case : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__magic_name__ ) if len(self.ets ) == 1: __snake_case : Optional[Any] = self.ets[-1] elif len(self.ets ) == 2: __snake_case : Optional[Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __snake_case : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __snake_case : Optional[int] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __snake_case : Dict = self._get_prev_sample(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : torch.FloatTensor , *__magic_name__ : Any , **__magic_name__ : Tuple ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.alphas[timestep_index] __snake_case : int = self.betas[timestep_index] __snake_case : Union[str, Any] = self.alphas[prev_timestep_index] __snake_case : str = self.betas[prev_timestep_index] __snake_case : Dict = (sample - sigma * ets) / max(__magic_name__ , 1E-8 ) __snake_case : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.config.num_train_timesteps
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> list[int]: """simple docstring""" __snake_case : Any = [True] * limit __snake_case : int = False __snake_case : str = False __snake_case : Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __snake_case : str = i * 2 while index < limit: __snake_case : int = False __snake_case : List[str] = index + i __snake_case : Dict = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def _a ( _lowerCamelCase = 100_0000 ) -> int: """simple docstring""" __snake_case : Union[str, Any] = prime_sieve(_lowerCamelCase ) __snake_case : Dict = 0 __snake_case : Union[str, Any] = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length , len(_lowerCamelCase ) ): __snake_case : Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __snake_case : Optional[int] = j - i __snake_case : int = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : Optional[int] = generate_pascal_triangle(_lowerCamelCase ) for row_idx in range(_lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __snake_case : list[list[int]] = [] for current_row_idx in range(_lowerCamelCase ): __snake_case : List[str] = populate_current_row(_lowerCamelCase , _lowerCamelCase ) triangle.append(_lowerCamelCase ) return triangle def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[int]: """simple docstring""" __snake_case : Optional[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __snake_case : List[str] = 1, 1 for current_col_idx in range(1 , _lowerCamelCase ): calculate_current_element( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return current_row def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] __snake_case : Optional[Any] = triangle[current_row_idx - 1][current_col_idx] __snake_case : str = above_to_left_elt + above_to_right_elt def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __snake_case : list[list[int]] = [[1]] for row_index in range(1 , _lowerCamelCase ): __snake_case : Optional[int] = [0] + result[-1] + [0] __snake_case : Tuple = row_index + 1 # Calculate the number of distinct elements in a row __snake_case : Tuple = sum(divmod(_lowerCamelCase , 2 ) ) __snake_case : Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __snake_case : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __snake_case : Dict = row_first_half + row_second_half result.append(_lowerCamelCase ) return result def _a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: __snake_case : Tuple = F'''{func.__name__}({value})''' __snake_case : str = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: List[Any] = StableDiffusionPanoramaPipeline lowercase__: Dict = TEXT_TO_IMAGE_PARAMS lowercase__: Dict = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__: Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __snake_case : Optional[int] = DDIMScheduler() torch.manual_seed(0 ) __snake_case : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __snake_case : Optional[Any] = CLIPTextModel(__magic_name__ ) __snake_case : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Optional[int] , __magic_name__ : Any , __magic_name__ : List[str]=0 ) -> int: """simple docstring""" __snake_case : str = torch.manual_seed(__magic_name__ ) __snake_case : List[Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : List[str] = self.get_dummy_components() __snake_case : List[str] = StableDiffusionPanoramaPipeline(**__magic_name__ ) __snake_case : Any = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ ) __snake_case : Union[str, Any] = sd_pipe(**__magic_name__ ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Union[str, Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : Optional[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) __snake_case : str = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ ) __snake_case : Optional[int] = """french fries""" __snake_case : Optional[int] = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) __snake_case : Optional[Any] = output.images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : int = self.get_dummy_components() __snake_case : Dict = StableDiffusionPanoramaPipeline(**__magic_name__ ) __snake_case : Optional[int] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = self.get_dummy_inputs(__magic_name__ ) __snake_case : Optional[Any] = sd_pipe(**__magic_name__ , view_batch_size=2 ) __snake_case : Optional[int] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Any = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) __snake_case : List[Any] = StableDiffusionPanoramaPipeline(**__magic_name__ ) __snake_case : List[str] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Tuple = self.get_dummy_inputs(__magic_name__ ) __snake_case : List[Any] = sd_pipe(**__magic_name__ ).images __snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : str = self.get_dummy_components() __snake_case : str = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=__magic_name__ ) __snake_case : Any = StableDiffusionPanoramaPipeline(**__magic_name__ ) __snake_case : List[Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[Any] = self.get_dummy_inputs(__magic_name__ ) __snake_case : Optional[int] = sd_pipe(**__magic_name__ ).images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict , __magic_name__ : Optional[int]=0 ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = torch.manual_seed(__magic_name__ ) __snake_case : Dict = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = """stabilityai/stable-diffusion-2-base""" __snake_case : List[str] = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" ) __snake_case : Dict = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() __snake_case : Any = self.get_inputs() __snake_case : int = pipe(**__magic_name__ ).images __snake_case : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __snake_case : Union[str, Any] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=__magic_name__ ) __snake_case : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() __snake_case : Tuple = self.get_inputs() __snake_case : Tuple = pipe(**__magic_name__ ).images __snake_case : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __snake_case : Optional[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : List[str] = 0 def callback_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : torch.FloatTensor ) -> None: __snake_case : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __snake_case : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __snake_case : Optional[int] = latents[0, -3:, -3:, -1] __snake_case : List[str] = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __snake_case : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __snake_case : int = latents[0, -3:, -3:, -1] __snake_case : List[str] = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __snake_case : Optional[Any] = False __snake_case : List[Any] = """stabilityai/stable-diffusion-2-base""" __snake_case : Any = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" ) __snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) __snake_case : List[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() __snake_case : List[Any] = self.get_inputs() pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case : Tuple = """stabilityai/stable-diffusion-2-base""" __snake_case : int = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" ) __snake_case : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) __snake_case : int = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case : Union[str, Any] = self.get_inputs() __snake_case : Union[str, Any] = pipe(**__magic_name__ ) __snake_case : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import pytest import datasets # Import fixture modules as plugins __UpperCamelCase = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = tmp_path_factory.getbasetemp() / """cache""" __snake_case : List[str] = test_hf_cache_home / """datasets""" __snake_case : Union[str, Any] = test_hf_cache_home / """metrics""" __snake_case : Any = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_lowerCamelCase ) ) __snake_case : List[str] = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_lowerCamelCase ) ) __snake_case : str = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_lowerCamelCase ) ) @pytest.fixture(autouse=_lowerCamelCase , scope="""session""" ) def _a ( ) -> List[Any]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _lowerCamelCase ) @pytest.fixture def _a ( _lowerCamelCase ) -> str: """simple docstring""" monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _lowerCamelCase )
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) __snake_case : int = number_of_bytes // partitions __snake_case : int = [] for i in range(_lowerCamelCase ): __snake_case : str = i * bytes_per_partition + 1 __snake_case : str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = IFInpaintingSuperResolutionPipeline lowercase__: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowercase__: List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : Any = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : int=13 , __magic_name__ : Dict=32 , __magic_name__ : List[str]=2 , __magic_name__ : int=3 , __magic_name__ : int=16 , __magic_name__ : str=[32, 64, 1_28] , __magic_name__ : Union[str, Any]=[1, 2, 1] , __magic_name__ : Any=[2, 2, 4] , __magic_name__ : List[Any]=2 , __magic_name__ : List[str]=2.0 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=True , __magic_name__ : int=None , __magic_name__ : str=True , __magic_name__ : int=10 , __magic_name__ : List[str]=8 , __magic_name__ : Optional[Any]=["stage1", "stage2"] , __magic_name__ : Tuple=[1, 2] , ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = parent __snake_case : str = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[str] = patch_size __snake_case : Tuple = num_channels __snake_case : Optional[Any] = embed_dim __snake_case : str = hidden_sizes __snake_case : str = depths __snake_case : str = num_heads __snake_case : Dict = window_size __snake_case : List[str] = mlp_ratio __snake_case : Dict = qkv_bias __snake_case : Tuple = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : List[Any] = drop_path_rate __snake_case : List[str] = hidden_act __snake_case : Union[str, Any] = use_absolute_embeddings __snake_case : Tuple = patch_norm __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = is_training __snake_case : Union[str, Any] = scope __snake_case : Union[str, Any] = use_labels __snake_case : Any = type_sequence_label_size __snake_case : Any = encoder_stride __snake_case : List[str] = out_features __snake_case : Optional[Any] = out_indices def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : int ) -> Dict: """simple docstring""" __snake_case : Dict = FocalNetModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = model(__magic_name__ ) __snake_case : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Dict ) -> Any: """simple docstring""" __snake_case : str = FocalNetBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __snake_case : Optional[Any] = None __snake_case : str = FocalNetBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Any = FocalNetForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : List[Any] = 1 __snake_case : Tuple = FocalNetForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = self.type_sequence_label_size __snake_case : Optional[int] = FocalNetForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Optional[int] = 1 __snake_case : Optional[Any] = FocalNetForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__: List[str] = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: str = False lowercase__: List[Any] = False lowercase__: Optional[int] = False lowercase__: Optional[Any] = False def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = FocalNetModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 , has_text_modality=__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def lowercase__ ( self : Any ) -> int: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Any = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Optional[int] = model_class(__magic_name__ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> Any: """simple docstring""" __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # FocalNet has a different seq_length __snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case : Any = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Dict = reshaped_hidden_states[0].shape __snake_case : List[str] = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __snake_case : Tuple = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : int = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __snake_case : List[Any] = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = FocalNetModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__magic_name__ ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Optional[int] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _A ( __lowercase , unittest.TestCase ): lowercase__: int = (FocalNetBackbone,) if is_torch_available() else () lowercase__: str = FocalNetConfig lowercase__: Dict = False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = FocalNetModelTester(self )
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCamelCase = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") __UpperCamelCase = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image __UpperCamelCase = soup.find("meta", {"property": "og:image"})["content"] __UpperCamelCase = requests.get(image_url).content __UpperCamelCase = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "sentencepiece.model"} __UpperCamelCase = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } __UpperCamelCase = { "google/rembert": 256, } class _A ( __lowercase ): lowercase__: Optional[Any] = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Optional[Any]="[SEP]" , __magic_name__ : int="[UNK]" , __magic_name__ : int="[SEP]" , __magic_name__ : Dict="[PAD]" , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , **__magic_name__ : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , **__magic_name__ , ) __snake_case : Union[str, Any] = do_lower_case __snake_case : List[Any] = remove_space __snake_case : Dict = keep_accents __snake_case : Any = vocab_file __snake_case : Dict = spm.SentencePieceProcessor() self.sp_model.Load(__magic_name__ ) @property def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return len(self.sp_model ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> str: """simple docstring""" __snake_case : Dict = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : int , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[str] = d __snake_case : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=False ) -> List[Any]: """simple docstring""" __snake_case : Any = self.sp_model.EncodeAsPieces(__magic_name__ ) return pieces def lowercase__ ( self : List[Any] , __magic_name__ : Any ) -> str: """simple docstring""" return self.sp_model.PieceToId(__magic_name__ ) def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = self.sp_model.decode_pieces(__magic_name__ ) return out_string def lowercase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Any = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def lowercase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Any = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(__magic_name__ ) ) return __snake_case : Tuple = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( __lowercase ): def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Dict=10_24 , __magic_name__ : List[Any]=10_24 , __magic_name__ : Optional[Any]=3.6 ) -> int: """simple docstring""" __snake_case : Optional[Any] = tokenizer __snake_case : Tuple = tokenizer.bos_token_id __snake_case : Optional[int] = dataset __snake_case : int = seq_length __snake_case : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : int = iter(self.dataset ) __snake_case : str = True while more_examples: __snake_case : str = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__magic_name__ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: __snake_case : Union[str, Any] = False break __snake_case : List[Any] = tokenizer(__magic_name__ , truncation=__magic_name__ )["""input_ids"""] __snake_case : Union[str, Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__magic_name__ ) , self.seq_length ): __snake_case : Tuple = all_token_ids[i : i + self.seq_length] if len(__magic_name__ ) == self.seq_length: yield torch.tensor(__magic_name__ ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {"""streaming""": True} __snake_case : int = load_dataset(args.dataset_name , split="""train""" , **_lowerCamelCase ) __snake_case : Any = ConstantLengthDataset(_lowerCamelCase , _lowerCamelCase , seq_length=args.seq_length ) __snake_case : int = DataLoader(_lowerCamelCase , batch_size=args.batch_size ) return eval_dataloader def _a ( _lowerCamelCase ) -> Any: """simple docstring""" model.eval() __snake_case : Dict = [] for step, batch in enumerate(_lowerCamelCase ): with torch.no_grad(): __snake_case : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) __snake_case : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __snake_case : Tuple = torch.mean(torch.cat(_lowerCamelCase ) ) try: __snake_case : Optional[Any] = torch.exp(_lowerCamelCase ) except OverflowError: __snake_case : Dict = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator __UpperCamelCase = Accelerator() # Parse configuration __UpperCamelCase = HfArgumentParser(EvaluationArguments) __UpperCamelCase = parser.parse_args() set_seed(args.seed) # Logging __UpperCamelCase = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer __UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __UpperCamelCase = create_dataloader(args) # Prepare everything with our `accelerator`. __UpperCamelCase , __UpperCamelCase = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") __UpperCamelCase , __UpperCamelCase = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __UpperCamelCase = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __UpperCamelCase = BASE_URL + "/user" # https://github.com/settings/tokens __UpperCamelCase = os.environ.get("USER_TOKEN", "") def _a ( _lowerCamelCase ) -> dict[Any, Any]: """simple docstring""" __snake_case : str = { """Authorization""": F'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _A : def __init__( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=13 , __magic_name__ : Optional[int]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Any=16 , __magic_name__ : int=[1, 2, 1] , __magic_name__ : Dict=[2, 2, 4] , __magic_name__ : Optional[int]=2 , __magic_name__ : str=2.0 , __magic_name__ : str=True , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[str]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : Optional[int]=False , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=1E-5 , __magic_name__ : int=True , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]=True , __magic_name__ : int=10 , __magic_name__ : int=8 , __magic_name__ : str=["stage1", "stage2", "stage3"] , __magic_name__ : List[Any]=[1, 2, 3] , ) -> Dict: """simple docstring""" __snake_case : List[str] = parent __snake_case : Optional[int] = batch_size __snake_case : List[str] = image_size __snake_case : Any = patch_size __snake_case : str = num_channels __snake_case : List[str] = embed_dim __snake_case : Dict = depths __snake_case : str = num_heads __snake_case : str = window_size __snake_case : List[Any] = mlp_ratio __snake_case : Optional[int] = qkv_bias __snake_case : Tuple = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : List[str] = drop_path_rate __snake_case : Optional[Any] = hidden_act __snake_case : List[str] = use_absolute_embeddings __snake_case : List[str] = patch_norm __snake_case : int = layer_norm_eps __snake_case : int = initializer_range __snake_case : int = is_training __snake_case : Optional[Any] = scope __snake_case : int = use_labels __snake_case : Tuple = type_sequence_label_size __snake_case : Optional[int] = encoder_stride __snake_case : Union[str, Any] = out_features __snake_case : int = out_indices def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = MaskFormerSwinModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) __snake_case : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__magic_name__ ): __snake_case : str = ["""stem"""] __snake_case : int = MaskFormerSwinBackbone(config=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case : List[str] = config_and_inputs __snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__: Union[str, Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowercase__: Any = False lowercase__: Any = False lowercase__: Dict = False lowercase__: int = False lowercase__: Any = False def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : List[Any] = MaskFormerSwinModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[Any]: """simple docstring""" __snake_case : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swin has a different seq_length __snake_case : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __snake_case : Any = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __snake_case : str = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : int ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__magic_name__ : Optional[Any] ): __snake_case : Any = 0 return t def check_equivalence(__magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int={} ): with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = model(**__magic_name__ , return_dict=__magic_name__ , **__magic_name__ ).to_tuple() def recursive_check(__magic_name__ : Dict , __magic_name__ : Tuple ): if isinstance(__magic_name__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__magic_name__ , __magic_name__ ): recursive_check(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__magic_name__ , __magic_name__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__magic_name__ ) , set_nan_tensor_to_zero(__magic_name__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}. Dict has''' f''' `nan`: {torch.isnan(__magic_name__ ).any()} and `inf`: {torch.isinf(__magic_name__ )}.''' ) , ) recursive_check(__magic_name__ , __magic_name__ ) for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Tuple = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} ) __snake_case : Union[str, Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) check_equivalence(__magic_name__ , __magic_name__ , __magic_name__ , {"""output_hidden_states""": True} ) @require_torch class _A ( unittest.TestCase , __lowercase ): lowercase__: Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__: Optional[Any] = MaskFormerSwinConfig def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = MaskFormerSwinModelTester(self ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __snake_case : Union[str, Any] = backbone_class(__magic_name__ ) backbone.to(__magic_name__ ) backbone.eval() __snake_case : int = backbone(**__magic_name__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __magic_name__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __snake_case : List[Any] = backbone(**__magic_name__ , output_hidden_states=__magic_name__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __snake_case : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __snake_case : Optional[int] = backbone(**__magic_name__ , output_attentions=__magic_name__ ) self.assertIsNotNone(outputs.attentions )
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _A ( __lowercase ): lowercase__: List[Any] = (KDPMaDiscreteScheduler,) lowercase__: List[str] = 10 def lowercase__ ( self : Union[str, Any] , **__magic_name__ : Dict ) -> Any: """simple docstring""" __snake_case : Optional[int] = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__magic_name__ ) return config def lowercase__ ( self : Tuple ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Any = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __snake_case : List[Any] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : Dict = self.dummy_model() __snake_case : str = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : List[str] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : int = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : List[str] = model(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Tuple = output.prev_sample __snake_case : Any = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : Optional[Any] = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowercase__ ( self : str ) -> Dict: """simple docstring""" if torch_device == "mps": return __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Any = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[Any] = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Dict = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Dict = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : List[str] = model(__magic_name__ , __magic_name__ ) __snake_case : Any = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : List[Any] = output.prev_sample __snake_case : Union[str, Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : Dict = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if torch_device == "mps": return __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : Union[str, Any] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) __snake_case : Dict = self.dummy_model() __snake_case : Dict = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __snake_case : str = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : List[str] = model(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = output.prev_sample __snake_case : str = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : Optional[int] = torch.mean(torch.abs(__magic_name__ ) ) if str(__magic_name__ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
def _a ( _lowerCamelCase = 100_0000 ) -> int: """simple docstring""" __snake_case : List[str] = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) __snake_case : Tuple = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import socket def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case : Any = socket.gethostname() __snake_case : Any = 1_2312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: __snake_case : Union[str, Any] = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ViTFeatureExtractor"] __UpperCamelCase = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _A ( __lowercase , unittest.TestCase ): lowercase__: str = ShapEPipeline lowercase__: Union[str, Any] = ['''prompt'''] lowercase__: Dict = ['''prompt'''] lowercase__: Union[str, Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase__: Union[str, Any] = False @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return 32 @property def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return 32 @property def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return 8 @property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__magic_name__ ) @property def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __snake_case : List[Any] = PriorTransformer(**__magic_name__ ) return model @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : Optional[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __snake_case : Any = ShapERenderer(**__magic_name__ ) return model def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : int = self.dummy_prior __snake_case : Optional[int] = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : List[str] = self.dummy_renderer __snake_case : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) __snake_case : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowercase__ ( self : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str=0 ) -> Any: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : int = torch.manual_seed(__magic_name__ ) else: __snake_case : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Any = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = """cpu""" __snake_case : Optional[int] = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : str = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : str = output.images[0] __snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = torch_device == """cpu""" __snake_case : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Any = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[int] = 1 __snake_case : Union[str, Any] = 2 __snake_case : Any = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Optional[int] = batch_size * [inputs[key]] __snake_case : Tuple = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __snake_case : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __snake_case : Union[str, Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) __snake_case : Any = pipe( """a shark""" , generator=__magic_name__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
357
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
0
'''simple docstring''' from math import sqrt def _a ( _lowerCamelCase : List[Any] ) -> bool: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __snake_case : Optional[Any] = True # 0 and 1 are none primes. if number <= 1: __snake_case : Dict = False for divisor in range(2 , int(round(sqrt(_lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __snake_case : Any = False break # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'status' must been from type bool" return status def _a ( _lowerCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __snake_case : int = list(range(2 , n + 1 ) ) __snake_case : int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __snake_case : str = 0 # filters actual prime numbers. __snake_case : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def _a ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" __snake_case : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCamelCase ): ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def _a ( _lowerCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" __snake_case : int = [] # this list will be returns of the function. # potential prime number factors. __snake_case : List[str] = 2 __snake_case : List[Any] = number if number == 0 or number == 1: ans.append(_lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCamelCase ): while quotient != 1: if is_prime(_lowerCamelCase ) and (quotient % factor == 0): ans.append(_lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def _a ( _lowerCamelCase : int ) -> Any: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __snake_case : List[str] = 0 # prime factorization of 'number' __snake_case : Any = prime_factorization(_lowerCamelCase ) __snake_case : Any = max(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int" return ans def _a ( _lowerCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __snake_case : List[Any] = 0 # prime factorization of 'number' __snake_case : int = prime_factorization(_lowerCamelCase ) __snake_case : List[str] = min(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int" return ans def _a ( _lowerCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _a ( _lowerCamelCase : Dict ) -> Dict: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _a ( _lowerCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (number > 2) and is_even(_lowerCamelCase ) ), "'number' must been an int, even and > 2" __snake_case : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __snake_case : Tuple = get_prime_numbers(_lowerCamelCase ) __snake_case : Dict = len(_lowerCamelCase ) # run variable for while-loops. __snake_case : Union[str, Any] = 0 __snake_case : Dict = None # exit variable. for break up the loops __snake_case : int = True while i < len_pn and loop: __snake_case : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __snake_case : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (len(_lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _a ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> Optional[int]: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __snake_case : Optional[Any] = 0 while numbera != 0: __snake_case : Union[str, Any] = numbera % numbera __snake_case : Any = numbera __snake_case : Dict = rest # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _a ( _lowerCamelCase : str , _lowerCamelCase : Dict ) -> Optional[Any]: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __snake_case : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __snake_case : int = prime_factorization(_lowerCamelCase ) __snake_case : Optional[int] = prime_factorization(_lowerCamelCase ) elif numbera == 1 or numbera == 1: __snake_case : List[str] = [] __snake_case : List[str] = [] __snake_case : Dict = max(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[int] = 0 __snake_case : Union[str, Any] = 0 __snake_case : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __snake_case : Optional[Any] = prime_fac_a.count(_lowerCamelCase ) __snake_case : int = prime_fac_a.count(_lowerCamelCase ) for _ in range(max(_lowerCamelCase , _lowerCamelCase ) ): ans *= n else: __snake_case : Union[str, Any] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __snake_case : List[str] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _a ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'number' must been a positive int" __snake_case : Dict = 0 __snake_case : Optional[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCamelCase ): ans += 1 # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and is_prime( _lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def _a ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ) -> int: """simple docstring""" assert ( is_prime(_lowerCamelCase ) and is_prime(_lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __snake_case : List[str] = p_number_a + 1 # jump to the next number __snake_case : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 while number < p_number_a: ans.append(_lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and ans[0] != p_number_a and ans[len(_lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _a ( _lowerCamelCase : Optional[Any] ) -> str: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" __snake_case : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _a ( _lowerCamelCase : Optional[Any] ) -> Any: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __snake_case : Optional[int] = get_divisors(_lowerCamelCase ) # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _a ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __snake_case : Tuple = gcd(abs(_lowerCamelCase ) , abs(_lowerCamelCase ) ) # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _a ( _lowerCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __snake_case : Tuple = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _a ( _lowerCamelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __snake_case : Any = 0 __snake_case : Tuple = 1 __snake_case : str = 1 # this will be return for _ in range(n - 1 ): __snake_case : Any = ans ans += fiba __snake_case : Any = tmp return ans
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[int] = RoFormerTokenizer lowercase__: List[Any] = RoFormerTokenizerFast lowercase__: Any = True lowercase__: Optional[int] = True def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() def lowercase__ ( self : str , **__magic_name__ : Any ) -> List[Any]: """simple docstring""" return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def lowercase__ ( self : Dict , **__magic_name__ : Optional[Any] ) -> int: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = """永和服装饰品有限公司,今天天气非常好""" __snake_case : str = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : List[str] = self.get_chinese_input_output_texts() __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) __snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] __snake_case : Any = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : int = self.get_chinese_input_output_texts() __snake_case : Union[str, Any] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) __snake_case : Dict = tokens + [tokenizer.unk_token] __snake_case : str = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : str ) -> Dict: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" pass
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def _a ( _lowerCamelCase , _lowerCamelCase ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" __snake_case : Union[str, Any] = iter(_lowerCamelCase ) while True: __snake_case : str = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) ) if not chunk: return yield chunk def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[int] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) __snake_case : List[Any] = """""" if len(_lowerCamelCase ) < 2: return dirty for i in range(len(_lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCamelCase ) & 1: clean += "X" return clean def _a ( _lowerCamelCase ) -> list[str]: """simple docstring""" __snake_case : List[str] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __snake_case : Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCamelCase ) return table def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Dict = generate_table(_lowerCamelCase ) __snake_case : int = prepare_input(_lowerCamelCase ) __snake_case : List[Any] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): __snake_case : Union[str, Any] = divmod(table.index(_lowerCamelCase ) , 5 ) __snake_case : Optional[Any] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[Any] = generate_table(_lowerCamelCase ) __snake_case : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 ) __snake_case : List[str] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
360
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
0
'''simple docstring''' from math import ceil def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[str] = list(range(0 , _lowerCamelCase ) ) __snake_case : Dict = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __snake_case : Dict = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCamelCase ) # Missing blocks __snake_case : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] __snake_case : Tuple = [i for i in device_map_blocks if i not in blocks] if len(_lowerCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCamelCase ) ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = list(range(_lowerCamelCase ) ) __snake_case : int = int(ceil(n_layers / len(_lowerCamelCase ) ) ) __snake_case : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , _lowerCamelCase , _lowerCamelCase )] return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
362
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
0
'''simple docstring''' def _a ( _lowerCamelCase = 3 , _lowerCamelCase = 7 , _lowerCamelCase = 100_0000 ) -> int: """simple docstring""" __snake_case : Dict = 0 __snake_case : Tuple = 1 for current_denominator in range(1 , limit + 1 ): __snake_case : List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __snake_case : int = current_numerator __snake_case : int = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : int = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : str = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case : List[str] = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Any = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : str = 16 elif accelerator.mixed_precision != "no": __snake_case : int = 8 else: __snake_case : List[str] = None return tokenizer.pad( _lowerCamelCase , padding="""longest""" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __snake_case : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase ) __snake_case : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : List[str] = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : List[Any] = int(config["""seed"""] ) __snake_case : int = int(config["""batch_size"""] ) __snake_case : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __snake_case : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE __snake_case : Dict = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) __snake_case : Optional[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __snake_case : str = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler __snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case : Optional[int] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : int = model(**_lowerCamelCase ) __snake_case : Optional[int] = outputs.loss __snake_case : str = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Dict = model(**_lowerCamelCase ) __snake_case : int = outputs.logits.argmax(dim=-1 ) __snake_case : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __snake_case : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) def _a ( ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __snake_case : str = parser.parse_args() __snake_case : List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
366
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : List[Any] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : str = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : Dict = output[output != -float("""inf""" )] __snake_case : Optional[Any] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Tuple = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Optional[int] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Tuple = [[1, 0], [1, 1]] __snake_case : Union[str, Any] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Union[str, Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Tuple = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Dict = 1 __snake_case : int = 2 class _A ( tf.Module ): def __init__( self : Tuple , __magic_name__ : List[str] ) -> int: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : Union[str, Any] = [[2], [1_02, 1_03]] __snake_case : Tuple = [[1], [1, 1]] __snake_case : List[str] = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : Tuple = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : str = serving_func(**__magic_name__ )["""sequences"""] __snake_case : Union[str, Any] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Any , __magic_name__ : List[Any] , *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[int] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : int = CompleteSentenceTransformer() __snake_case : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Tuple = complete_model(__magic_name__ ) __snake_case : Optional[Any] = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : str = 14 __snake_case : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : int = """Hello, my dog is cute and""" __snake_case : Any = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : int = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Optional[int] = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : str = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : str = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : int = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : int=None , **__magic_name__ : int ) -> Optional[Any]: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Optional[Any] = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> Dict: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _A ( __lowercase , __lowercase ): lowercase__: Union[str, Any] = '''dinat''' lowercase__: str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , __magic_name__ : str=4 , __magic_name__ : str=3 , __magic_name__ : int=64 , __magic_name__ : Tuple=[3, 4, 6, 5] , __magic_name__ : Any=[2, 4, 8, 16] , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Tuple=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __magic_name__ : Tuple=3.0 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.02 , __magic_name__ : Union[str, Any]=1E-5 , __magic_name__ : str=0.0 , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , **__magic_name__ : int , ) -> str: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Optional[int] = patch_size __snake_case : Tuple = num_channels __snake_case : List[str] = embed_dim __snake_case : List[str] = depths __snake_case : List[Any] = len(__magic_name__ ) __snake_case : Optional[Any] = num_heads __snake_case : List[Any] = kernel_size __snake_case : Tuple = dilations __snake_case : List[Any] = mlp_ratio __snake_case : Optional[int] = qkv_bias __snake_case : str = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Optional[Any] = drop_path_rate __snake_case : str = hidden_act __snake_case : Tuple = layer_norm_eps __snake_case : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case : str = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) __snake_case : str = layer_scale_init_value __snake_case : Dict = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )] __snake_case : str = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _A ( __lowercase ): def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : int = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises(__magic_name__ ): __snake_case : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowercase__ ( self : Any ) -> str: """simple docstring""" with self.assertRaises(__magic_name__ ): __snake_case : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : str ) -> int: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __snake_case : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : List[str] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __snake_case : Any = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" import PIL.Image __snake_case : List[Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__magic_name__ ) as mock_cast_to_python_objects: __snake_case : Dict = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) __snake_case : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __magic_name__ ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[Any] = pa.BufferReader(_lowerCamelCase ) if isinstance(_lowerCamelCase , pa.Buffer ) else pa.memory_map(_lowerCamelCase ) __snake_case : int = pa.ipc.open_stream(_lowerCamelCase ) __snake_case : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : int = pa.BufferOutputStream() __snake_case : Optional[int] = pa.schema(_lowerCamelCase ) if fields else None with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __snake_case : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __snake_case : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _a ( ) -> int: """simple docstring""" __snake_case : Optional[int] = pa.BufferOutputStream() __snake_case : Dict = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=_lowerCamelCase , features=_lowerCamelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) __snake_case : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __snake_case : Optional[Any] = pa.BufferReader(output.getvalue() ) __snake_case : Optional[int] = pa.ipc.open_stream(_lowerCamelCase ) __snake_case : pa.Table = f.read_all() __snake_case : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_lowerCamelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : int = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer: with pytest.raises(_lowerCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) __snake_case : Tuple = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer: with pytest.raises(_lowerCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) __snake_case : List[str] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : int = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCamelCase , writer_batch_size=_lowerCamelCase , hash_salt="""split_name""" , check_duplicates=_lowerCamelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) __snake_case : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : str = pa.BufferOutputStream() __snake_case : Any = pa.schema(_lowerCamelCase ) if fields else None with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) __snake_case : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __snake_case : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : int = pa.BufferOutputStream() __snake_case : List[str] = pa.schema(_lowerCamelCase ) if fields else None with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) __snake_case : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __snake_case : str = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = pa.BufferOutputStream() __snake_case : str = pa.schema(_lowerCamelCase ) if fields else None with ArrowWriter(stream=_lowerCamelCase , schema=_lowerCamelCase , writer_batch_size=_lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) __snake_case : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __snake_case : Optional[int] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _a ( ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} __snake_case : List[str] = os.path.join(_lowerCamelCase , """test.arrow""" ) with ArrowWriter(path=_lowerCamelCase , schema=pa.schema(_lowerCamelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) __snake_case : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_lowerCamelCase , metadata=writer._schema.metadata ) _check_output(_lowerCamelCase , 1 ) def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" if pa.types.is_list(_lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" if isinstance(lst[0] , _lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , _lowerCamelCase ) else: __snake_case : int = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : List[Any] = pa.array(TypedSequence(_lowerCamelCase , optimized_int_type=_lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = pa.array(OptimizedTypedSequence(_lowerCamelCase , col=_lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __snake_case : Optional[int] = copy.deepcopy(_lowerCamelCase ) __snake_case : Dict = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = pa.array(OptimizedTypedSequence(_lowerCamelCase , col=_lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : int = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=_lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : int = """mock://dataset-train.arrow""" with ArrowWriter(path=_lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __snake_case : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : str = pa.BufferOutputStream() with ParquetWriter(stream=_lowerCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __snake_case : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 __snake_case : str = pa.BufferReader(output.getvalue() ) __snake_case : pa.Table = pq.read_table(_lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" import PIL.Image __snake_case : Optional[Any] = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_lowerCamelCase , format="""png""" ) __snake_case : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=_lowerCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=_lowerCamelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() __snake_case : Any = pa.BufferReader(output.getvalue() ) __snake_case : pa.Table = pq.read_table(_lowerCamelCase ) __snake_case : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , _lowerCamelCase ) with open(_lowerCamelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _a ( ) -> str: """simple docstring""" __snake_case : List[Any] = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_lowerCamelCase )] ) __snake_case : Dict = pa.BufferOutputStream() with ArrowWriter(stream=_lowerCamelCase ) as writer: writer._build_writer(inferred_schema=_lowerCamelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
368
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
0
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
from ..utils import DummyObject, requires_backends class _A ( metaclass=__lowercase ): lowercase__: int = ['''speech'''] def __init__( self : Tuple , *__magic_name__ : List[Any] , **__magic_name__ : Dict ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""speech"""] ) class _A ( metaclass=__lowercase ): lowercase__: List[str] = ['''speech'''] def __init__( self : Optional[Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""speech"""] )
370
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' def _a ( ) -> int: """simple docstring""" __snake_case : Union[str, Any] = 0 for i in range(1 , 1001 ): total += i**i return str(_lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
371
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = min(_lowerCamelCase ) # min() finds the minimum value __snake_case : Optional[Any] = max(_lowerCamelCase ) # max() finds the maximum value __snake_case : List[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __snake_case : Optional[int] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __snake_case : List[str] = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 __snake_case : str = count + min_val i += 1 def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
350
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __snake_case : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : List[str] = model(__magic_name__ )["""last_hidden_state"""] __snake_case : Any = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. __snake_case : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
13
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _A ( unittest.TestCase ): def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Dict=99 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : Tuple=4 , __magic_name__ : Dict=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : List[str]=16 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : List[Any]=4 , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = parent __snake_case : Union[str, Any] = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : int = is_training __snake_case : List[str] = use_attention_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : int = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Any = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Optional[int] = num_choices def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[Any] = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : int = None if self.use_token_type_ids: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case : Optional[Any] = config_and_inputs __snake_case : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = True lowercase__: int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = FlaxRoFormerModelTester(self ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: __snake_case : List[str] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) __snake_case : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case : List[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __snake_case : Tuple = model(__magic_name__ )[0] __snake_case : Any = 5_00_00 __snake_case : Tuple = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Tuple = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
351
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __snake_case : Tuple = """""" while len(_lowerCamelCase ) % 3 != 0: __snake_case : Any = """0""" + bin_string __snake_case : Tuple = [ bin_string[index : index + 3] for index in range(len(_lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Tuple = 0 for index, val in enumerate(_lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCamelCase ) ) oct_string += str(_lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _a ( ) -> None: """simple docstring""" print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def _a ( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print("""Generating prime p...""" ) __snake_case : Dict = rabinMiller.generate_large_prime(_lowerCamelCase ) print("""Generating prime q...""" ) __snake_case : Dict = rabinMiller.generate_large_prime(_lowerCamelCase ) __snake_case : str = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: __snake_case : str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) __snake_case : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) __snake_case : Tuple = (n, e) __snake_case : Optional[Any] = (n, d) return (public_key, private_key) def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() __snake_case : Union[str, Any] = generate_key(_lowerCamelCase ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Tuple = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __snake_case : Optional[Any] = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(__magic_name__ ) , torch_builtin(__magic_name__ ) ) ) self.assertFalse(torch.allclose(gelu_python(__magic_name__ ) , gelu_new(__magic_name__ ) ) ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Any = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __snake_case : Optional[Any] = get_activation("""gelu""" ) __snake_case : List[Any] = get_activation("""gelu_10""" ) __snake_case : List[str] = torch_builtin(__magic_name__ ) __snake_case : List[str] = geluaa(__magic_name__ ) __snake_case : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__magic_name__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(__magic_name__ ): get_activation("""bogus""" ) with self.assertRaises(__magic_name__ ): get_activation(__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = get_activation("""gelu""" ) __snake_case : Optional[Any] = 1 __snake_case : str = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__magic_name__ ): __snake_case : Tuple = acta.a
354
'''simple docstring''' def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : str = 0 __snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) <= 1: return arr, 0 __snake_case : Any = len(_lowerCamelCase ) // 2 __snake_case : List[str] = arr[0:mid] __snake_case : int = arr[mid:] __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : Tuple = count_inversions_recursive(_lowerCamelCase ) __snake_case , __snake_case : str = _count_cross_inversions(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [] __snake_case : List[str] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Optional[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : List[Any] = count_inversions_bf(_lowerCamelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _lowerCamelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import math __UpperCamelCase = 10 __UpperCamelCase = 7 __UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def _a ( _lowerCamelCase = 20 ) -> str: """simple docstring""" __snake_case : int = math.comb(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase ) __snake_case : Tuple = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
355
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
0