code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = '''RegNetConfig''' # Base docstring a__ = '''facebook/regnet-y-040''' a__ = [1, 1088, 7, 7] # Image classification docstring a__ = '''facebook/regnet-y-040''' a__ = '''tabby, tabby cat''' a__ = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a = 3 , _a = 1 , _a = 1 , _a = "relu" , **_a , ) -> str: super().__init__(**_a ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _a : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _a : Tuple = tf.keras.layers.ConvaD( filters=_a , kernel_size=_a , strides=_a , padding='''VALID''' , groups=_a , use_bias=_a , name='''convolution''' , ) _a : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) _a : List[str] = ACTaFN[activation] if activation is not None else tf.identity def __lowercase ( self , _a ) -> List[Any]: _a : List[Any] = self.convolution(self.padding(_a ) ) _a : Tuple = self.normalization(_a ) _a : Union[str, Any] = self.activation(_a ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , **_a ) -> Tuple: super().__init__(**_a ) _a : List[str] = config.num_channels _a : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : List[str] = shape_list(_a )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _a : Dict = tf.transpose(_a , perm=(0, 2, 3, 1) ) _a : List[str] = self.embedder(_a ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a = 2 , **_a ) -> int: super().__init__(**_a ) _a : Optional[Any] = tf.keras.layers.ConvaD( filters=_a , kernel_size=1 , strides=_a , use_bias=_a , name='''convolution''' ) _a : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def __lowercase ( self , _a , _a = False ) -> tf.Tensor: return self.normalization(self.convolution(_a ) , training=_a ) class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a , **_a ) -> int: super().__init__(**_a ) _a : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_a , name='''pooler''' ) _a : Optional[int] = [ tf.keras.layers.ConvaD(filters=_a , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_a , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def __lowercase ( self , _a ) -> List[Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _a : str = self.pooler(_a ) for layer_module in self.attention: _a : Dict = layer_module(_a ) _a : Optional[Any] = hidden_state * pooled return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a , _a , _a = 1 , **_a ) -> Union[str, Any]: super().__init__(**_a ) _a : Union[str, Any] = in_channels != out_channels or stride != 1 _a : str = max(1 , out_channels // config.groups_width ) _a : Tuple = ( TFRegNetShortCut(_a , stride=_a , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _a : Tuple = [ TFRegNetConvLayer(_a , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _a , stride=_a , groups=_a , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_a , kernel_size=1 , activation=_a , name='''layer.2''' ), ] _a : int = ACTaFN[config.hidden_act] def __lowercase ( self , _a ) -> Any: _a : Tuple = hidden_state for layer_module in self.layers: _a : List[str] = layer_module(_a ) _a : Optional[int] = self.shortcut(_a ) hidden_state += residual _a : Union[str, Any] = self.activation(_a ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a , _a , _a = 1 , **_a ) -> List[str]: super().__init__(**_a ) _a : List[str] = in_channels != out_channels or stride != 1 _a : Union[str, Any] = max(1 , out_channels // config.groups_width ) _a : int = ( TFRegNetShortCut(_a , stride=_a , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) _a : Any = [ TFRegNetConvLayer(_a , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _a , stride=_a , groups=_a , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_a , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_a , kernel_size=1 , activation=_a , name='''layer.3''' ), ] _a : Union[str, Any] = ACTaFN[config.hidden_act] def __lowercase ( self , _a ) -> List[str]: _a : Tuple = hidden_state for layer_module in self.layers: _a : str = layer_module(_a ) _a : int = self.shortcut(_a ) hidden_state += residual _a : List[Any] = self.activation(_a ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a , _a , _a = 2 , _a = 2 , **_a ) -> Union[str, Any]: super().__init__(**_a ) _a : Union[str, Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer _a : Any = [ # downsampling is done in the first layer with stride of 2 layer(_a , _a , _a , stride=_a , name='''layers.0''' ), *[layer(_a , _a , _a , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __lowercase ( self , _a ) -> Any: for layer_module in self.layers: _a : Tuple = layer_module(_a ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , **_a ) -> List[str]: super().__init__(**_a ) _a : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) _a : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_a , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_a , _a , _a , depth=_a , name=F"""stages.{i+1}""" ) ) def __lowercase ( self , _a , _a = False , _a = True ) -> TFBaseModelOutputWithNoAttention: _a : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Optional[Any] = hidden_states + (hidden_state,) _a : Union[str, Any] = stage_module(_a ) if output_hidden_states: _a : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) @keras_serializable class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = RegNetConfig def __init__( self , _a , **_a ) -> Optional[int]: super().__init__(**_a ) _a : List[Any] = config _a : Union[str, Any] = TFRegNetEmbeddings(_a , name='''embedder''' ) _a : List[str] = TFRegNetEncoder(_a , name='''encoder''' ) _a : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_a , name='''pooler''' ) @unpack_inputs def __lowercase ( self , _a , _a = None , _a = None , _a = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: _a : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.embedder(_a , training=_a ) _a : Any = self.encoder( _a , output_hidden_states=_a , return_dict=_a , training=_a ) _a : Tuple = encoder_outputs[0] _a : int = self.pooler(_a ) # Change to NCHW output format have uniformity in the modules _a : Union[str, Any] = tf.transpose(_a , perm=(0, 3, 1, 2) ) _a : Optional[int] = tf.transpose(_a , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _a : int = tuple([tf.transpose(_a , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = RegNetConfig UpperCAmelCase__ : int = "regnet" UpperCAmelCase__ : Dict = "pixel_values" @property def __lowercase ( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} a__ = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , *_a , **_a ) -> Any: super().__init__(_a , *_a , **_a ) _a : Optional[Any] = TFRegNetMainLayer(_a , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self , _a , _a = None , _a = None , _a=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: _a : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Tuple = self.regnet( pixel_values=_a , output_hidden_states=_a , return_dict=_a , training=_a , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class UpperCAmelCase_ ( __lowercase , __lowercase ): """simple docstring""" def __init__( self , _a , *_a , **_a ) -> Tuple: super().__init__(_a , *_a , **_a ) _a : str = config.num_labels _a : int = TFRegNetMainLayer(_a , name='''regnet''' ) # classification head _a : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self , _a = None , _a = None , _a = None , _a = None , _a=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: _a : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _a : List[str] = self.regnet( _a , output_hidden_states=_a , return_dict=_a , training=_a ) _a : Dict = outputs.pooler_output if return_dict else outputs[1] _a : Dict = self.classifier[0](_a ) _a : List[str] = self.classifier[1](_a ) _a : List[Any] = None if labels is None else self.hf_compute_loss(labels=_a , logits=_a ) if not return_dict: _a : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __UpperCAmelCase ( ) -> None: """simple docstring""" assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a__ = get_logger() a__ = None class UpperCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self , _a=None , _a=None , **_a ) -> str: super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) _a : List[str] = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _a : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _a : Any = str(jax.devices()[0] ) _a : Optional[Any] = jnp_array_kwargs @staticmethod def __lowercase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(_a ): device for device in jax.devices()} def __lowercase ( self , _a ) -> str: import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def __lowercase ( self , _a ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _a : str = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _a : Dict = {'''dtype''': jnp.intaa} else: _a : Optional[int] = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _a : Optional[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): _a : int = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _a : str = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def __lowercase ( self , _a ) -> int: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ): _a : List[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def __lowercase ( self , _a ) -> List[Any]: return map_nested(self._recursive_tensorize , _a , map_list=_a ) def __lowercase ( self , _a ) -> Mapping: _a : Any = self.numpy_arrow_extractor().extract_row(_a ) _a : int = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def __lowercase ( self , _a ) -> "jax.Array": _a : int = self.numpy_arrow_extractor().extract_column(_a ) _a : Dict = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) _a : Optional[Any] = self.recursive_tensorize(_a ) _a : Dict = self._consolidate(_a ) return column def __lowercase ( self , _a ) -> Mapping: _a : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(_a ) _a : Optional[Any] = self.python_features_decoder.decode_batch(_a ) _a : Any = self.recursive_tensorize(_a ) for column_name in batch: _a : int = self._consolidate(batch[column_name] ) return batch
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a__ = logging.getLogger(__name__) a__ = '''Hello world! cécé herlolip''' a__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __UpperCAmelCase ( __a : Optional[Any] ,__a : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a : List[str] = BertAbsConfig( temp_dir='''.''' ,finetune_bert=__a ,large=__a ,share_emb=__a ,use_bert_emb=__a ,encoder='''bert''' ,max_pos=512 ,enc_layers=6 ,enc_hidden_size=512 ,enc_heads=8 ,enc_ff_size=512 ,enc_dropout=0.2 ,dec_layers=6 ,dec_hidden_size=768 ,dec_heads=8 ,dec_ff_size=2_048 ,dec_dropout=0.2 ,) _a : int = torch.load(__a ,lambda __a ,__a : storage ) _a : Union[str, Any] = AbsSummarizer(__a ,torch.device('''cpu''' ) ,__a ) original.eval() _a : List[str] = BertAbsSummarizer(__a ,torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) _a : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs _a : int = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__a )) ) _a : List[str] = torch.tensor(__a ).unsqueeze(0 ) _a : Union[str, Any] = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__a )) ) _a : str = torch.tensor(__a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _a : Dict = encoder_input_ids _a : Union[str, Any] = decoder_input_ids _a : List[Any] = None _a : int = None _a : Dict = None _a : Optional[int] = None _a : str = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _a : Optional[Any] = original(__a ,__a ,__a ,__a ,__a ,__a ,__a )[0] _a : Optional[int] = original.generator(__a ) _a : Tuple = new_model( __a ,__a ,__a ,__a ,__a )[0] _a : int = new_model.generator(__a ) _a : Union[str, Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__a ) ) _a : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__a ) ) _a : List[str] = torch.allclose(__a ,__a ,atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() ,'''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) a__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=6_4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=2 , _a=2 , _a=2 , _a=2 , _a=4 , _a=1 , ) -> str: _a : Optional[Any] = parent _a : Tuple = batch_size _a : Any = seq_length _a : Optional[Any] = is_training _a : List[Any] = use_input_mask _a : str = use_token_type_ids _a : Dict = use_labels _a : Dict = vocab_size _a : Any = hidden_size _a : List[Any] = num_hidden_layers _a : Any = num_attention_heads _a : Tuple = intermediate_size _a : Dict = hidden_act _a : str = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Optional[int] = max_position_embeddings _a : Any = type_vocab_size _a : Union[str, Any] = type_sequence_label_size _a : str = initializer_range _a : Dict = num_labels _a : Optional[Any] = num_choices _a : Optional[int] = scope _a : int = q_groups _a : List[str] = k_groups _a : str = v_groups _a : str = post_attention_groups _a : Dict = intermediate_groups _a : Tuple = output_groups def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[int] = None if self.use_input_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Any = None _a : Optional[int] = None _a : Any = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : str = ids_tensor([self.batch_size] , self.num_choices ) _a : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> str: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> str: _a : Tuple = SqueezeBertModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a , _a ) _a : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> Any: _a : int = SqueezeBertForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> Tuple: _a : List[str] = SqueezeBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model( _a , attention_mask=_a , start_positions=_a , end_positions=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Dict = self.num_labels _a : str = SqueezeBertForSequenceClassification(_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> Optional[Any]: _a : int = self.num_labels _a : Any = SqueezeBertForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Dict = self.num_choices _a : List[Any] = SqueezeBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Optional[Any] = model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self ) -> str: _a : Optional[Any] = self.prepare_config_and_inputs() ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : Tuple = config_and_inputs _a : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ : Union[str, Any] = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[Any] = False def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = SqueezeBertModelTester(self ) _a : List[Any] = ConfigTester(self , config_class=_a , dim=3_7 ) def __lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __lowercase ( self ) -> Tuple: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_a ) def __lowercase ( self ) -> Optional[Any]: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_a ) def __lowercase ( self ) -> str: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_a ) def __lowercase ( self ) -> Optional[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_a ) @slow def __lowercase ( self ) -> List[str]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[int] = SqueezeBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> List[str]: _a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) _a : Optional[int] = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) _a : List[str] = model(_a )[0] _a : Any = torch.Size((1, 3) ) self.assertEqual(output.shape , _a ) _a : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_a , _a , atol=1e-4 ) )
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : nn.ModuleList ,__a : nn.ModuleList ,__a : List[int] ) -> None: """simple docstring""" _a : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__a ) == len(__a ), F"""{len(__a )} != {len(__a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) a__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> int: """simple docstring""" try: _a : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__a ) ) def __UpperCAmelCase ( __a : Dict ,__a : List[str] ) -> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __UpperCAmelCase ( __a : Union[str, PreTrainedModel] ,__a : Union[str, Path] = "student" ,__a : Union[int, None] = None ,__a : Union[int, None] = None ,__a : Any=False ,__a : Any=None ,__a : int=None ,**__a : Optional[int] ,) -> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _a : Dict = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(__a ,__a ): AutoTokenizer.from_pretrained(__a ).save_pretrained(__a ) # purely for convenience _a : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__a ).eval() else: assert isinstance(__a ,__a ), F"""teacher must be a model or string got type {type(__a )}""" _a : Dict = teacher.config.to_diff_dict() try: _a , _a : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _a : Union[str, Any] = teacher_e if d is None: _a : List[Any] = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config ,'''num_encoder_layers''' ): _a , _a : List[str] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _a , _a : Optional[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _a : Optional[int] = teacher_e if d is None: _a : Optional[Any] = teacher_d if hasattr(teacher.config ,'''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__a ) # Copy weights _a : List[str] = teacher.config_class(**__a ) _a : Dict = AutoModelForSeqaSeqLM.from_config(__a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _a : str = student.load_state_dict(teacher.state_dict() ,strict=__a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _a , _a : List[str] = list(range(__a ) ), list(range(__a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _a : List[int] = pick_layers_to_copy(__a ,__a ) if d_layers_to_copy is None: _a : List[int] = pick_layers_to_copy(__a ,__a ) try: if hasattr( __a ,'''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers ,student.prophetnet.encoder.layers ,__a ) copy_layers(teacher.prophetnet.decoder.layers ,student.prophetnet.decoder.layers ,__a ) else: copy_layers(teacher.model.encoder.layers ,student.model.encoder.layers ,__a ) copy_layers(teacher.model.decoder.layers ,student.model.decoder.layers ,__a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block ,student.encoder.block ,__a ) copy_layers(teacher.decoder.block ,student.decoder.block ,__a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _a : List[Any] = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(__a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
from __future__ import annotations from collections.abc import Generator def __UpperCAmelCase ( ) -> Generator[int, None, None]: """simple docstring""" _a : dict[int, int] = {} _a : int = 2 while True: _a : Union[str, Any] = factor_map.pop(__a ,__a ) if factor: _a : str = factor + prime while x in factor_map: x += factor _a : Any = factor else: _a : Tuple = prime yield prime prime += 1 def __UpperCAmelCase ( __a : float = 1E10 ) -> int: """simple docstring""" _a : Optional[int] = sieve() _a : List[str] = 1 while True: _a : Optional[int] = next(__a ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__a ) n += 2 if __name__ == "__main__": print(solution())
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: _a : int = tempfile.mkdtemp() _a : List[Any] = BlipImageProcessor() _a : Optional[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _a : Tuple = BlipProcessor(_a , _a ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self , **_a ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def __lowercase ( self , **_a ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def __lowercase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> Tuple: _a : List[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : Union[str, Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Optional[Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_tokenizer() _a : Dict = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : Union[str, Any] = self.prepare_image_inputs() _a : str = image_processor(_a , return_tensors='''np''' ) _a : Tuple = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_image_processor() _a : Optional[int] = self.get_tokenizer() _a : Tuple = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = '''lower newer''' _a : Dict = processor(text=_a ) _a : str = tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[int] = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Tuple = self.prepare_image_inputs() _a : Tuple = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> str: _a : List[str] = self.get_image_processor() _a : Tuple = self.get_tokenizer() _a : List[Any] = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : str = processor.batch_decode(_a ) _a : Optional[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_tokenizer() _a : str = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : str = '''lower newer''' _a : Tuple = self.prepare_image_inputs() _a : str = processor(text=_a , images=_a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
a__ = {str(digit): digit**5 for digit in range(10)} def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__a ) ) def __UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_000 ,1_000_000 ) if number == digits_fifth_powers_sum(__a ) ) if __name__ == "__main__": print(solution())
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
from __future__ import annotations import math from collections.abc import Callable def __UpperCAmelCase ( __a : Callable[[int | float], int | float] ,__a : int | float ,__a : int | float ,__a : int = 100 ,) -> float: """simple docstring""" _a : Tuple = x_start _a : List[str] = fnc(__a ) _a : Optional[int] = 0.0 for _ in range(__a ): # Approximates curve as a sequence of linear lines and sums their length _a : Dict = (x_end - x_start) / steps + xa _a : Dict = fnc(__a ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step _a : Optional[Any] = xa _a : Any = fxa return length if __name__ == "__main__": def __UpperCAmelCase ( __a : Any ) -> Dict: """simple docstring""" return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') a__ = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "yolos" def __init__( self , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-1_2 , _a=[5_1_2, 8_6_4] , _a=1_6 , _a=3 , _a=True , _a=1_0_0 , _a=True , _a=False , _a=1 , _a=5 , _a=2 , _a=5 , _a=2 , _a=0.1 , **_a , ) -> Optional[Any]: super().__init__(**_a ) _a : Dict = hidden_size _a : int = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Any = intermediate_size _a : Dict = hidden_act _a : List[str] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Optional[int] = initializer_range _a : Dict = layer_norm_eps _a : List[Any] = image_size _a : Dict = patch_size _a : Any = num_channels _a : Tuple = qkv_bias _a : Optional[int] = num_detection_tokens _a : int = use_mid_position_embeddings _a : Dict = auxiliary_loss # Hungarian matcher _a : List[str] = class_cost _a : Optional[int] = bbox_cost _a : List[Any] = giou_cost # Loss coefficients _a : Dict = bbox_loss_coefficient _a : List[str] = giou_loss_coefficient _a : List[str] = eos_coefficient class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4 @property def __lowercase ( self ) -> int: return 1_2
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a__ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test a__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a__ = dict(zip(vocab, range(len(vocab)))) a__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: a__ = Path(tmpdirname) a__ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] a__ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] a__ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) a__ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a__ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a__ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test a__ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') a__ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
def __UpperCAmelCase ( __a : List[Any] ) -> Tuple: """simple docstring""" _a : str = [] _a : Union[str, Any] = set({'''(''', '''[''', '''{'''} ) _a : List[Any] = set({''')''', ''']''', '''}'''} ) _a : str = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(__a ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__a ) == 0 or (len(__a ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__a ) == 0 def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Any = input('''Enter sequence of brackets: ''' ) if is_balanced(__a ): print(__a ,'''is balanced''' ) else: print(__a ,'''is not balanced''' ) if __name__ == "__main__": main()
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a=None , _a=None , _a=None , **_a ) -> str: if tokenize_kwargs is None: _a : Any = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) _a : Dict = truncation _a : List[Any] = tokenize_kwargs _a : str = {} if return_tensors is not None: _a : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def __lowercase ( self , _a , **_a ) -> Dict[str, GenericTensor]: _a : Optional[Any] = self.framework _a : Any = self.tokenizer(_a , return_tensors=_a , **_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[int]: _a : Any = self.model(**_a ) return model_outputs def __lowercase ( self , _a , _a=False ) -> int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_a , **_a ) -> Tuple: return super().__call__(*_a , **_a )
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=3 , _a=1_8 , _a=3_0 , _a=4_0_0 , _a=None , _a=True , _a=True , _a=None , ) -> Union[str, Any]: _a : Tuple = size if size is not None else {'''height''': 2_0, '''width''': 2_0} _a : Optional[Any] = parent _a : Optional[int] = batch_size _a : List[Any] = num_channels _a : List[Any] = image_size _a : int = min_resolution _a : Tuple = max_resolution _a : Tuple = size _a : Tuple = do_normalize _a : Dict = do_convert_rgb _a : List[str] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _a : Any = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def __lowercase ( self ) -> List[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowercase ( self ) -> Optional[Any]: _a : List[Any] = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' _a : int = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = PixaStructImageProcessingTester(self ) @property def __lowercase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = self.image_processor_tester.prepare_dummy_image() _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _a : Any = 2_0_4_8 _a : Dict = image_processor(_a , return_tensors='''pt''' , max_patches=_a ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowercase ( self ) -> str: # Initialize image_processor _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _a : Optional[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _a : Union[str, Any] = image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase ( self ) -> Union[str, Any]: # Initialize image_processor _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _a : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 _a : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_a ): _a : Dict = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches _a : Any = '''Hello''' _a : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _a : int = image_processor( _a , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase ( self ) -> Tuple: # Initialize image_processor _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) _a : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _a : List[Any] = image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowercase ( self ) -> Tuple: # Initialize image_processor _a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _a : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _a : Any = image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self ) -> Optional[Any]: _a : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _a : Tuple = 3 @property def __lowercase ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ) -> Any: _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __lowercase ( self ) -> Dict: # Initialize image_processor _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _a : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _a : Dict = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _a : str = image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin a__ = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = UNetaDModel UpperCAmelCase__ : Optional[Any] = "sample" @property def __lowercase ( self ) -> str: _a : Dict = 4 _a : Tuple = 3 _a : List[Any] = (3_2, 3_2) _a : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) _a : Tuple = torch.tensor([1_0] ).to(_a ) return {"sample": noise, "timestep": time_step} @property def __lowercase ( self ) -> Any: return (3, 3_2, 3_2) @property def __lowercase ( self ) -> Union[str, Any]: return (3, 3_2, 3_2) def __lowercase ( self ) -> List[Any]: _a : List[Any] = { '''block_out_channels''': (3_2, 6_4), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 3_2, } _a : Union[str, Any] = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : Any = "sample" @property def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = 4 _a : str = 4 _a : Dict = (3_2, 3_2) _a : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) _a : int = torch.tensor([1_0] ).to(_a ) return {"sample": noise, "timestep": time_step} @property def __lowercase ( self ) -> List[str]: return (4, 3_2, 3_2) @property def __lowercase ( self ) -> Optional[int]: return (4, 3_2, 3_2) def __lowercase ( self ) -> List[Any]: _a : Any = { '''sample_size''': 3_2, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (3_2, 6_4), '''attention_head_dim''': 3_2, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } _a : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> Any: _a , _a : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_a ) _a : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowercase ( self ) -> List[Any]: _a , _a : List[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) model.to(_a ) _a : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowercase ( self ) -> Optional[Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _a , _a : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) model_accelerate.to(_a ) model_accelerate.eval() _a : List[str] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _a : Optional[Any] = noise.to(_a ) _a : str = torch.tensor([1_0] * noise.shape[0] ).to(_a ) _a : Union[str, Any] = model_accelerate(_a , _a )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _a , _a : Any = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_a , low_cpu_mem_usage=_a ) model_normal_load.to(_a ) model_normal_load.eval() _a : str = model_normal_load(_a , _a )['''sample'''] assert torch_all_close(_a , _a , rtol=1e-3 ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_a ) _a : List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _a : Dict = noise.to(_a ) _a : List[str] = torch.tensor([1_0] * noise.shape[0] ).to(_a ) with torch.no_grad(): _a : int = model(_a , _a ).sample _a : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _a : Optional[int] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-3 ) ) class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = UNetaDModel UpperCAmelCase__ : int = "sample" @property def __lowercase ( self , _a=(3_2, 3_2) ) -> Optional[Any]: _a : Optional[int] = 4 _a : str = 3 _a : int = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) _a : Optional[Any] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=_a ) return {"sample": noise, "timestep": time_step} @property def __lowercase ( self ) -> Any: return (3, 3_2, 3_2) @property def __lowercase ( self ) -> List[str]: return (3, 3_2, 3_2) def __lowercase ( self ) -> List[Any]: _a : List[Any] = { '''block_out_channels''': [3_2, 6_4, 6_4, 6_4], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } _a : int = self.dummy_input return init_dict, inputs_dict @slow def __lowercase ( self ) -> List[Any]: _a , _a : Union[str, Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_a ) _a : str = self.dummy_input _a : Any = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(_a ) _a : List[Any] = noise _a : str = model(**_a ) assert image is not None, "Make sure output is not None" @slow def __lowercase ( self ) -> str: _a : Any = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_a ) _a : str = 4 _a : str = 3 _a : Dict = (2_5_6, 2_5_6) _a : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_a ) _a : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_a ) with torch.no_grad(): _a : Union[str, Any] = model(_a , _a ).sample _a : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a : str = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) def __lowercase ( self ) -> Dict: _a : List[str] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_a ) _a : str = 4 _a : List[Any] = 3 _a : Any = (3_2, 3_2) _a : Dict = torch.ones((batch_size, num_channels) + sizes ).to(_a ) _a : int = torch.tensor(batch_size * [1e-4] ).to(_a ) with torch.no_grad(): _a : List[Any] = model(_a , _a ).sample _a : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a : Any = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) def __lowercase ( self ) -> Dict: # not required for this model pass
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> List[str]: _a : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _a ) -> Any: _a , _a , _a , _a : Dict = hidden_states.shape _a : int = jax.image.resize( _a , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _a : Optional[int] = self.conv(_a ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> Optional[Any]: _a : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _a ) -> str: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _a : str = self.conv(_a ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int = None UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : bool = None UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> str: _a : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels _a : Tuple = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) _a : Dict = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _a : List[str] = nn.Dense(_a , dtype=self.dtype ) _a : Any = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) _a : Tuple = nn.Dropout(self.dropout_prob ) _a : List[Any] = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _a : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _a : Union[str, Any] = None if use_nin_shortcut: _a : List[str] = nn.Conv( _a , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , _a , _a , _a=True ) -> Dict: _a : List[Any] = hidden_states _a : Tuple = self.norma(_a ) _a : Dict = nn.swish(_a ) _a : str = self.conva(_a ) _a : List[Any] = self.time_emb_proj(nn.swish(_a ) ) _a : Optional[int] = jnp.expand_dims(jnp.expand_dims(_a , 1 ) , 1 ) _a : Optional[int] = hidden_states + temb _a : List[str] = self.norma(_a ) _a : Tuple = nn.swish(_a ) _a : Optional[int] = self.dropout(_a , _a ) _a : Tuple = self.conva(_a ) if self.conv_shortcut is not None: _a : Any = self.conv_shortcut(_a ) return hidden_states + residual
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
def __UpperCAmelCase ( __a : list ) -> list: """simple docstring""" if len(__a ) <= 1: return lst _a : Optional[Any] = 1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: _a , _a : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _a : Dict = 1 return lst if __name__ == "__main__": a__ = input('''Enter numbers separated by a comma:\n''').strip() a__ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
15
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
1
def __UpperCAmelCase ( __a : int ,__a : float ,__a : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Dict = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **_a ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _a : List[str] = deprecated_arg[3:] _a : int = not kwargs.pop(_a ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) _a : Dict = kwargs.pop('''tpu_name''' , self.tpu_name ) _a : Dict = kwargs.pop('''device_idx''' , self.device_idx ) _a : Dict = kwargs.pop('''eager_mode''' , self.eager_mode ) _a : List[str] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_a ) UpperCAmelCase__ : str = field( default=__lowercase , metadata={"help": "Name of TPU"} , ) UpperCAmelCase__ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Benchmark models in eager model."} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __lowercase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) _a : int = None if self.tpu: try: if self.tpu_name: _a : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _a : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _a : Optional[int] = None return tpu @cached_property def __lowercase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _a : Dict = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) _a : Optional[Any] = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU _a : Any = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def __lowercase ( self ) -> bool: requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __lowercase ( self ) -> "tf.distribute.Strategy": requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __lowercase ( self ) -> Any: requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __lowercase ( self ) -> int: requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowercase ( self ) -> bool: return self.n_gpu > 0
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') a__ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a__ = '''>>zh<<''' a__ = '''Helsinki-NLP/''' if is_torch_available(): a__ = '''pt''' elif is_tf_available(): a__ = '''tf''' else: a__ = '''jax''' @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = MarianTokenizer UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> List[Any]: super().setUp() _a : List[str] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] _a : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _a : Dict = Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_a , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_a , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) _a : List[str] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self , **_a ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Optional[int]: return ( "This is a test", "This is a test", ) def __lowercase ( self ) -> Dict: _a : Tuple = '''</s>''' _a : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> Tuple: _a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_a ) , 9 ) def __lowercase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) _a : List[str] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_a ) self.assertIsInstance(_a , _a ) _a : str = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(_a , batch.input_ids[0] ) _a : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_a ) _a : Optional[Any] = [x.name for x in Path(_a ).glob('''*''' )] self.assertIn('''source.spm''' , _a ) MarianTokenizer.from_pretrained(_a ) def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = self.get_tokenizer() _a : List[str] = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=_a , truncation=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __lowercase ( self ) -> Any: _a : Dict = self.get_tokenizer() _a : List[Any] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __lowercase ( self ) -> Dict: # fmt: off _a : List[str] = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) _a : Any = '''Tämä on testi''' _a : List[Any] = '''This is a test''' _a : Tuple = [7_6, 7, 2_0_4_7, 2] _a : Union[str, Any] = [6_9, 1_2, 1_1, 9_4_0, 2] _a : str = tokenizer(_a ).input_ids self.assertListEqual(_a , _a ) _a : str = tokenizer(text_target=_a ).input_ids self.assertListEqual(_a , _a ) _a : List[str] = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertEqual(_a , _a )
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
def __UpperCAmelCase ( __a : list[int] ,__a : int ) -> bool: """simple docstring""" _a : List[str] = len(__a ) _a : Optional[int] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : Dict = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Union[str, Any] = subset[i - 1][j] if arr[i - 1] <= j: _a : Tuple = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ = get_tests_dir('''fixtures''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down _a : Dict = mock.Mock() _a : List[Any] = 5_0_0 _a : Optional[Any] = {} _a : Any = HTTPError _a : Union[str, Any] = {} # Download this model to make sure it's in the cache. _a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head: _a : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 _a : List[str] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls ) -> Tuple: _a : Optional[int] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls ) -> int: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowercase ( self ) -> str: _a : int = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) _a : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''test-feature-extractor''' , push_to_hub=_a , use_auth_token=self._token ) _a : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> List[Any]: _a : int = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) _a : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_a , use_auth_token=self._token ) _a : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> Union[str, Any]: CustomFeatureExtractor.register_for_auto_class() _a : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) _a : str = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_a ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient a__ = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def __UpperCAmelCase ( __a : Optional[Any] ) -> Optional[int]: """simple docstring""" _a : Union[str, Any] = test_results.split(''' ''' ) _a : Any = 0 _a : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _a : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __UpperCAmelCase ( __a : Tuple ) -> Optional[int]: """simple docstring""" _a : List[str] = {} _a : Optional[int] = None _a : int = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' ,__a ): _a : List[str] = True _a : List[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): _a : int = line _a : str = False return failures class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> str: _a : Optional[Any] = title _a : int = doc_test_results['''time_spent'''].split(''',''' )[0] _a : List[str] = doc_test_results['''success'''] _a : Any = doc_test_results['''failures'''] _a : Any = self.n_success + self.n_failures # Failures and success of the modeling tests _a : Union[str, Any] = doc_test_results @property def __lowercase ( self ) -> str: _a : Optional[int] = [self._time_spent] _a : str = 0 for time in time_spent: _a : Tuple = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_a ) == 1: _a : List[Any] = [0, 0, time_parts[0]] _a , _a , _a : Optional[int] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds _a , _a , _a : int = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F"""{int(_a )}h{int(_a )}m{int(_a )}s""" @property def __lowercase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __lowercase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __lowercase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __lowercase ( self ) -> Dict: _a : Optional[Any] = 4_0 _a : List[Any] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_a , _a )} _a : List[Any] = '''''' for category, failures in category_failures.items(): if len(_a ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __lowercase ( self ) -> str: _a : Union[str, Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_a ) @staticmethod def __lowercase ( ) -> Any: _a : Optional[Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_a )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_a , ) def __lowercase ( self ) -> Dict: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) _a : Optional[Any] = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' _a : int = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_a , ) def __lowercase ( self , _a , _a , _a , _a ) -> List[Any]: _a : str = '''''' for key, value in failures.items(): _a : int = value[:2_0_0] + ''' [Truncated]''' if len(_a ) > 2_5_0 else value failures_text += F"""*{key}*\n_{value}_\n\n""" _a : int = job_name _a : int = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: _a : str = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __lowercase ( self ) -> Tuple: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) _a : Union[str, Any] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) _a : Any = sorted(self.doc_test_results.items() , key=lambda _a : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): _a : List[Any] = F"""*Num failures* :{len(job_result['failed'] )} \n""" _a : List[str] = job_result['''failures'''] _a : Optional[Any] = self.get_reply_blocks(_a , _a , _a , text=_a ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F"""Results for {job}""" , blocks=_a , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def __UpperCAmelCase ( ) -> int: """simple docstring""" _a : Union[str, Any] = os.environ['''GITHUB_RUN_ID'''] _a : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _a : str = requests.get(__a ).json() _a : Union[str, Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _a : Dict = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__a ): _a : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' ,__a ) return {} def __UpperCAmelCase ( __a : str ) -> Union[str, Any]: """simple docstring""" _a : List[str] = {} if os.path.exists(__a ): _a : Tuple = os.listdir(__a ) for file in files: try: with open(os.path.join(__a ,__a ) ,encoding='''utf-8''' ) as f: _a : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(__a ,__a )}.""" ) from e return _artifact def __UpperCAmelCase ( ) -> int: """simple docstring""" class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> Optional[int]: _a : Dict = name _a : str = [] def __str__( self ) -> Dict: return self.name def __lowercase ( self , _a ) -> List[str]: self.paths.append({'''name''': self.name, '''path''': path} ) _a : Dict[str, Artifact] = {} _a : List[Any] = filter(os.path.isdir ,os.listdir() ) for directory in directories: _a : Any = directory if artifact_name not in _available_artifacts: _a : List[str] = Artifact(__a ) _available_artifacts[artifact_name].add_path(__a ) return _available_artifacts if __name__ == "__main__": a__ = get_job_links() a__ = retrieve_available_artifacts() a__ = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' a__ = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job a__ = github_actions_job_links.get('''run_doctests''') a__ = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] a__ = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: a__ , a__ , a__ = handle_test_results(artifact['''stats''']) a__ = failed a__ = success a__ = time_spent[1:-1] + ''', ''' a__ = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): a__ = line.replace('''FAILED ''', '''''') a__ = line.split()[0].replace('''\n''', '''''') if "::" in line: a__ , a__ = line.split('''::''') else: a__ , a__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): a__ = docs[file_regex] doc_test_results[category]["failed"].append(test) a__ = all_failures[test] if test in all_failures else '''N/A''' a__ = failure break a__ = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import math class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a=0 ) -> int: # a graph with Node 0,1,...,N-1 _a : List[str] = n _a : Any = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # adjacency matrix for weight _a : Tuple = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # dp[i][j] stores minimum distance from i to j def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : int = w def __lowercase ( self ) -> str: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowercase ( self , _a , _a ) -> Union[str, Any]: return self.dp[u][v] if __name__ == "__main__": a__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" _a : List[Any] = 0 while len(__a ) > 1: _a : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Dict = files.index(min(__a ) ) temp += files[min_index] files.pop(__a ) files.append(__a ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __UpperCAmelCase ( __a : Tuple ) -> Optional[int]: """simple docstring""" _a : List[Any] = SwinvaConfig() _a : Optional[Any] = swinva_name.split('''_''' ) _a : Union[str, Any] = name_split[1] if "to" in name_split[3]: _a : List[str] = int(name_split[3][-3:] ) else: _a : Dict = int(name_split[3] ) if "to" in name_split[2]: _a : List[Any] = int(name_split[2][-2:] ) else: _a : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": _a : Tuple = 96 _a : Optional[Any] = (2, 2, 6, 2) _a : Any = (3, 6, 12, 24) elif model_size == "small": _a : Dict = 96 _a : Dict = (2, 2, 18, 2) _a : Optional[Any] = (3, 6, 12, 24) elif model_size == "base": _a : Dict = 128 _a : str = (2, 2, 18, 2) _a : Union[str, Any] = (4, 8, 16, 32) else: _a : Dict = 192 _a : List[str] = (2, 2, 18, 2) _a : Any = (6, 12, 24, 48) if "to" in swinva_name: _a : Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _a : int = 21_841 _a : str = '''huggingface/label-files''' _a : int = '''imagenet-22k-id2label.json''' _a : Any = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Any = {int(__a ): v for k, v in idalabel.items()} _a : str = idalabel _a : Any = {v: k for k, v in idalabel.items()} else: _a : Optional[Any] = 1_000 _a : str = '''huggingface/label-files''' _a : Optional[int] = '''imagenet-1k-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Any = {int(__a ): v for k, v in idalabel.items()} _a : int = idalabel _a : Dict = {v: k for k, v in idalabel.items()} _a : Dict = img_size _a : Any = num_classes _a : str = embed_dim _a : Dict = depths _a : Optional[Any] = num_heads _a : Optional[Any] = window_size return config def __UpperCAmelCase ( __a : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: _a : Dict = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : Tuple = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: _a : Union[str, Any] = '''encoder.''' + name if "attn.proj" in name: _a : int = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : int = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : Any = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : Any = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : str = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "q_bias" in name: _a : Dict = name.replace('''q_bias''' ,'''query.bias''' ) if "k_bias" in name: _a : List[Any] = name.replace('''k_bias''' ,'''key.bias''' ) if "v_bias" in name: _a : Dict = name.replace('''v_bias''' ,'''value.bias''' ) if "cpb_mlp" in name: _a : List[Any] = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' ) if name == "norm.weight": _a : str = '''layernorm.weight''' if name == "norm.bias": _a : Optional[Any] = '''layernorm.bias''' if "head" in name: _a : Any = name.replace('''head''' ,'''classifier''' ) else: _a : Optional[int] = '''swinv2.''' + name return name def __UpperCAmelCase ( __a : Tuple ,__a : Optional[int] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Any = orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: _a : List[Any] = key.split('''.''' ) _a : Union[str, Any] = int(key_split[1] ) _a : Optional[int] = int(key_split[3] ) _a : List[str] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a : Any = val[:dim, :] _a : Tuple = val[dim : dim * 2, :] _a : Optional[Any] = val[-dim:, :] else: _a : Optional[int] = val[:dim] _a : List[str] = val[ dim : dim * 2 ] _a : Any = val[-dim:] else: _a : List[str] = val return orig_state_dict def __UpperCAmelCase ( __a : List[Any] ,__a : Dict ) -> Any: """simple docstring""" _a : Any = timm.create_model(__a ,pretrained=__a ) timm_model.eval() _a : Optional[int] = get_swinva_config(__a ) _a : str = SwinvaForImageClassification(__a ) model.eval() _a : Union[str, Any] = convert_state_dict(timm_model.state_dict() ,__a ) model.load_state_dict(__a ) _a : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' ,'''-''' ) ) ) _a : Tuple = Image.open(requests.get(__a ,stream=__a ).raw ) _a : Dict = image_processor(images=__a ,return_tensors='''pt''' ) _a : Any = timm_model(inputs['''pixel_values'''] ) _a : List[str] = model(**__a ).logits assert torch.allclose(__a ,__a ,atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) model.push_to_hub( repo_path_or_name=Path(__a ,__a ) ,organization='''nandwalritik''' ,commit_message='''Add model''' ,) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> None: _a : dict[str, TrieNode] = {} # Mapping from char to TrieNode _a : Optional[int] = False def __lowercase ( self , _a ) -> None: for word in words: self.insert(_a ) def __lowercase ( self , _a ) -> None: _a : Tuple = self for char in word: if char not in curr.nodes: _a : Union[str, Any] = TrieNode() _a : str = curr.nodes[char] _a : Any = True def __lowercase ( self , _a ) -> bool: _a : Tuple = self for char in word: if char not in curr.nodes: return False _a : Dict = curr.nodes[char] return curr.is_leaf def __lowercase ( self , _a ) -> None: def _delete(_a , _a , _a ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False _a : List[str] = False return len(curr.nodes ) == 0 _a : Union[str, Any] = word[index] _a : Dict = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _a : Tuple = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def __UpperCAmelCase ( __a : TrieNode ,__a : str ) -> None: """simple docstring""" if node.is_leaf: print(__a ,end=''' ''' ) for key, value in node.nodes.items(): print_words(__a ,word + key ) def __UpperCAmelCase ( ) -> bool: """simple docstring""" _a : int = '''banana bananas bandana band apple all beast'''.split() _a : Union[str, Any] = TrieNode() root.insert_many(__a ) # print_words(root, "") assert all(root.find(__a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCAmelCase ( __a : str ,__a : bool ) -> None: """simple docstring""" print(str(__a ) ,'''works!''' if passes else '''doesn\'t work :(''' ) def __UpperCAmelCase ( ) -> None: """simple docstring""" assert test_trie() def __UpperCAmelCase ( ) -> None: """simple docstring""" print_results('''Testing trie functionality''' ,test_trie() ) if __name__ == "__main__": main()
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def __UpperCAmelCase ( __a : str ) -> Any: """simple docstring""" _a : Tuple = {} _a : Tuple = job['''started_at'''] _a : List[str] = job['''completed_at'''] _a : int = date_parser.parse(__a ) _a : Tuple = date_parser.parse(__a ) _a : int = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a : List[str] = start _a : Optional[int] = end _a : Any = duration_in_min return job_info def __UpperCAmelCase ( __a : Tuple ,__a : List[Any]=None ) -> Any: """simple docstring""" _a : List[str] = None if token is not None: _a : List[str] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} _a : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _a : List[Any] = requests.get(__a ,headers=__a ).json() _a : Tuple = {} try: job_time.update({job['''name''']: extract_time_from_single_job(__a ) for job in result['''jobs''']} ) _a : List[str] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__a ): _a : Union[str, Any] = requests.get(url + F"""&page={i + 2}""" ,headers=__a ).json() job_time.update({job['''name''']: extract_time_from_single_job(__a ) for job in result['''jobs''']} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') a__ = parser.parse_args() a__ = get_job_time(args.workflow_run_id) a__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ = logging.get_logger(__name__) a__ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) a__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __UpperCAmelCase ( __a : str ) -> Union[str, Any]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a : List[Any] = model_type_to_module_name(__a ) _a : Tuple = importlib.import_module(F""".{module_name}""" ,'''transformers.models''' ) try: return getattr(__a ,__a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__a ,'''__name__''' ,__a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a : Optional[int] = importlib.import_module('''transformers''' ) if hasattr(__a ,__a ): return getattr(__a ,__a ) return None def __UpperCAmelCase ( __a : Union[str, os.PathLike] ,__a : Optional[Union[str, os.PathLike]] = None ,__a : bool = False ,__a : bool = False ,__a : Optional[Dict[str, str]] = None ,__a : Optional[Union[bool, str]] = None ,__a : Optional[str] = None ,__a : bool = False ,**__a : Dict ,) -> Tuple: """simple docstring""" _a : Optional[int] = get_file_from_repo( __a ,__a ,cache_dir=__a ,force_download=__a ,resume_download=__a ,proxies=__a ,use_auth_token=__a ,revision=__a ,local_files_only=__a ,) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__a ,encoding='''utf-8''' ) as reader: return json.load(__a ) class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> List[Any]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_a ) def __lowercase ( cls , _a , **_a ) -> Optional[Any]: _a : Optional[Any] = kwargs.pop('''config''' , _a ) _a : Optional[Any] = kwargs.pop('''trust_remote_code''' , _a ) _a : Any = True _a , _a : Any = ImageProcessingMixin.get_image_processor_dict(_a , **_a ) _a : Optional[int] = config_dict.get('''image_processor_type''' , _a ) _a : Union[str, Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _a : Optional[Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a : int = config_dict.pop('''feature_extractor_type''' , _a ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _a : str = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _a : int = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _a : Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_a , _a ): _a : List[Any] = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.image_processor_type`` _a : Dict = getattr(_a , '''image_processor_type''' , _a ) if hasattr(_a , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _a : Optional[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _a : List[Any] = image_processor_class_from_name(_a ) _a : int = image_processor_auto_map is not None _a : Optional[int] = image_processor_class is not None or type(_a ) in IMAGE_PROCESSOR_MAPPING _a : Any = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _a : Any = get_class_from_dynamic_module( _a , _a , **_a ) _a : Dict = kwargs.pop('''code_revision''' , _a ) if os.path.isdir(_a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_a , **_a ) elif image_processor_class is not None: return image_processor_class.from_dict(_a , **_a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_a ) in IMAGE_PROCESSOR_MAPPING: _a : str = IMAGE_PROCESSOR_MAPPING[type(_a )] return image_processor_class.from_dict(_a , **_a ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowercase ( _a , _a ) -> Dict: IMAGE_PROCESSOR_MAPPING.register(_a , _a )
15
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_2_8 , _a=3_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> int: _a : Any = parent _a : Any = batch_size _a : int = seq_length _a : List[str] = is_training _a : List[Any] = use_input_mask _a : Any = use_token_type_ids _a : int = use_labels _a : Dict = vocab_size _a : int = hidden_size _a : List[Any] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Optional[Any] = intermediate_size _a : List[str] = hidden_act _a : str = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : int = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : List[Any] = num_labels _a : Any = num_choices _a : int = scope def __lowercase ( self ) -> str: _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_input_mask: _a : str = random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] = None if self.use_token_type_ids: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Tuple = None _a : int = None _a : Union[str, Any] = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : str = ids_tensor([self.batch_size] , self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> Any: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def __lowercase ( self ) -> Any: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : int = self.prepare_config_and_inputs() _a : str = True _a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[Any]: _a : Any = NezhaModel(config=_a ) model.to(_a ) model.eval() _a : Dict = model(_a , attention_mask=_a , token_type_ids=_a ) _a : Optional[int] = model(_a , token_type_ids=_a ) _a : List[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: _a : List[Any] = True _a : Optional[int] = NezhaModel(_a ) model.to(_a ) model.eval() _a : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _a : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , encoder_hidden_states=_a , ) _a : Any = model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: _a : Optional[Any] = NezhaForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : str = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: _a : List[Any] = NezhaForNextSentencePrediction(config=_a ) model.to(_a ) model.eval() _a : Dict = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Any = NezhaForPreTraining(config=_a ) model.to(_a ) model.eval() _a : Dict = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , next_sentence_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Optional[Any] = NezhaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Dict = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _a : int = self.num_labels _a : List[str] = NezhaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: _a : List[Any] = self.num_labels _a : Any = NezhaForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: _a : List[str] = self.num_choices _a : Tuple = NezhaForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self ) -> List[str]: _a : str = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = config_and_inputs _a : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True def __lowercase ( self , _a , _a , _a=False ) -> List[Any]: _a : Any = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): _a : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) _a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def __lowercase ( self ) -> str: _a : str = NezhaModelTester(self ) _a : Optional[Any] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowercase ( self ) -> Any: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Any: _a : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def __lowercase ( self ) -> Union[str, Any]: # This regression test was failing with PyTorch < 1.3 ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() _a : int = None self.model_tester.create_and_check_model_as_decoder( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) def __lowercase ( self ) -> Tuple: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __lowercase ( self ) -> List[str]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_a ) def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def __lowercase ( self ) -> Dict: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __lowercase ( self ) -> Optional[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def __lowercase ( self ) -> Tuple: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = NezhaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @slow @require_torch_gpu def __lowercase ( self ) -> Optional[Any]: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _a : List[Any] = True _a : List[Any] = model_class(config=_a ) _a : Optional[int] = self._prepare_for_class(_a , _a ) _a : Tuple = torch.jit.trace( _a , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_a , os.path.join(_a , '''bert.pt''' ) ) _a : Optional[Any] = torch.jit.load(os.path.join(_a , '''bert.pt''' ) , map_location=_a ) loaded(inputs_dict['''input_ids'''].to(_a ) , inputs_dict['''attention_mask'''].to(_a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> str: _a : Union[str, Any] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _a : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _a : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : List[Any] = model(_a , attention_mask=_a )[0] _a : Any = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , _a ) _a : List[str] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Dict: _a : Optional[int] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _a : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _a : int = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : Any = model(_a , attention_mask=_a )[0] _a : Optional[int] = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , _a ) _a : Optional[Any] = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } a__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } a__ = { '''ctrl''': 256, } a__ = { '''Pregnancy''': 168629, '''Christianity''': 7675, '''Explain''': 106423, '''Fitness''': 63440, '''Saving''': 63163, '''Ask''': 27171, '''Ass''': 95985, '''Joke''': 163509, '''Questions''': 45622, '''Thoughts''': 49605, '''Retail''': 52342, '''Feminism''': 164338, '''Writing''': 11992, '''Atheism''': 192263, '''Netflix''': 48616, '''Computing''': 39639, '''Opinion''': 43213, '''Alone''': 44967, '''Funny''': 58917, '''Gaming''': 40358, '''Human''': 4088, '''India''': 1331, '''Joker''': 77138, '''Diet''': 36206, '''Legal''': 11859, '''Norman''': 4939, '''Tip''': 72689, '''Weight''': 52343, '''Movies''': 46273, '''Running''': 23425, '''Science''': 2090, '''Horror''': 37793, '''Confession''': 60572, '''Finance''': 12250, '''Politics''': 16360, '''Scary''': 191985, '''Support''': 12654, '''Technologies''': 32516, '''Teenage''': 66160, '''Event''': 32769, '''Learned''': 67460, '''Notion''': 182770, '''Wikipedia''': 37583, '''Books''': 6665, '''Extract''': 76050, '''Confessions''': 102701, '''Conspiracy''': 75932, '''Links''': 63674, '''Narcissus''': 150425, '''Relationship''': 54766, '''Relationships''': 134796, '''Reviews''': 41671, '''News''': 4256, '''Translation''': 26820, '''multilingual''': 128406, } def __UpperCAmelCase ( __a : Tuple ) -> str: """simple docstring""" _a : Union[str, Any] = set() _a : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a : Union[str, Any] = char _a : int = set(__a ) return pairs class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = CONTROL_CODES def __init__( self , _a , _a , _a="<unk>" , **_a ) -> Optional[Any]: super().__init__(unk_token=_a , **_a ) with open(_a , encoding='''utf-8''' ) as vocab_handle: _a : str = json.load(_a ) _a : List[Any] = {v: k for k, v in self.encoder.items()} with open(_a , encoding='''utf-8''' ) as merges_handle: _a : List[Any] = merges_handle.read().split('''\n''' )[1:-1] _a : List[Any] = [tuple(merge.split() ) for merge in merges] _a : Tuple = dict(zip(_a , range(len(_a ) ) ) ) _a : str = {} @property def __lowercase ( self ) -> List[str]: return len(self.encoder ) def __lowercase ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase ( self , _a ) -> Optional[Any]: if token in self.cache: return self.cache[token] _a : Tuple = tuple(_a ) _a : Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a : Dict = get_pairs(_a ) if not pairs: return token while True: _a : str = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a : Union[str, Any] = bigram _a : List[str] = [] _a : Dict = 0 while i < len(_a ): try: _a : Optional[Any] = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a : str = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a : List[str] = tuple(_a ) _a : Optional[Any] = new_word if len(_a ) == 1: break else: _a : Union[str, Any] = get_pairs(_a ) _a : int = '''@@ '''.join(_a ) _a : Optional[Any] = word[:-4] _a : Any = word return word def __lowercase ( self , _a ) -> Dict: _a : Tuple = [] _a : Any = re.findall(R'''\S+\n?''' , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(''' ''' ) ) ) return split_tokens def __lowercase ( self , _a ) -> List[Any]: return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def __lowercase ( self , _a ) -> List[Any]: return self.decoder.get(_a , self.unk_token ) def __lowercase ( self , _a ) -> List[Any]: _a : Dict = ''' '''.join(_a ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Any = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a : Union[str, Any] = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '''\n''' ) _a : str = 0 with open(_a , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _a : Tuple = token_index writer.write(''' '''.join(_a ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''spiece.model'''} a__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } a__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] def __init__( self , _a , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="[SEP]" , _a="[MASK]" , _a="[CLS]" , _a = None , **_a , ) -> None: _a : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token _a : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token _a : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token _a : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token _a : Optional[int] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token _a : Union[str, Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sep_token=_a , mask_token=_a , cls_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Optional[Any] = vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def __lowercase ( self ) -> Any: return self.sp_model.get_piece_size() def __lowercase ( self ) -> Dict: _a : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _a : str = self.__dict__.copy() _a : List[Any] = None return state def __setstate__( self , _a ) -> Tuple: _a : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Optional[Any] = {} _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> Optional[int]: return self.sp_model.piece_to_id(_a ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Optional[int] = self.sp_model.IdToPiece(_a ) return token def __lowercase ( self , _a ) -> str: _a : List[Any] = [] _a : Optional[int] = '''''' _a : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _a : Any = True _a : Optional[Any] = [] else: current_sub_tokens.append(_a ) _a : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __lowercase ( self , _a , _a = False , _a = None , _a = True , **_a , ) -> str: _a : List[str] = kwargs.pop('''use_source_tokenizer''' , _a ) _a : str = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a : str = [] _a : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) _a : List[Any] = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a : int = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_a ) ) else: _a : Any = ''''''.join(_a ) _a : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a : Any = self.clean_up_tokenization(_a ) return clean_text else: return text def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Optional[int] = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: _a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def __lowercase ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] _a : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def __lowercase ( self , _a , _a = None ) -> List[int]: _a : List[Any] = [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
from sklearn.metrics import recall_score import datasets a__ = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' a__ = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' a__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def __lowercase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None , _a="warn" , ) -> int: _a : Optional[Any] = recall_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a , zero_division=_a , ) return {"recall": float(_a ) if score.size == 1 else score}
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "luke" def __init__( self , _a=5_0_2_6_7 , _a=5_0_0_0_0_0 , _a=7_6_8 , _a=2_5_6 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=True , _a=None , _a=1 , _a=0 , _a=2 , **_a , ) -> Optional[Any]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : List[Any] = vocab_size _a : List[Any] = entity_vocab_size _a : Optional[int] = hidden_size _a : Optional[Any] = entity_emb_size _a : List[Any] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Any = hidden_act _a : Any = intermediate_size _a : Dict = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : int = initializer_range _a : List[str] = layer_norm_eps _a : Dict = use_entity_aware_attention _a : Optional[int] = classifier_dropout
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a__ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : List[str] = ArgumentParser('''Diffusers CLI tool''' ,usage='''diffusers-cli <command> [<args>]''' ) _a : Optional[Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go _a : Tuple = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run _a : Union[str, Any] = args.func(__a ) service.run() if __name__ == "__main__": main()
15
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
1
def __UpperCAmelCase ( __a : List[str] ,__a : List[str] ,__a : List[str] ) -> Optional[int]: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__a ,n - 1 ,__a ) * a) % mod else: _a : Optional[int] = binary_exponentiation(__a ,n / 2 ,__a ) return (b * b) % mod # a prime number a__ = 701 a__ = 1000000000 a__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__a ) * abs(__a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a__ = datasets.load_iris() a__ = np.array(data['''data''']) a__ = np.array(data['''target''']) a__ = data['''target_names'''] a__ , a__ , a__ , a__ = train_test_split(X, y) def __UpperCAmelCase ( __a : Optional[Any] ,__a : Dict ) -> str: """simple docstring""" return np.linalg.norm(np.array(__a ) - np.array(__a ) ) def __UpperCAmelCase ( __a : str ,__a : Dict ,__a : List[str] ,__a : Dict ,__a : Union[str, Any]=5 ) -> Tuple: """simple docstring""" _a : Tuple = zip(__a ,__a ) # List of distances of all points from the point to be classified _a : Optional[Any] = [] for data_point in data: _a : int = euclidean_distance(data_point[0] ,__a ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _a : List[str] = [i[1] for i in sorted(__a )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _a : List[str] = Counter(__a ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(__a ,x % y ) def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(__a ,__a ) def __UpperCAmelCase ( __a : int = 20 ) -> int: """simple docstring""" _a : str = 1 for i in range(1 ,n + 1 ): _a : Tuple = lcm(__a ,__a ) return g if __name__ == "__main__": print(f'''{solution() = }''')
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
import re from filelock import FileLock try: import nltk a__ = True except (ImportError, ModuleNotFoundError): a__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" re.sub('''<n>''' ,'''''' ,__a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def __UpperCAmelCase ( __a : np.ndarray ) -> np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" _a : Dict = np.nan for i in range(__a ): _a : Union[str, Any] = features[:, labels == i] _a : int = data.mean(1 ) # Centralize the data of class i _a : Any = data - column_reshape(__a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__a ,centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _a : List[str] = np.dot(__a ,centered_data.T ) return covariance_sum / features.shape[1] def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" _a : List[Any] = features.mean(1 ) _a : str = np.nan for i in range(__a ): _a : Dict = features[:, labels == i] _a : Union[str, Any] = data.shape[1] _a : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) ,(column_reshape(__a ) - column_reshape(__a )).T ,) else: # If covariance_sum is np.nan (i.e. first loop) _a : str = device_data * np.dot( column_reshape(__a ) - column_reshape(__a ) ,(column_reshape(__a ) - column_reshape(__a )).T ,) return covariance_sum / features.shape[1] def __UpperCAmelCase ( __a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" if features.any(): _a : Dict = features.mean(1 ) # Center the dataset _a : Optional[int] = features - np.reshape(__a ,(data_mean.size, 1) ) _a : Tuple = np.dot(__a ,centered_data.T ) / features.shape[1] _a , _a : Tuple = np.linalg.eigh(__a ) # Take all the columns in the reverse order (-1), and then takes only the first _a : List[str] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _a : Tuple = np.dot(filtered_eigenvectors.T ,__a ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format='''%(message)s''' ,force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ,__a : int ) -> np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: _a , _a : Optional[Any] = eigh( covariance_between_classes(__a ,__a ,__a ) ,covariance_within_classes(__a ,__a ,__a ) ,) _a : Optional[Any] = eigenvectors[:, ::-1][:, :dimensions] _a , _a , _a : Any = np.linalg.svd(__a ) _a : Tuple = svd_matrix[:, 0:dimensions] _a : Dict = np.dot(filtered_svd_matrix.T ,__a ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format='''%(message)s''' ,force=__a ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : str = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _a : Optional[Any] = np.array([0, 0, 0, 1, 1] ) _a : int = 2 _a : List[str] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__a ) as error_info: _a : Tuple = linear_discriminant_analysis( __a ,__a ,__a ,__a ) if isinstance(__a ,np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _a : Optional[int] = 2 _a : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(__a ) as error_info: _a : Optional[Any] = principal_component_analysis(__a ,__a ) if not np.allclose(__a ,__a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a__ = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' a__ = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' a__ = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' a__ = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' a__ = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __lowercase ( self , _a , _a , _a=[1, 1_0, 1_0_0] , _a=4 , _a=3.0 ) -> Tuple: if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=_a ) as executor: _a : Dict = [] _a : str = Counter() _a : Any = 0 _a : List[str] = defaultdict(_a ) for task_id, (candidates, test_case) in enumerate(zip(_a , _a ) ): for candidate in candidates: _a : Any = candidate + '''\n''' + test_case _a : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _a : Dict = executor.submit(_a , *_a ) futures.append(_a ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_a ): _a : Any = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) _a , _a : Dict = [], [] for result in results.values(): result.sort() _a : str = [r[1]['''passed'''] for r in result] total.append(len(_a ) ) correct.append(sum(_a ) ) _a : str = np.array(_a ) _a : int = np.array(_a ) _a : List[str] = k _a : Dict = {F"""pass@{k}""": estimate_pass_at_k(_a , _a , _a ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __UpperCAmelCase ( __a : Tuple ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" def estimator(__a : int ,__a : int ,__a : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(__a ,__a ): _a : List[str] = itertools.repeat(__a ,len(__a ) ) else: assert len(__a ) == len(__a ) _a : Optional[Any] = iter(__a ) return np.array([estimator(int(__a ) ,int(__a ) ,__a ) for n, c in zip(__a ,__a )] )
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import argparse import collections import json import os import re import string import sys import numpy as np a__ = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) a__ = None def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : List[Any] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' ,metavar='''data.json''' ,help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' ,metavar='''pred.json''' ,help='''Model predictions.''' ) parser.add_argument( '''--out-file''' ,'''-o''' ,metavar='''eval.json''' ,help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' ,'''-n''' ,metavar='''na_prob.json''' ,help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' ,'''-t''' ,type=__a ,default=1.0 ,help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' ,) parser.add_argument( '''--out-image-dir''' ,'''-p''' ,metavar='''out_images''' ,default=__a ,help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' ,'''-v''' ,action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __UpperCAmelCase ( __a : Any ) -> List[str]: """simple docstring""" _a : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : List[Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __UpperCAmelCase ( __a : List[Any] ) -> Dict: """simple docstring""" def remove_articles(__a : Union[str, Any] ): return ARTICLES_REGEX.sub(''' ''' ,__a ) def white_space_fix(__a : Dict ): return " ".join(text.split() ) def remove_punc(__a : List[str] ): _a : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def __UpperCAmelCase ( __a : Tuple ) -> Optional[int]: """simple docstring""" if not s: return [] return normalize_answer(__a ).split() def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[str]: """simple docstring""" return int(normalize_answer(__a ) == normalize_answer(__a ) ) def __UpperCAmelCase ( __a : Dict ,__a : int ) -> str: """simple docstring""" _a : Dict = get_tokens(__a ) _a : Any = get_tokens(__a ) _a : Dict = collections.Counter(__a ) & collections.Counter(__a ) _a : Optional[int] = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _a : str = 1.0 * num_same / len(__a ) _a : Dict = 1.0 * num_same / len(__a ) _a : List[str] = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a : Dict = {} _a : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : Optional[int] = qa['''id'''] _a : str = [t for t in qa['''answers''']['''text'''] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _a : Tuple = [''''''] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue _a : Any = preds[qid] # Take max over all gold answers _a : Tuple = max(compute_exact(__a ,__a ) for a in gold_answers ) _a : str = max(compute_fa(__a ,__a ) for a in gold_answers ) return exact_scores, fa_scores def __UpperCAmelCase ( __a : Any ,__a : List[str] ,__a : Dict ,__a : Optional[int] ) -> Dict: """simple docstring""" _a : List[str] = {} for qid, s in scores.items(): _a : str = na_probs[qid] > na_prob_thresh if pred_na: _a : Tuple = float(not qid_to_has_ans[qid] ) else: _a : Any = s return new_scores def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[int] ,__a : Tuple=None ) -> List[str]: """simple docstring""" if not qid_list: _a : List[str] = len(__a ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: _a : Optional[Any] = len(__a ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __UpperCAmelCase ( __a : Dict ,__a : Union[str, Any] ,__a : Tuple ) -> Any: """simple docstring""" for k in new_eval: _a : Any = new_eval[k] def __UpperCAmelCase ( __a : List[str] ,__a : Dict ,__a : int ,__a : Optional[int] ) -> str: """simple docstring""" plt.step(__a ,__a ,color='''b''' ,alpha=0.2 ,where='''post''' ) plt.fill_between(__a ,__a ,step='''post''' ,alpha=0.2 ,color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def __UpperCAmelCase ( __a : Optional[int] ,__a : List[Any] ,__a : int ,__a : Union[str, Any] ,__a : Any=None ,__a : str=None ) -> str: """simple docstring""" _a : Any = sorted(__a ,key=lambda __a : na_probs[k] ) _a : int = 0.0 _a : Optional[Any] = 1.0 _a : int = 0.0 _a : Any = [1.0] _a : str = [0.0] _a : Optional[Any] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] _a : List[str] = true_pos / float(i + 1 ) _a : List[Any] = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a ,__a ,__a ,__a ) return {"ap": 1_00.0 * avg_prec} def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Dict ,__a : Dict ,__a : Optional[int] ,__a : Union[str, Any] ) -> Dict: """simple docstring""" if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) _a : Union[str, Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _a : int = make_precision_recall_eval( __a ,__a ,__a ,__a ,out_image=os.path.join(__a ,'''pr_exact.png''' ) ,title='''Precision-Recall curve for Exact Match score''' ,) _a : Tuple = make_precision_recall_eval( __a ,__a ,__a ,__a ,out_image=os.path.join(__a ,'''pr_f1.png''' ) ,title='''Precision-Recall curve for F1 score''' ,) _a : Union[str, Any] = {k: float(__a ) for k, v in qid_to_has_ans.items()} _a : Dict = make_precision_recall_eval( __a ,__a ,__a ,__a ,out_image=os.path.join(__a ,'''pr_oracle.png''' ) ,title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' ,) merge_eval(__a ,__a ,'''pr_exact''' ) merge_eval(__a ,__a ,'''pr_f1''' ) merge_eval(__a ,__a ,'''pr_oracle''' ) def __UpperCAmelCase ( __a : str ,__a : Optional[int] ,__a : Optional[Any] ,__a : List[Any] ) -> Optional[Any]: """simple docstring""" if not qid_list: return _a : List[str] = [na_probs[k] for k in qid_list] _a : Optional[int] = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a ,weights=__a ,bins=20 ,range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__a ,F"""na_prob_hist_{name}.png""" ) ) plt.clf() def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ,__a : Union[str, Any] ,__a : Optional[Any] ) -> str: """simple docstring""" _a : List[Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _a : Dict = num_no_ans _a : List[Any] = cur_score _a : str = 0.0 _a : Tuple = sorted(__a ,key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: _a : List[str] = scores[qid] else: if preds[qid]: _a : Tuple = -1 else: _a : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: _a : Dict = cur_score _a : List[str] = na_probs[qid] return 1_00.0 * best_score / len(__a ), best_thresh def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : List[str] ,__a : str ,__a : Optional[int] ,__a : List[str] ) -> Dict: """simple docstring""" _a , _a : str = find_best_thresh(__a ,__a ,__a ,__a ) _a , _a : List[str] = find_best_thresh(__a ,__a ,__a ,__a ) _a : Union[str, Any] = best_exact _a : Union[str, Any] = exact_thresh _a : int = best_fa _a : int = fa_thresh def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" with open(OPTS.data_file ) as f: _a : Dict = json.load(__a ) _a : Dict = dataset_json['''data'''] with open(OPTS.pred_file ) as f: _a : Any = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _a : List[Any] = json.load(__a ) else: _a : Optional[int] = {k: 0.0 for k in preds} _a : List[str] = make_qid_to_has_ans(__a ) # maps qid to True/False _a : Dict = [k for k, v in qid_to_has_ans.items() if v] _a : Any = [k for k, v in qid_to_has_ans.items() if not v] _a , _a : Dict = get_raw_scores(__a ,__a ) _a : Any = apply_no_ans_threshold(__a ,__a ,__a ,OPTS.na_prob_thresh ) _a : str = apply_no_ans_threshold(__a ,__a ,__a ,OPTS.na_prob_thresh ) _a : Optional[int] = make_eval_dict(__a ,__a ) if has_ans_qids: _a : Tuple = make_eval_dict(__a ,__a ,qid_list=__a ) merge_eval(__a ,__a ,'''HasAns''' ) if no_ans_qids: _a : str = make_eval_dict(__a ,__a ,qid_list=__a ) merge_eval(__a ,__a ,'''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__a ,__a ,__a ,__a ,__a ,__a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a ,__a ,__a ,__a ,__a ,OPTS.out_image_dir ) histogram_na_prob(__a ,__a ,OPTS.out_image_dir ,'''hasAns''' ) histogram_na_prob(__a ,__a ,OPTS.out_image_dir ,'''noAns''' ) if OPTS.out_file: with open(OPTS.out_file ,'''w''' ) as f: json.dump(__a ,__a ) else: print(json.dumps(__a ,indent=2 ) ) if __name__ == "__main__": a__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = "EncodecFeatureExtractor" UpperCAmelCase__ : str = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _a , _a ) -> Dict: super().__init__(_a , _a ) _a : int = self.feature_extractor _a : Optional[int] = False def __lowercase ( self , _a=None , _a=None , _a=True ) -> List[str]: return self.tokenizer.get_decoder_prompt_ids(task=_a , language=_a , no_timestamps=_a ) def __call__( self , *_a , **_a ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) _a : Any = kwargs.pop('''audio''' , _a ) _a : Tuple = kwargs.pop('''sampling_rate''' , _a ) _a : List[Any] = kwargs.pop('''text''' , _a ) if len(_a ) > 0: _a : Any = args[0] _a : Tuple = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _a : Any = self.tokenizer(_a , **_a ) if audio is not None: _a : Tuple = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if audio is None: return inputs elif text is None: return audio_inputs else: _a : Any = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _a : List[Any] = audio_inputs['''padding_mask'''] return inputs def __lowercase ( self , *_a , **_a ) -> Optional[int]: _a : Tuple = kwargs.pop('''audio''' , _a ) _a : List[Any] = kwargs.pop('''padding_mask''' , _a ) if len(_a ) > 0: _a : List[str] = args[0] _a : Optional[Any] = args[1:] if audio_values is not None: return self._decode_audio(_a , padding_mask=_a ) else: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) def __lowercase ( self , _a , _a = None ) -> List[np.ndarray]: _a : Any = to_numpy(_a ) _a , _a , _a : Optional[int] = audio_values.shape if padding_mask is None: return list(_a ) _a : List[str] = to_numpy(_a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _a : Optional[Any] = seq_len - padding_mask.shape[-1] _a : Dict = 1 - self.feature_extractor.padding_value _a : Dict = np.pad(_a , ((0, 0), (0, difference)) , '''constant''' , constant_values=_a ) _a : Optional[Any] = audio_values.tolist() for i in range(_a ): _a : Any = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _a : Optional[int] = sliced_audio.reshape(_a , -1 ) return audio_values
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
a__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __UpperCAmelCase ( __a : str ,__a : Dict ,__a : Optional[Any]=None ,__a : Optional[Any]=None ,__a : str=None ,__a : int=None ,__a : Optional[Any]=None ,__a : Union[str, Any]=None ,) -> Optional[Any]: """simple docstring""" if attention_mask is None: _a : Union[str, Any] = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: _a : str = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: _a : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _a : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _a : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=False , _a=9_9 , _a=1_6 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=3_2 , _a=2 , _a=1 , _a=0 , _a=0.02 , ) -> List[str]: _a : List[Any] = parent _a : List[Any] = batch_size _a : List[str] = seq_length _a : Any = is_training _a : Tuple = use_labels _a : List[Any] = vocab_size _a : Union[str, Any] = hidden_size _a : Optional[Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : Union[str, Any] = intermediate_size _a : Dict = hidden_act _a : Any = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : List[Any] = eos_token_id _a : Optional[Any] = pad_token_id _a : Any = bos_token_id _a : Any = initializer_range def __lowercase ( self ) -> Dict: _a : int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _a : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _a : Tuple = shift_tokens_right(_a , 1 , 2 ) _a : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_a , ) _a : Tuple = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def __lowercase ( self ) -> List[str]: _a , _a : Dict = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self , _a , _a , _a ) -> str: _a : Optional[int] = 2_0 _a : Union[str, Any] = model_class_name(_a ) _a : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) _a , _a : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a : Any = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _a : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _a : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a : Any = model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) _a : Union[str, Any] = model.decode(_a , _a ) _a : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def __lowercase ( self , _a , _a , _a ) -> str: _a : Union[str, Any] = 2_0 _a : str = model_class_name(_a ) _a : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) _a , _a : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _a : Tuple = model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _a : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : List[str] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _a : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a : List[str] = model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) _a : Dict = model.decode(_a , _a , decoder_attention_mask=_a ) _a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = 99 def __lowercase ( self ) -> List[str]: _a : List[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _a : List[str] = input_ids.shape[0] _a : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowercase ( self ) -> int: _a , _a , _a : List[Any] = self._get_config_and_data() _a : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a ) _a : Dict = lm_model(input_ids=_a ) _a : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _a ) def __lowercase ( self ) -> Dict: _a : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _a : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a ) _a : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _a : Optional[Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _a : Tuple = lm_model(input_ids=_a , decoder_input_ids=_a ) _a : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _a : List[str] = shift_tokens_right(_a , 1 , 2 ) _a : Union[str, Any] = np.equal(_a , 1 ).astype(np.floataa ).sum() _a : int = np.equal(_a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase , __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = FlaxBlenderbotModelTester(self ) def __lowercase ( self ) -> int: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a ) def __lowercase ( self ) -> Tuple: _a , _a : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : List[Any] = self._prepare_for_class(_a , _a ) _a : Optional[Any] = model_class(_a ) @jax.jit def encode_jitted(_a , _a=None , **_a ): return model.encode(input_ids=_a , attention_mask=_a ) with self.subTest('''JIT Enabled''' ): _a : Optional[Any] = encode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a : Tuple = encode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( self ) -> Dict: _a , _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : List[str] = model_class(_a ) _a : List[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _a : Union[str, Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_a , _a , _a ): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('''JIT Enabled''' ): _a : Optional[int] = decode_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a : Dict = decode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowercase ( self ) -> Tuple: for model_class_name in self.all_model_classes: _a : str = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _a : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id _a : str = model(_a ) self.assertIsNotNone(_a ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def __lowercase ( self ) -> Any: _a : Tuple = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} _a : Union[str, Any] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} _a : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_a ) _a : str = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) _a : List[Any] = ['''Sam'''] _a : str = tokenizer(_a , return_tensors='''jax''' ) _a : List[Any] = model.generate(**_a , **_a ) _a : Optional[Any] = '''Sam is a great name. It means "sun" in Gaelic.''' _a : Dict = tokenizer.batch_decode(_a , **_a ) assert generated_txt[0].strip() == tgt_text
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1
from __future__ import annotations import time a__ = list[tuple[int, int]] a__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a , _a , _a ) -> Any: _a : Any = pos_x _a : Union[str, Any] = pos_y _a : Dict = (pos_y, pos_x) _a : Union[str, Any] = goal_x _a : Union[str, Any] = goal_y _a : int = parent class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> int: _a : str = Node(start[1] , start[0] , goal[1] , goal[0] , _a ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _a ) _a : int = [self.start] _a : List[Any] = False def __lowercase ( self ) -> Path | None: while self.node_queue: _a : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : List[Any] = True return self.retrace_path(_a ) _a : Optional[Any] = self.get_successors(_a ) for node in successors: self.node_queue.append(_a ) if not self.reached: return [self.start.pos] return None def __lowercase ( self , _a ) -> list[Node]: _a : List[Any] = [] for action in delta: _a : List[Any] = parent.pos_x + action[1] _a : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_a , _a , self.target.pos_y , self.target.pos_x , _a ) ) return successors def __lowercase ( self , _a ) -> Path: _a : Dict = node _a : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : List[Any] = current_node.parent path.reverse() return path class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> List[Any]: _a : Optional[int] = BreadthFirstSearch(_a , _a ) _a : List[str] = BreadthFirstSearch(_a , _a ) _a : Tuple = False def __lowercase ( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[Any] = True return self.retrace_bidirectional_path( _a , _a ) _a : List[Any] = current_bwd_node _a : Dict = current_fwd_node _a : int = { self.fwd_bfs: self.fwd_bfs.get_successors(_a ), self.bwd_bfs: self.bwd_bfs.get_successors(_a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __lowercase ( self , _a , _a ) -> Path: _a : str = self.fwd_bfs.retrace_path(_a ) _a : Any = self.bwd_bfs.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() _a : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a__ = (0, 0) a__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ = time.time() a__ = BreadthFirstSearch(init, goal) a__ = bfs.search() a__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) a__ = time.time() a__ = BidirectionalBreadthFirstSearch(init, goal) a__ = bd_bfs.search() a__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a__ = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def __UpperCAmelCase ( __a : str = "dhaka" ,__a : int = 5 ) -> int: """simple docstring""" _a : Optional[Any] = min(__a ,50 ) # Prevent abuse! _a : str = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _a : Dict = requests.get('''https://www.google.com/search''' ,params=__a ,headers=__a ) _a : List[str] = BeautifulSoup(html.text ,'''html.parser''' ) _a : Union[str, Any] = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' ,str(soup.select('''script''' ) ) ) ) _a : Optional[Any] = json.dumps(__a ) _a : Tuple = json.loads(__a ) _a : List[str] = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' ,__a ,) if not matched_google_image_data: return 0 _a : Dict = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' ,'''''' ,str(__a ) ,) _a : List[str] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' ,__a ,) for index, fixed_full_res_image in enumerate(__a ): if index >= max_images: return index _a : List[Any] = bytes(__a ,'''ascii''' ).decode( '''unicode-escape''' ) _a : Optional[Any] = bytes(__a ,'''ascii''' ).decode( '''unicode-escape''' ) _a : Any = urllib.request.build_opener() _a : List[str] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__a ) _a : Any = F"""query_{query.replace(' ' ,'_' )}""" if not os.path.exists(__a ): os.makedirs(__a ) urllib.request.urlretrieve( # noqa: S310 __a ,F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: a__ = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
15
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} a__ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } a__ = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ) -> Optional[int]: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : Dict = json.loads(f.read() ) _a : Tuple = collections.OrderedDict() _a : List[str] = collections.OrderedDict() _a : Any = collections.OrderedDict() with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : List[str] = f.readlines() _a : Dict = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__a ): _a : List[str] = b _a : Optional[Any] = idx for wd in b: _a : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self , _a , _a , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|startoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ) -> Optional[Any]: super().__init__( unk_token=_a , pad_token=_a , bos_token=_a , eos_token=_a , do_clean_text=_a , **_a , ) if not os.path.isfile(_a ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_a ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _a : Dict = do_clean_text _a , _a , _a , _a : Any = load_vocab_and_emoji(_a , _a ) _a : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __lowercase ( self ) -> Any: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowercase ( self ) -> List[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __lowercase ( self , _a ) -> Tuple: return self.subword_tokenizer.tokenize(_a , clean=self.do_clean_text ) def __lowercase ( self , _a ) -> Any: return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def __lowercase ( self , _a ) -> Dict: return self.subword_tokenizer.convert_id_to_token(_a ) def __lowercase ( self , _a ) -> Dict: _a : Optional[int] = ''''''.join(_a ).strip() return out_string def __lowercase ( self , _a ) -> List[int]: _a : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: _a : Dict = input_ids[-self.model_max_length :] return input_ids def __lowercase ( self , _a , _a = None ) -> Tuple[str]: _a : int = 0 if os.path.isdir(_a ): _a : Any = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a : Dict = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _a : str = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _a : Optional[int] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_a , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _a : Tuple = token_index writer.write(''','''.join(_a ) + '''\n''' ) index += 1 with open(_a , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _a ) return vocab_file, emoji_file class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a , _a ) -> Optional[Any]: _a : Tuple = vocab # same as swe _a : str = ids_to_tokens # same as bpe _a : str = emoji _a : List[str] = np.max([len(_a ) for w in self.vocab.keys()] ) _a : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _a : Any = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _a : Union[str, Any] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _a : Any = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _a : Union[str, Any] = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _a : int = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _a : Union[str, Any] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _a : Any = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _a : str = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Optional[Any]: return len(self.ids_to_tokens ) def __lowercase ( self , _a ) -> int: _a : Union[str, Any] = self.content_repattera.sub('''<URL>''' , _a ) _a : List[Any] = self.content_repattera.sub('''<EMAIL>''' , _a ) _a : Optional[Any] = self.content_repattera.sub('''<TEL>''' , _a ) _a : str = self.content_repattera.sub('''<DATE>''' , _a ) _a : Union[str, Any] = self.content_repattera.sub('''<DATE>''' , _a ) _a : Dict = self.content_repattera.sub('''<PRICE>''' , _a ) _a : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _a : Union[str, Any] = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def __lowercase ( self , _a , _a=False ) -> Dict: _a : List[str] = text.replace(''' ''' , '''<SP>''' ) _a : Any = text.replace(''' ''' , '''<SP>''' ) _a : Any = text.replace('''\r\n''' , '''<BR>''' ) _a : int = text.replace('''\n''' , '''<BR>''' ) _a : Optional[int] = text.replace('''\r''' , '''<BR>''' ) _a : Union[str, Any] = text.replace('''\t''' , '''<TAB>''' ) _a : Optional[Any] = text.replace('''—''' , '''ー''' ) _a : Tuple = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _a : Union[str, Any] = text.replace(_a , _a ) if clean: _a : int = self.clean_text(_a ) def check_simbol(_a ): _a : str = x.encode() if len(_a ) == 1 and len(_a ) == 2: _a : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2_a_1 and c <= 0xc_2_b_f) or (c >= 0xc_7_8_0 and c <= 0xc_7_8_3) or (c >= 0xc_a_b_9 and c <= 0xc_b_b_f) or (c >= 0xc_c_8_0 and c <= 0xc_d_a_2) ): return True return False def checkuae(_a ): _a : Any = x.encode() if len(_a ) == 1 and len(_a ) == 3: _a : List[Any] = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe_2_8_0_8_0 and c <= 0xe_2_b_0_7_f: return True return False _a : str = 0 _a : Optional[Any] = [] while pos < len(_a ): _a : int = min(len(_a ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 _a : List[Any] = [] # (token_id, token, pos) for e in range(_a , _a , -1 ): _a : Tuple = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_a ) > 2: _a : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_a ) > 0: # the smallest token_id is adopted _a , _a , _a : List[Any] = sorted(_a , key=lambda _a : x[0] )[0] result.append(_a ) _a : Tuple = e else: _a : Optional[int] = pos + 1 _a : str = text[pos:end] if check_simbol(_a ): result.append('''<KIGOU>''' ) elif checkuae(_a ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _a : str = end return result def __lowercase ( self , _a , _a="\n" ) -> List[str]: _a : Optional[int] = [] _a : str = [] _a : int = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) _a : List[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_a ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_a ) if len(_a ) > 0: words.append(bytearray(_a ).decode('''utf-8''' , errors='''replace''' ) ) _a : str = ''''''.join(_a ) return text
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = KandinskyVaaPriorPipeline UpperCAmelCase__ : List[Any] = ["prompt"] UpperCAmelCase__ : List[str] = ["prompt", "negative_prompt"] UpperCAmelCase__ : List[str] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] UpperCAmelCase__ : Union[str, Any] = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> Optional[Any]: return 3_2 @property def __lowercase ( self ) -> Union[str, Any]: return self.time_input_dim @property def __lowercase ( self ) -> Optional[int]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Union[str, Any]: return 1_0_0 @property def __lowercase ( self ) -> str: _a : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowercase ( self ) -> Any: torch.manual_seed(0 ) _a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_a ) @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : Union[str, Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _a : Dict = PriorTransformer(**_a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _a : str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowercase ( self ) -> int: torch.manual_seed(0 ) _a : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) _a : Optional[Any] = CLIPVisionModelWithProjection(_a ) return model @property def __lowercase ( self ) -> Optional[Any]: _a : str = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def __lowercase ( self ) -> Dict: _a : int = self.dummy_prior _a : int = self.dummy_image_encoder _a : int = self.dummy_text_encoder _a : Optional[int] = self.dummy_tokenizer _a : Any = self.dummy_image_processor _a : Union[str, Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=_a , clip_sample_range=10.0 , ) _a : Tuple = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowercase ( self , _a , _a=0 ) -> Tuple: if str(_a ).startswith('''mps''' ): _a : Dict = torch.manual_seed(_a ) else: _a : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _a : Tuple = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : List[str] = '''cpu''' _a : Tuple = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Optional[Any] = pipe(**self.get_dummy_inputs(_a ) ) _a : Any = output.image_embeds _a : Optional[int] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Dict = image[0, -1_0:] _a : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) _a : str = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowercase ( self ) -> int: _a : Union[str, Any] = torch_device == '''cpu''' _a : Dict = True _a : Any = False self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , test_mean_pixel_difference=_a , ) @skip_mps def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = torch_device == '''cpu''' _a : Any = False self._test_attention_slicing_forward_pass( test_max_difference=_a , test_mean_pixel_difference=_a , )
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=1_6 , _a=3_6 , _a=6 , _a=6 , _a=6 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Optional[Any]: _a : Union[str, Any] = parent _a : int = batch_size _a : Dict = seq_length _a : Union[str, Any] = is_training _a : Union[str, Any] = use_input_mask _a : int = use_token_type_ids _a : str = use_labels _a : int = vocab_size _a : Optional[Any] = embedding_size _a : str = hidden_size _a : Optional[int] = num_hidden_layers _a : str = num_hidden_groups _a : List[Any] = num_attention_heads _a : List[Any] = intermediate_size _a : List[str] = hidden_act _a : int = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : List[Any] = type_vocab_size _a : List[str] = type_sequence_label_size _a : Optional[Any] = initializer_range _a : Tuple = num_labels _a : str = num_choices _a : Tuple = scope def __lowercase ( self ) -> Optional[Any]: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[Any] = None if self.use_input_mask: _a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[Any] = None if self.use_token_type_ids: _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : List[str] = None _a : Tuple = None _a : Any = None if self.use_labels: _a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self ) -> Tuple: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: _a : Dict = AlbertModel(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a ) _a : Union[str, Any] = model(_a , token_type_ids=_a ) _a : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: _a : Any = AlbertForPreTraining(config=_a ) model.to(_a ) model.eval() _a : Dict = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , sentence_order_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: _a : Dict = AlbertForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Optional[Any] = AlbertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _a : Tuple = self.num_labels _a : Dict = AlbertForSequenceClassification(_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: _a : Optional[int] = self.num_labels _a : Union[str, Any] = AlbertForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _a : Dict = self.num_choices _a : int = AlbertForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Tuple = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[int] = config_and_inputs _a : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True def __lowercase ( self , _a , _a , _a=False ) -> List[str]: _a : int = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): _a : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) _a : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def __lowercase ( self ) -> str: _a : Tuple = AlbertModelTester(self ) _a : int = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> Dict: self.config_tester.run_common_tests() def __lowercase ( self ) -> Any: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> str: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def __lowercase ( self ) -> int: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __lowercase ( self ) -> Optional[int]: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __lowercase ( self ) -> Any: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*_a ) @slow def __lowercase ( self ) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = AlbertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> int: _a : Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) _a : int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _a : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : List[str] = model(_a , attention_mask=_a )[0] _a : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _a ) _a : List[Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , _a , _a ) -> List[Any]: return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_a ) for s in shape] )}.npy""" def __lowercase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __lowercase ( self , _a=0 , _a=(4, 4, 6_4, 6_4) , _a=False ) -> str: _a : int = jnp.bfloataa if fpaa else jnp.floataa _a : Any = jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return image def __lowercase ( self , _a=False , _a="CompVis/stable-diffusion-v1-4" ) -> Optional[int]: _a : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _a : Any = '''bf16''' if fpaa else None _a , _a : Dict = FlaxUNetaDConditionModel.from_pretrained( _a , subfolder='''unet''' , dtype=_a , revision=_a ) return model, params def __lowercase ( self , _a=0 , _a=(4, 7_7, 7_6_8) , _a=False ) -> int: _a : List[Any] = jnp.bfloataa if fpaa else jnp.floataa _a : Tuple = jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __lowercase ( self , _a , _a , _a ) -> List[Any]: _a , _a : List[str] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_a ) _a : Optional[Any] = self.get_latents(_a , fpaa=_a ) _a : Any = self.get_encoder_hidden_states(_a , fpaa=_a ) _a : Optional[Any] = model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape _a : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a : Dict = jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_a , _a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __lowercase ( self , _a , _a , _a ) -> Any: _a , _a : Any = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_a ) _a : int = self.get_latents(_a , shape=(4, 4, 9_6, 9_6) , fpaa=_a ) _a : Tuple = self.get_encoder_hidden_states(_a , shape=(4, 7_7, 1_0_2_4) , fpaa=_a ) _a : int = model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape _a : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a : int = jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_a , _a , atol=1e-2 )
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Optional[int] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=__a ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=__a ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=__a ) return parser.parse_args() def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Tuple = parse_args() # Import training_script as a module. _a : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a : int = script_fpath.stem _a : List[Any] = importlib.import_module(__a ) # Patch sys.argv _a : Tuple = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" _a : Union[str, Any] = 2**power _a : Union[str, Any] = 0 while n: _a , _a : Dict = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
1
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "M-CLIP" def __init__( self , _a=1_0_2_4 , _a=7_6_8 , **_a ) -> Optional[int]: _a : List[str] = transformerDimSize _a : Optional[int] = imageDimSize super().__init__(**_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = MCLIPConfig def __init__( self , _a , *_a , **_a ) -> int: super().__init__(_a , *_a , **_a ) _a : Union[str, Any] = XLMRobertaModel(_a ) _a : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __lowercase ( self , _a , _a ) -> Tuple: _a : str = self.transformer(input_ids=_a , attention_mask=_a )[0] _a : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_a ), embs
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
import math def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" _a : List[str] = 0 _a : List[str] = 0 while num > 0: _a : str = num % 8 _a : int = octal + (remainder * math.floor(math.pow(10 ,__a ) )) counter += 1 _a : List[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__a )}""" def __UpperCAmelCase ( ) -> None: """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" return getitem, k def __UpperCAmelCase ( __a : int ,__a : List[Any] ) -> Optional[int]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( __a : Any ) -> Optional[Any]: """simple docstring""" return delitem, k def __UpperCAmelCase ( __a : Any ,__a : List[str] ,*__a : Any ) -> Dict: """simple docstring""" try: return fun(__a ,*__a ), None except Exception as e: return None, e a__ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) a__ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] a__ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] a__ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' ,( pytest.param(_add_items ,id='''add items''' ), pytest.param(_overwrite_items ,id='''overwrite items''' ), pytest.param(_delete_items ,id='''delete items''' ), pytest.param(_access_absent_items ,id='''access absent items''' ), pytest.param(_add_with_resize_up ,id='''add with resize up''' ), pytest.param(_add_with_resize_down ,id='''add with resize down''' ), ) ,) def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : str = HashMap(initial_block_size=4 ) _a : Union[str, Any] = {} for _, (fun, *args) in enumerate(__a ): _a , _a : List[Any] = _run_operation(__a ,__a ,*__a ) _a , _a : List[Any] = _run_operation(__a ,__a ,*__a ) assert my_res == py_res assert str(__a ) == str(__a ) assert set(__a ) == set(__a ) assert len(__a ) == len(__a ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" def is_public(__a : str ) -> bool: return not name.startswith('''_''' ) _a : List[Any] = {name for name in dir({} ) if is_public(__a )} _a : Tuple = {name for name in dir(HashMap() ) if is_public(__a )} assert dict_public_names > hash_public_names
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float UpperCAmelCase__ : float UpperCAmelCase__ : Tuple[int] def __lowercase ( self ) -> Any: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __lowercase ( self ) -> Tuple: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __lowercase ( self ) -> List[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __lowercase ( self ) -> torch.Tensor: _a : List[str] = torch.arange(self.height * self.width ) _a : Dict = torch.stack( [ pixel_indices % self.width, torch.div(_a , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def __lowercase ( self ) -> Optional[Any]: _a , *_a : Optional[Any] = self.shape _a : str = int(np.prod(_a ) ) _a : Dict = self.get_image_coords() _a : int = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _a : int = self.get_camera_rays(_a ) _a : Tuple = rays.view(_a , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __lowercase ( self , _a ) -> torch.Tensor: _a , *_a , _a : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _a : int = coords.view(_a , -1 , 2 ) _a : Any = self.resolution() _a : List[Any] = self.fov() _a : str = (flat.float() / (res - 1)) * 2 - 1 _a : List[Any] = fracs * torch.tan(fov / 2 ) _a : Any = fracs.view(_a , -1 , 2 ) _a : Dict = ( self.z.view(_a , 1 , 3 ) + self.x.view(_a , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_a , 1 , 3 ) * fracs[:, :, 1:] ) _a : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=_a ) _a : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_a , *_a , 2 , 3 ) def __lowercase ( self , _a , _a ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_a , height=_a , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( __a : int ) -> DifferentiableProjectiveCamera: """simple docstring""" _a : List[Any] = [] _a : str = [] _a : str = [] _a : Tuple = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _a : Dict = np.array([np.sin(__a ), np.cos(__a ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _a : List[str] = -z * 4 _a : Dict = np.array([np.cos(__a ), -np.sin(__a ), 0.0] ) _a : Union[str, Any] = np.cross(__a ,__a ) origins.append(__a ) xs.append(__a ) ys.append(__a ) zs.append(__a ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__a ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(__a ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(__a ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(__a ,axis=0 ) ).float() ,width=__a ,height=__a ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(__a )) ,)
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
a__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : str = input('''Enter message: ''' ) _a : int = input('''Enter key [alphanumeric]: ''' ) _a : List[Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): _a : List[str] = '''encrypt''' _a : Optional[Any] = encrypt_message(__a ,__a ) elif mode.lower().startswith('''d''' ): _a : Dict = '''decrypt''' _a : Tuple = decrypt_message(__a ,__a ) print(F"""\n{mode.title()}ed message:""" ) print(__a ) def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" return translate_message(__a ,__a ,'''encrypt''' ) def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" return translate_message(__a ,__a ,'''decrypt''' ) def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ) -> str: """simple docstring""" _a : Dict = [] _a : Optional[Any] = 0 _a : Any = key.upper() for symbol in message: _a : List[str] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): _a : int = 0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __UpperCAmelCase ( __a : Union[str, Any] ,__a : tuple ,__a : Path ,__a : Optional[Any] ,__a : Any ,__a : List[str] ,__a : int ,__a : Optional[Any]=False ,) -> str: """simple docstring""" output_path.parent.mkdir(parents=__a ,exist_ok=__a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,use_external_data_format=__a ,enable_onnx_checker=__a ,opset_version=__a ,) else: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,opset_version=__a ,) @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : int ,__a : bool = False ) -> Tuple: """simple docstring""" _a : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _a : Dict = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: _a : List[str] = '''cpu''' _a : Any = Path(__a ) # VAE DECODER _a : List[str] = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) _a : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _a : Union[str, Any] = vae_decoder.decode onnx_export( __a ,model_args=( torch.randn(1 ,__a ,25 ,25 ).to(device=__a ,dtype=__a ), False, ) ,output_path=output_path / '''vae_decoder''' / '''model.onnx''' ,ordered_input_names=['''latent_sample''', '''return_dict'''] ,output_names=['''sample'''] ,dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } ,opset=__a ,) del vae_decoder if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') a__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __UpperCAmelCase ( __a : Any ,__a : Optional[int] ,__a : str=1E-12 ) -> Dict: """simple docstring""" _a : Any = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__a ,axis=1 ) ,a_min=__a ) ).T _a : Optional[Any] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__a ,axis=1 ) ,a_min=__a ) ).T return jnp.matmul(__a ,norm_emb_a.T ) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : CLIPConfig UpperCAmelCase__ : jnp.dtype = jnp.floataa def __lowercase ( self ) -> List[Any]: _a : List[Any] = FlaxCLIPVisionModule(self.config.vision_config ) _a : Tuple = nn.Dense(self.config.projection_dim , use_bias=_a , dtype=self.dtype ) _a : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) _a : Optional[int] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _a : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) _a : int = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , _a ) -> Union[str, Any]: _a : str = self.vision_model(_a )[1] _a : Optional[Any] = self.visual_projection(_a ) _a : Tuple = jax_cosine_distance(_a , self.special_care_embeds ) _a : Optional[int] = jax_cosine_distance(_a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _a : Union[str, Any] = 0.0 _a : Optional[int] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _a : Dict = jnp.round(_a , 3 ) _a : Optional[int] = jnp.any(special_scores > 0 , axis=1 , keepdims=_a ) # Use a lower threshold if an image has any special care concept _a : Union[str, Any] = is_special_care * 0.01 _a : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _a : Optional[int] = jnp.round(_a , 3 ) _a : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = CLIPConfig UpperCAmelCase__ : Tuple = "clip_input" UpperCAmelCase__ : Optional[int] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _a , _a = None , _a = 0 , _a = jnp.floataa , _a = True , **_a , ) -> Optional[Any]: if input_shape is None: _a : Optional[Any] = (1, 2_2_4, 2_2_4, 3) _a : int = self.module_class(config=_a , dtype=_a , **_a ) super().__init__(_a , _a , input_shape=_a , seed=_a , dtype=_a , _do_init=_do_init ) def __lowercase ( self , _a , _a , _a = None ) -> FrozenDict: # init input tensor _a : Optional[int] = jax.random.normal(_a , _a ) _a , _a : str = jax.random.split(_a ) _a : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} _a : Tuple = self.module.init(_a , _a )['''params'''] return random_params def __call__( self , _a , _a = None , ) -> Tuple: _a : List[str] = jnp.transpose(_a , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(_a , dtype=jnp.floataa ) , rngs={} , )
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
def __UpperCAmelCase ( __a : list ) -> list: """simple docstring""" if len(__a ) <= 1: return [tuple(__a )] _a : Tuple = [] def generate(__a : int ,__a : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 ,__a ) for i in range(k - 1 ): if k % 2 == 0: # k is even _a , _a : Dict = arr[k - 1], arr[i] else: # k is odd _a , _a : int = arr[k - 1], arr[0] generate(k - 1 ,__a ) generate(len(__a ) ,__a ) return res if __name__ == "__main__": a__ = input('''Enter numbers separated by a comma:\n''').strip() a__ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } a__ = { '''camembert-base''': 512, } a__ = '''▁''' class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=["<s>NOTUSED", "</s>NOTUSED"] , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _a : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _a : Tuple = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} _a : Union[str, Any] = len(self.fairseq_tokens_to_ids ) _a : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _a : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowercase ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Dict = [self.cls_token_id] _a : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self , _a , _a = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self ) -> Dict: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def __lowercase ( self , _a ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self , _a ) -> Tuple: _a : Dict = [] _a : int = '''''' _a : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _a : Optional[int] = True _a : Any = [] else: current_sub_tokens.append(_a ) _a : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ) -> Union[str, Any]: _a : Optional[Any] = self.__dict__.copy() _a : int = None return state def __setstate__( self , _a ) -> Optional[int]: _a : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : List[str] = {} _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : int = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: _a : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 2_5_5 , _a = True , _a = IMAGENET_DEFAULT_MEAN , _a = IMAGENET_DEFAULT_STD , **_a , ) -> None: super().__init__(**_a ) _a : int = size if size is not None else {'''shortest_edge''': 2_2_4} _a : List[str] = get_size_dict(_a , default_to_square=_a ) _a : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Optional[int] = get_size_dict(_a , param_name='''crop_size''' ) _a : Optional[int] = do_resize _a : str = size _a : List[str] = resample _a : str = do_center_crop _a : Optional[Any] = crop_size _a : Union[str, Any] = do_rescale _a : str = rescale_factor _a : List[Any] = do_normalize _a : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowercase ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _a : Optional[int] = get_size_dict(_a , default_to_square=_a ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _a : Optional[int] = int((2_5_6 / 2_2_4) * size['''shortest_edge'''] ) _a : Any = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) _a : Dict = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _a , size=(size_dict['''height'''], size_dict['''width''']) , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _a : int = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> BatchFeature: _a : int = do_resize if do_resize is not None else self.do_resize _a : Optional[Any] = resample if resample is not None else self.resample _a : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : Any = do_rescale if do_rescale is not None else self.do_rescale _a : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Dict = do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _a : Union[str, Any] = image_std if image_std is not None else self.image_std _a : Union[str, Any] = size if size is not None else self.size _a : str = get_size_dict(_a , default_to_square=_a ) _a : Optional[int] = crop_size if crop_size is not None else self.crop_size _a : Union[str, Any] = get_size_dict(_a , param_name='''crop_size''' ) _a : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(_a ) for image in images] if do_resize: _a : int = [self.resize(_a , _a , _a ) for image in images] if do_center_crop: _a : Any = [self.center_crop(_a , _a ) for image in images] if do_rescale: _a : Any = [self.rescale(_a , _a ) for image in images] if do_normalize: _a : Optional[int] = [self.normalize(_a , _a , _a ) for image in images] _a : Optional[int] = [to_channel_dimension_format(_a , _a ) for image in images] _a : Dict = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1
from __future__ import annotations from collections import deque class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> List[str]: _a : list[dict] = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(_a ) self.set_fail_transitions() def __lowercase ( self , _a , _a ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __lowercase ( self , _a ) -> None: _a : Optional[Any] = 0 for character in keyword: _a : Optional[Any] = self.find_next_state(_a , _a ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _a : List[str] = len(self.adlist ) - 1 else: _a : Tuple = next_state self.adlist[current_state]["output"].append(_a ) def __lowercase ( self ) -> None: _a : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_a ) _a : Optional[int] = 0 while q: _a : Tuple = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_a ) _a : List[Any] = self.adlist[r]['''fail_state'''] while ( self.find_next_state(_a , self.adlist[child]['''value'''] ) is None and state != 0 ): _a : List[str] = self.adlist[state]['''fail_state'''] _a : Dict = self.find_next_state( _a , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: _a : Union[str, Any] = 0 _a : Optional[Any] = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def __lowercase ( self , _a ) -> dict[str, list[int]]: _a : dict = {} # returns a dict with keywords and list of its occurrences _a : Union[str, Any] = 0 for i in range(len(_a ) ): while ( self.find_next_state(_a , string[i] ) is None and current_state != 0 ): _a : Any = self.adlist[current_state]['''fail_state'''] _a : Tuple = self.find_next_state(_a , string[i] ) if next_state is None: _a : str = 0 else: _a : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _a : Tuple = [] result[key].append(i - len(_a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["torch", "scipy"] def __init__( self , *_a , **_a ) -> List[Any]: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Optional[int]: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] )
15
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
1
a__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase ( __a : dict[int, list[int]] ,__a : int ,__a : list[bool] ) -> list[int]: """simple docstring""" _a : Tuple = True _a : List[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a ,__a ,__a ) order.append(__a ) return order def __UpperCAmelCase ( __a : dict[int, list[int]] ,__a : int ,__a : list[bool] ) -> list[int]: """simple docstring""" _a : Tuple = True _a : List[str] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a ,__a ,__a ) return component def __UpperCAmelCase ( __a : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" _a : Tuple = len(__a ) * [False] _a : dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) _a : Dict = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a ,__a ,__a ) _a : Optional[Any] = [] _a : Tuple = len(__a ) * [False] for i in range(len(__a ) ): _a : Dict = order[len(__a ) - i - 1] if not visited[vert]: _a : int = find_components(__a ,__a ,__a ) components_list.append(__a ) return components_list
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
from __future__ import annotations from fractions import Fraction def __UpperCAmelCase ( __a : int ,__a : int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __UpperCAmelCase ( __a : int ) -> list[str]: """simple docstring""" _a : str = [] _a : Tuple = 11 _a : Optional[int] = int('''1''' + '''0''' * digit_len ) for num in range(__a ,__a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__a ,__a ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 _a : Any = 10 return solutions def __UpperCAmelCase ( __a : int = 2 ) -> int: """simple docstring""" _a : Tuple = 1.0 for fraction in fraction_list(__a ): _a : List[str] = Fraction(__a ) result *= frac.denominator / frac.numerator return int(__a ) if __name__ == "__main__": print(solution())
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: _a : Tuple = tempfile.mkdtemp() _a : List[str] = 5 # Realm tok _a : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Optional[int] = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _a : str = os.path.join(_a , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : List[str] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_a , exist_ok=_a ) def __lowercase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __lowercase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> List[str]: _a : int = RealmConfig(num_block_records=self.num_block_records ) return config def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __lowercase ( self ) -> Dict: _a : Any = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_a , ) return block_records def __lowercase ( self ) -> Optional[int]: _a : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowercase ( self ) -> Optional[int]: _a : Dict = self.get_config() _a : Tuple = self.get_dummy_retriever() _a : Dict = retriever.tokenizer _a : Union[str, Any] = np.array([0, 3] , dtype='''long''' ) _a : Any = tokenizer(['''Test question'''] ).input_ids _a : int = tokenizer( ['''the fourth'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : str = config.reader_seq_len _a , _a , _a , _a : Any = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = self.get_config() _a : Union[str, Any] = self.get_dummy_retriever() _a : Tuple = retriever.tokenizer _a : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _a : int = tokenizer(['''Test question'''] ).input_ids _a : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _a : Union[str, Any] = config.reader_seq_len _a , _a , _a , _a : List[Any] = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='''np''' ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def __lowercase ( self ) -> int: _a : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _a : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _a : Tuple = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _a : str = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __UpperCAmelCase ( __a : int ) -> Union[str, Any]: """simple docstring""" _a : Any = SwinConfig(image_size=192 ) if "base" in model_name: _a : Optional[int] = 6 _a : int = 128 _a : str = (2, 2, 18, 2) _a : Tuple = (4, 8, 16, 32) elif "large" in model_name: _a : Union[str, Any] = 12 _a : List[Any] = 192 _a : str = (2, 2, 18, 2) _a : Optional[Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) _a : List[str] = window_size _a : str = embed_dim _a : Union[str, Any] = depths _a : Optional[Any] = num_heads return config def __UpperCAmelCase ( __a : Tuple ) -> Dict: """simple docstring""" if "encoder.mask_token" in name: _a : int = name.replace('''encoder.mask_token''' ,'''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: _a : List[str] = name.replace('''encoder.patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: _a : Tuple = name.replace('''encoder.patch_embed.norm''' ,'''embeddings.norm''' ) if "attn.proj" in name: _a : List[str] = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : int = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : List[str] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : int = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : Optional[Any] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : int = name.replace('''mlp.fc2''' ,'''output.dense''' ) if name == "encoder.norm.weight": _a : Dict = '''layernorm.weight''' if name == "encoder.norm.bias": _a : Optional[Any] = '''layernorm.bias''' if "decoder" in name: pass else: _a : List[Any] = '''swin.''' + name return name def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Tuple = orig_state_dict.pop(__a ) if "attn_mask" in key: pass elif "qkv" in key: _a : List[str] = key.split('''.''' ) _a : Dict = int(key_split[2] ) _a : Any = int(key_split[4] ) _a : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a : str = val[:dim, :] _a : List[Any] = val[ dim : dim * 2, : ] _a : Tuple = val[-dim:, :] else: _a : Optional[Any] = val[ :dim ] _a : List[Any] = val[ dim : dim * 2 ] _a : str = val[ -dim: ] else: _a : Dict = val return orig_state_dict def __UpperCAmelCase ( __a : Any ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : Any ) -> List[Any]: """simple docstring""" _a : Any = torch.load(__a ,map_location='''cpu''' )['''model'''] _a : Optional[Any] = get_swin_config(__a ) _a : int = SwinForMaskedImageModeling(__a ) model.eval() _a : List[str] = convert_state_dict(__a ,__a ) model.load_state_dict(__a ) _a : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Tuple = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) _a : Any = Image.open(requests.get(__a ,stream=__a ).raw ) _a : str = image_processor(images=__a ,return_tensors='''pt''' ) with torch.no_grad(): _a : List[Any] = model(**__a ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = self.task_name.lower() class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "train" UpperCAmelCase__ : Optional[Any] = "dev" UpperCAmelCase__ : int = "test" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : GlueDataTrainingArguments UpperCAmelCase__ : str UpperCAmelCase__ : List[InputFeatures] def __init__( self , _a , _a , _a = None , _a = Split.train , _a = None , ) -> int: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , _a , ) _a : List[Any] = args _a : List[Any] = glue_processors[args.task_name]() _a : Optional[Any] = glue_output_modes[args.task_name] if isinstance(_a , _a ): try: _a : Optional[Any] = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _a : int = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _a : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a : Union[str, Any] = label_list[2], label_list[1] _a : List[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : Optional[Any] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: _a : str = time.time() _a : Union[str, Any] = torch.load(_a ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _a : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _a : Optional[int] = self.processor.get_test_examples(args.data_dir ) else: _a : Tuple = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _a : List[Any] = examples[:limit_length] _a : Optional[Any] = glue_convert_examples_to_features( _a , _a , max_length=args.max_seq_length , label_list=_a , output_mode=self.output_mode , ) _a : List[str] = time.time() torch.save(self.features , _a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i] def __lowercase ( self ) -> Optional[Any]: return self.label_list
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any]=None ,__a : Dict=None ) -> List[Any]: """simple docstring""" return field(default_factory=lambda: default ,metadata=__a ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) UpperCAmelCase__ : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase__ : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Benchmark training of model"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Trace memory line by line"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Whether to print environment information"} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) UpperCAmelCase__ : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) UpperCAmelCase__ : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) UpperCAmelCase__ : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) UpperCAmelCase__ : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) UpperCAmelCase__ : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) UpperCAmelCase__ : str = field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) UpperCAmelCase__ : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __lowercase ( self ) -> Union[str, Any]: warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _a , ) def __lowercase ( self ) -> List[Any]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __lowercase ( self ) -> List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def __lowercase ( self ) -> List[str]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
15
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
1
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=2 , _a=3 , _a=4 , _a=2 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_6 , _a=2 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=6 , _a=6 , _a=3 , _a=4 , _a=None , _a=1_0_0_0 , ) -> List[Any]: _a : Optional[int] = parent _a : Dict = batch_size _a : Optional[int] = num_channels _a : Tuple = image_size _a : str = patch_size _a : int = is_training _a : List[str] = use_input_mask _a : List[str] = use_token_type_ids _a : Tuple = use_labels _a : Optional[Any] = vocab_size _a : int = hidden_size _a : List[Any] = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : str = intermediate_size _a : Any = hidden_act _a : Any = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : Tuple = type_vocab_size _a : List[str] = type_sequence_label_size _a : Dict = initializer_range _a : List[str] = coordinate_size _a : List[str] = shape_size _a : Optional[int] = num_labels _a : Optional[int] = num_choices _a : Optional[int] = scope _a : Tuple = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _a : str = text_seq_length _a : List[str] = (image_size // patch_size) ** 2 + 1 _a : List[str] = self.text_seq_length + self.image_seq_length def __lowercase ( self ) -> Any: _a : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _a : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : Optional[int] = bbox[i, j, 3] _a : str = bbox[i, j, 1] _a : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _a : int = bbox[i, j, 2] _a : Optional[Any] = bbox[i, j, 0] _a : List[str] = tmp_coordinate _a : Optional[int] = tf.constant(_a ) _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = None if self.use_input_mask: _a : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) _a : List[Any] = None if self.use_token_type_ids: _a : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _a : int = None _a : Optional[Any] = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _a : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowercase ( self , _a , _a , _a , _a , _a , _a ) -> List[Any]: _a : Union[str, Any] = TFLayoutLMvaModel(config=_a ) # text + image _a : str = model(_a , pixel_values=_a , training=_a ) _a : List[Any] = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , training=_a , ) _a : Tuple = model(_a , bbox=_a , pixel_values=_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _a : int = model(_a , training=_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _a : List[str] = model({'''pixel_values''': pixel_values} , training=_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[Any]: _a : Optional[Any] = self.num_labels _a : str = TFLayoutLMvaForSequenceClassification(config=_a ) _a : str = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , training=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: _a : str = self.num_labels _a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=_a ) _a : str = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , training=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _a : Tuple = 2 _a : str = TFLayoutLMvaForQuestionAnswering(config=_a ) _a : Dict = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , training=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self ) -> List[str]: _a : Any = self.prepare_config_and_inputs() ((_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : Optional[int] = config_and_inputs _a : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[Any] = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : str = False def __lowercase ( self , _a , _a , _a , _a , _a ) -> Optional[int]: return True def __lowercase ( self , _a , _a , _a=False ) -> dict: _a : List[str] = copy.deepcopy(_a ) if model_class in get_values(_a ): _a : List[Any] = { k: tf.tile(tf.expand_dims(_a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_a ): _a : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _a : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _a : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _a : Any = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowercase ( self ) -> Tuple: _a : int = TFLayoutLMvaModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def __lowercase ( self ) -> str: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) if getattr(_a , '''hf_compute_loss''' , _a ): # The number of elements in the loss should be the same as the number of elements in the label _a : str = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _a : List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_a )[0] ] _a : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _a : Tuple = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _a : Optional[Any] = prepared_for_class.pop('''input_ids''' ) _a : List[str] = model(_a , **_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _a : int = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _a : str = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: _a : Tuple = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _a : List[Any] = -1_0_0 _a : Tuple = tf.convert_to_tensor(_a ) _a : Optional[Any] = model(_a , **_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _a : List[Any] = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _a : Dict = model(_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) # Get keys that were added with the _prepare_for_class function _a : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() _a : Optional[int] = inspect.signature(model.call ).parameters _a : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _a : Optional[int] = {0: '''input_ids'''} for label_key in label_keys: _a : int = signature_names.index(_a ) _a : int = label_key _a : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _a : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _a : Optional[Any] = prepared_for_class[value] _a : List[Any] = tuple(_a ) # Send to model _a : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowercase ( self ) -> List[Any]: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_a , _a , _a , _a , _a , _a ) def __lowercase ( self ) -> Tuple: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : int = type self.model_tester.create_and_check_model(_a , _a , _a , _a , _a , _a ) def __lowercase ( self ) -> str: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _a , _a , _a , _a , _a , _a , _a ) def __lowercase ( self ) -> int: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _a , _a , _a , _a , _a , _a , _a ) def __lowercase ( self ) -> Any: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _a , _a , _a , _a , _a , _a , _a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[Any] = TFLayoutLMvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> Tuple: return LayoutLMvaImageProcessor(apply_ocr=_a ) if is_vision_available() else None @slow def __lowercase ( self ) -> List[Any]: _a : Dict = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) _a : Tuple = self.default_image_processor _a : List[str] = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''tf''' ).pixel_values _a : Optional[Any] = tf.constant([[1, 2]] ) _a : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _a : Dict = model(input_ids=_a , bbox=_a , pixel_values=_a , training=_a ) # verify the logits _a : Union[str, Any] = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , _a ) _a : int = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) )
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') a__ = parser.parse_args() a__ = '''cpu''' a__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' a__ = '''path-to-your-trained-model''' a__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a__ = pipe.to(device) # to channels last a__ = pipe.unet.to(memory_format=torch.channels_last) a__ = pipe.vae.to(memory_format=torch.channels_last) a__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a__ = torch.randn(2, 4, 64, 64) a__ = torch.rand(1) * 999 a__ = torch.randn(2, 77, 768) a__ = (sample, timestep, encoder_hidden_status) try: a__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a__ = 666 a__ = torch.Generator(device).manual_seed(seed) a__ = {'''generator''': generator} if args.steps is not None: a__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
import re import string import numpy as np import datasets a__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' a__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' a__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __lowercase ( self , _a , _a , _a=None , _a=False , _a=False , _a=False , ) -> Optional[int]: if regexes_to_ignore is not None: for s in regexes_to_ignore: _a : Tuple = np.array([re.sub(_a , '''''' , _a ) for x in predictions] ) _a : Dict = np.array([re.sub(_a , '''''' , _a ) for x in references] ) else: _a : Optional[int] = np.asarray(_a ) _a : Optional[int] = np.asarray(_a ) if ignore_case: _a : str = np.char.lower(_a ) _a : Optional[Any] = np.char.lower(_a ) if ignore_punctuation: _a : str = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) _a : Optional[Any] = np.char.translate(_a , table=_a ) _a : Optional[Any] = np.char.translate(_a , table=_a ) if ignore_numbers: _a : Optional[int] = string.digits.maketrans('''''' , '''''' , string.digits ) _a : Any = np.char.translate(_a , table=_a ) _a : Union[str, Any] = np.char.translate(_a , table=_a ) _a : Optional[int] = predictions == references return {"exact_match": np.mean(_a ) * 1_0_0}
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } a__ = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } a__ = '''▁''' class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _a : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Tuple = vocab_file _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _a : Any = len(self.sp_model ) - 1 _a : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowercase ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Union[str, Any] = [self.cls_token_id] _a : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self , _a , _a = None ) -> List[int]: _a : Dict = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self ) -> List[str]: return len(self.sp_model ) def __lowercase ( self ) -> int: _a : Any = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a : Union[str, Any] = self.sp_model.PieceToId(_a ) return spm_id if spm_id else self.unk_token_id def __lowercase ( self , _a ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_a ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Union[str, Any] = [] _a : int = '''''' _a : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _a : int = True _a : Union[str, Any] = [] else: current_sub_tokens.append(_a ) _a : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ) -> Optional[int]: _a : Optional[int] = self.__dict__.copy() _a : List[Any] = None return state def __setstate__( self , _a ) -> Union[str, Any]: _a : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Any = {} _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: _a : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = LongformerTokenizer UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[str] = LongformerTokenizerFast UpperCAmelCase__ : Any = True def __lowercase ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _a : Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a : List[Any] = {'''unk_token''': '''<unk>'''} _a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __lowercase ( self , **_a ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Optional[Any] = '''lower newer''' _a : Optional[int] = '''lower newer''' return input_text, output_text def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : Any = '''lower newer''' _a : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a : Optional[Any] = tokenizer.tokenize(_a ) # , add_prefix_space=True) self.assertListEqual(_a , _a ) _a : Dict = tokens + [tokenizer.unk_token] _a : Union[str, Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def __lowercase ( self ) -> int: _a : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __lowercase ( self ) -> List[str]: _a : Optional[Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) _a : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) _a : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) _a : List[str] = tokenizer.encode( '''sequence builders''' , add_special_tokens=_a , add_prefix_space=_a ) _a : Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_a , add_prefix_space=_a ) _a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_a ) _a : Optional[int] = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowercase ( self ) -> Optional[int]: _a : Dict = self.get_tokenizer() _a : Any = '''Encode this sequence.''' _a : Tuple = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a : Any = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) _a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_a , _a ) _a : str = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) _a : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_a , _a ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a : List[str] = tokenizer.encode(_a , add_special_tokens=_a ) _a : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_a , _a ) # Testing spaces after special tokens _a : str = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(_a , lstrip=_a , rstrip=_a )} ) # mask token has a left space _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Optional[Any] = '''Encode <mask> sequence''' _a : Tuple = '''Encode <mask>sequence''' _a : Optional[Any] = tokenizer.encode(_a ) _a : Optional[Any] = encoded.index(_a ) _a : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_a , _a ) _a : Optional[Any] = tokenizer.encode(_a ) _a : int = encoded.index(_a ) _a : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_a , _a ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Tuple = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _a : Union[str, Any] = self.tokenizer_class.from_pretrained(_a , **_a ) _a : List[Any] = '''A, <mask> AllenNLP sentence.''' _a : str = tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) _a : List[str] = tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __lowercase ( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _a ) self.assertEqual(post_processor_state['''add_prefix_space'''] , _a ) self.assertEqual(post_processor_state['''trim_offsets'''] , _a ) def __lowercase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : List[str] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a : List[str] = F"""{text_of_1_token} {text_of_1_token}""" _a : List[str] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _a : Tuple = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : int = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _a : Optional[int] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : str = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) _a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : Union[str, Any] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , ) _a : List[str] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : str = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) _a : Optional[int] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , ) _a : List[str] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a ) _a : str = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , )
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = AlbertTokenizer UpperCAmelCase__ : Any = AlbertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : str = True UpperCAmelCase__ : Union[str, Any] = True def __lowercase ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = AlbertTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self , _a ) -> Optional[int]: _a : Union[str, Any] = '''this is a test''' _a : Union[str, Any] = '''this is a test''' return input_text, output_text def __lowercase ( self ) -> Tuple: _a : List[Any] = '''<pad>''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_a ) , 3_0_0_0_0 ) def __lowercase ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __lowercase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _a : int = self.get_tokenizer() _a : Any = self.get_rust_tokenizer() _a : Any = '''I was born in 92000, and this is falsé.''' _a : int = tokenizer.tokenize(_a ) _a : Optional[int] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : Dict = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Union[str, Any] = self.get_rust_tokenizer() _a : List[str] = tokenizer.encode(_a ) _a : Union[str, Any] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Dict = AlbertTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [4_8, 2_5, 2_1, 1_2_8_9] ) _a : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _a : Tuple = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual(_a , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) _a : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def __lowercase ( self ) -> List[str]: _a : Optional[int] = AlbertTokenizer(_a ) _a : str = tokenizer.encode('''sequence builders''' ) _a : Tuple = tokenizer.encode('''multi-sequence build''' ) _a : List[str] = tokenizer.build_inputs_with_special_tokens(_a ) _a : int = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowercase ( self ) -> Any: # fmt: off _a : Optional[Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase__ : List[str] = 10 def __lowercase ( self , **_a ) -> Optional[int]: _a : Any = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_a ) return config def __lowercase ( self ) -> Union[str, Any]: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> Tuple: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> Optional[Any]: _a : int = self.scheduler_classes[0] _a : Dict = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _a : Optional[Any] = self.dummy_model() _a : str = self.dummy_sample_deter * scheduler.init_noise_sigma _a : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Tuple = scheduler.scale_model_input(_a , _a ) _a : Dict = model(_a , _a ) _a : str = scheduler.step(_a , _a , _a ) _a : Dict = output.prev_sample _a : Optional[Any] = torch.sum(torch.abs(_a ) ) _a : Any = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def __lowercase ( self ) -> Dict: if torch_device == "mps": return _a : Optional[int] = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _a : Any = self.dummy_model() _a : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _a : Optional[Any] = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Optional[Any] = scheduler.scale_model_input(_a , _a ) _a : List[Any] = model(_a , _a ) _a : Optional[Any] = scheduler.step(_a , _a , _a ) _a : Optional[Any] = output.prev_sample _a : Dict = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def __lowercase ( self ) -> Dict: if torch_device == "mps": return _a : List[str] = self.scheduler_classes[0] _a : str = self.get_scheduler_config() _a : List[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _a : Union[str, Any] = self.dummy_model() _a : Tuple = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a : str = scheduler.scale_model_input(_a , _a ) _a : int = model(_a , _a ) _a : int = scheduler.step(_a , _a , _a ) _a : Dict = output.prev_sample _a : Tuple = torch.sum(torch.abs(_a ) ) _a : Union[str, Any] = torch.mean(torch.abs(_a ) ) if str(_a ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
from __future__ import annotations from typing import Any def __UpperCAmelCase ( __a : list ) -> int: """simple docstring""" if not postfix_notation: return 0 _a : List[Any] = {'''+''', '''-''', '''*''', '''/'''} _a : list[Any] = [] for token in postfix_notation: if token in operations: _a , _a : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__a ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
from typing import List import numpy as np def __UpperCAmelCase ( __a : dict ) -> int: """simple docstring""" _a : int = {key: len(__a ) for key, value in gen_kwargs.items() if isinstance(__a ,__a )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _a : Union[str, Any] = max(lists_lengths.values() ,default=0 ) return max(1 ,__a ) def __UpperCAmelCase ( __a : int ,__a : int ) -> List[range]: """simple docstring""" _a : List[str] = [] for group_idx in range(__a ): _a : str = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _a : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _a : Dict = range(__a ,start + num_shards_to_add ) shards_indices_per_group.append(__a ) return shards_indices_per_group def __UpperCAmelCase ( __a : dict ,__a : int ) -> List[dict]: """simple docstring""" _a : Dict = _number_of_shards_in_gen_kwargs(__a ) if num_shards == 1: return [dict(__a )] else: _a : Optional[int] = _distribute_shards(num_shards=__a ,max_num_jobs=__a ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__a ,__a ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__a ) ) ] def __UpperCAmelCase ( __a : List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,__a ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCAmelCase ( __a : np.random.Generator ,__a : dict ) -> dict: """simple docstring""" _a : Dict = {len(__a ) for value in gen_kwargs.values() if isinstance(__a ,__a )} _a : List[Any] = {} for size in list_sizes: _a : Dict = list(range(__a ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _a : List[Any] = dict(__a ) for key, value in shuffled_kwargs.items(): if isinstance(__a ,__a ): _a : Tuple = [value[i] for i in indices_per_size[len(__a )]] return shuffled_kwargs
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = ["image_processor", "tokenizer"] UpperCAmelCase__ : List[str] = "BridgeTowerImageProcessor" UpperCAmelCase__ : List[str] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _a , _a ) -> Dict: super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : List[Any] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> Tuple: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Tuple: _a : str = self.tokenizer.model_input_names _a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) UpperCAmelCase__ : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) UpperCAmelCase__ : str = "question" UpperCAmelCase__ : str = "context" UpperCAmelCase__ : str = "answers" @property def __lowercase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
from maths.prime_check import is_prime def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if not isinstance(__a ,__a ): _a : str = F"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if is_prime(__a ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1