code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "char" UpperCAmelCase__ : Optional[int] = "bpe" UpperCAmelCase__ : List[str] = "wp" a__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ["image_processor", "char_tokenizer"] UpperCAmelCase__ : List[Any] = "ViTImageProcessor" UpperCAmelCase__ : List[Any] = "MgpstrTokenizer" def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : List[Any] = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _a : List[str] = tokenizer _a : str = AutoTokenizer.from_pretrained('''gpt2''' ) _a : Dict = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> Any: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _a : str = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None: _a : Union[str, Any] = self.char_tokenizer(_a , return_tensors=_a , **_a ) if text is None: return inputs elif images is None: return encodings else: _a : Optional[int] = encodings['''input_ids'''] return inputs def __lowercase ( self , _a ) -> List[str]: _a , _a , _a : str = sequences _a : Optional[int] = char_preds.size(0 ) _a , _a : List[Any] = self._decode_helper(_a , '''char''' ) _a , _a : Optional[Any] = self._decode_helper(_a , '''bpe''' ) _a , _a : int = self._decode_helper(_a , '''wp''' ) _a : Tuple = [] _a : Union[str, Any] = [] for i in range(_a ): _a : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] _a : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _a : Optional[int] = scores.index(max(_a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _a : Optional[int] = {} _a : int = final_strs _a : List[str] = final_scores _a : Union[str, Any] = char_strs _a : Optional[int] = bpe_strs _a : List[str] = wp_strs return out def __lowercase ( self , _a , _a ) -> Tuple: if format == DecodeType.CHARACTER: _a : Tuple = self.char_decode _a : List[Any] = 1 _a : str = '''[s]''' elif format == DecodeType.BPE: _a : Tuple = self.bpe_decode _a : Union[str, Any] = 2 _a : List[str] = '''#''' elif format == DecodeType.WORDPIECE: _a : Optional[Any] = self.wp_decode _a : Optional[int] = 1_0_2 _a : Optional[Any] = '''[SEP]''' else: raise ValueError(F"""Format {format} is not supported.""" ) _a , _a : str = [], [] _a : List[Any] = pred_logits.size(0 ) _a : Dict = pred_logits.size(1 ) _a , _a : List[str] = pred_logits.topk(1 , dim=-1 , largest=_a , sorted=_a ) _a : Optional[Any] = preds_index.view(-1 , _a )[:, 1:] _a : Tuple = decoder(_a ) _a , _a : Tuple = torch.nn.functional.softmax(_a , dim=2 ).max(dim=2 ) _a : Any = preds_max_prob[:, 1:] for index in range(_a ): _a : str = preds_str[index].find(_a ) _a : List[str] = preds_str[index][:pred_eos] _a : str = preds_index[index].cpu().tolist() _a : Tuple = pred_index.index(_a ) if eos_token in pred_index else -1 _a : Optional[Any] = preds_max_prob[index][: pred_eos_index + 1] _a : Any = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_a ) conf_scores.append(_a ) return dec_strs, conf_scores def __lowercase ( self , _a ) -> Union[str, Any]: _a : str = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_a )] return decode_strs def __lowercase ( self , _a ) -> Any: return self.bpe_tokenizer.batch_decode(_a ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Tuple = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_a )] return decode_strs
15
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCAmelCase ( __a : Dict ,__a : Tuple=0.9_99 ,__a : Tuple="cosine" ,) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Dict = [] for i in range(__a ): _a : List[Any] = i / num_diffusion_timesteps _a : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) ,__a ) ) return torch.tensor(__a ,dtype=torch.floataa ) class UpperCAmelCase_ ( __lowercase , __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self , _a = 1_0_0_0 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ) -> Any: if trained_betas is not None: _a : Any = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": _a : Any = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Tuple = betas_for_alpha_bar(_a ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : str = 1.0 - self.betas _a : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __lowercase ( self , _a , _a=None ) -> List[str]: if schedule_timesteps is None: _a : Dict = self.timesteps _a : List[str] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : str = 1 if len(_a ) > 1 else 0 else: _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : int = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self ) -> Optional[int]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self , _a , _a , ) -> torch.FloatTensor: _a : Dict = self.index_for_timestep(_a ) if self.state_in_first_order: _a : Optional[int] = self.sigmas[step_index] else: _a : int = self.sigmas_interpol[step_index] _a : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self , _a , _a = None , _a = None , ) -> str: _a : Optional[int] = num_inference_steps _a : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : Optional[int] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Any = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Any = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Optional[Any] = torch.from_numpy(np.log(_a ) ).to(_a ) _a : str = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) _a : List[str] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Optional[Any] = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas _a : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a : Optional[int] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 _a : int = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: _a : List[str] = torch.from_numpy(_a ).to(_a ) # interpolate timesteps _a : Optional[Any] = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) _a : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a : List[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) _a : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self , _a ) -> str: # get log sigma _a : int = sigma.log() # get distribution _a : int = log_sigma - self.log_sigmas[:, None] # get sigmas range _a : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a : List[str] = low_idx + 1 _a : int = self.log_sigmas[low_idx] _a : Dict = self.log_sigmas[high_idx] # interpolate sigmas _a : str = (low - log_sigma) / (low - high) _a : Tuple = w.clamp(0 , 1 ) # transform interpolation to time range _a : int = (1 - w) * low_idx + w * high_idx _a : Optional[Any] = t.view(sigma.shape ) return t @property def __lowercase ( self ) -> Union[str, Any]: return self.sample is None def __lowercase ( self , _a , _a , _a , _a = True , ) -> Union[SchedulerOutput, Tuple]: _a : Optional[int] = self.index_for_timestep(_a ) # advance index counter by 1 _a : List[str] = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : int = self.sigmas[step_index] _a : List[Any] = self.sigmas_interpol[step_index + 1] _a : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a : Dict = self.sigmas[step_index - 1] _a : Union[str, Any] = self.sigmas_interpol[step_index] _a : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : int = 0 _a : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol _a : Dict = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _a : str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : List[str] = sigma_interpol - sigma_hat # store for 2nd order step _a : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a : Optional[int] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a : List[Any] = sigma_next - sigma_hat _a : Optional[int] = self.sample _a : str = None _a : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self , _a , _a , _a , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a : str = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a : Tuple = self.timesteps.to(original_samples.device ) _a : str = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a , _a ) for t in timesteps] _a : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : int = sigma.unsqueeze(-1 ) _a : Dict = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
1
def __UpperCAmelCase ( __a : int ,__a : list ) -> List[str]: """simple docstring""" _enforce_args(__a ,__a ) if n == 0: return 0 _a : Optional[Any] = float('''-inf''' ) for i in range(1 ,n + 1 ): _a : List[Any] = max( __a ,prices[i - 1] + naive_cut_rod_recursive(n - i ,__a ) ) return max_revue def __UpperCAmelCase ( __a : int ,__a : list ) -> Dict: """simple docstring""" _enforce_args(__a ,__a ) _a : Optional[Any] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__a ,__a ,__a ) def __UpperCAmelCase ( __a : int ,__a : list ,__a : list ) -> Union[str, Any]: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _a : Optional[int] = float('''-inf''' ) for i in range(1 ,n + 1 ): _a : Union[str, Any] = max( __a ,prices[i - 1] + _top_down_cut_rod_recursive(n - i ,__a ,__a ) ,) _a : Dict = max_revenue return max_rev[n] def __UpperCAmelCase ( __a : int ,__a : list ) -> str: """simple docstring""" _enforce_args(__a ,__a ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _a : Any = [float('''-inf''' ) for _ in range(n + 1 )] _a : str = 0 for i in range(1 ,n + 1 ): _a : List[Any] = max_rev[i] for j in range(1 ,i + 1 ): _a : Tuple = max(__a ,prices[j - 1] + max_rev[i - j] ) _a : Optional[int] = max_revenue_i return max_rev[n] def __UpperCAmelCase ( __a : int ,__a : list ) -> Optional[Any]: """simple docstring""" if n < 0: _a : Union[str, Any] = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__a ) if n > len(__a ): _a : Optional[Any] = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(__a )}""" ) raise ValueError(__a ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _a : Dict = [6, 10, 12, 15, 20, 23] _a : Tuple = len(__a ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _a : str = 36 _a : List[Any] = top_down_cut_rod(__a ,__a ) _a : Union[str, Any] = bottom_up_cut_rod(__a ,__a ) _a : Dict = naive_cut_rod_recursive(__a ,__a ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
1
def __UpperCAmelCase ( __a : int = 1_000_000 ) -> int: """simple docstring""" _a : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
15
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = '''▁''' a__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a__ = { '''facebook/s2t-small-librispeech-asr''': 1024, } a__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a__ = {'''mustc''': MUSTC_LANGS} class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = MAX_MODEL_INPUT_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a=False , _a=False , _a=None , _a=None , _a = None , **_a , ) -> None: _a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , do_upper_case=_a , do_lower_case=_a , tgt_lang=_a , lang_codes=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Any = do_upper_case _a : Tuple = do_lower_case _a : Union[str, Any] = load_json(_a ) _a : List[Any] = {v: k for k, v in self.encoder.items()} _a : List[str] = spm_file _a : Union[str, Any] = load_spm(_a , self.sp_model_kwargs ) if lang_codes is not None: _a : Optional[Any] = lang_codes _a : str = LANGUAGES[lang_codes] _a : str = [F"""<lang:{lang}>""" for lang in self.langs] _a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} _a : Tuple = self.lang_tokens _a : Any = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _a : Union[str, Any] = {} @property def __lowercase ( self ) -> int: return len(self.encoder ) @property def __lowercase ( self ) -> str: return self._tgt_lang @tgt_lang.setter def __lowercase ( self , _a ) -> None: _a : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(_a ) def __lowercase ( self , _a ) -> None: _a : Tuple = self.lang_code_to_id[tgt_lang] _a : str = [lang_code_id] def __lowercase ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> int: return self.encoder.get(_a , self.encoder[self.unk_token] ) def __lowercase ( self , _a ) -> str: return self.decoder.get(_a , self.unk_token ) def __lowercase ( self , _a ) -> str: _a : Any = [] _a : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _a : Tuple = self.sp_model.decode(_a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _a : Optional[int] = [] else: current_sub_tokens.append(_a ) _a : Union[str, Any] = self.sp_model.decode(_a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowercase ( self , _a , _a=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) _a : Any = [1] * len(self.prefix_tokens ) _a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _a : str = self.__dict__.copy() _a : List[Any] = None return state def __setstate__( self , _a ) -> None: _a : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Optional[int] = {} _a : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowercase ( self , _a , _a = None ) -> Tuple[str]: _a : Any = Path(_a ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" _a : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _a : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , '''wb''' ) as fi: _a : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def __UpperCAmelCase ( __a : str ,__a : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _a : List[Any] = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __UpperCAmelCase ( __a : str ) -> Union[Dict, List]: """simple docstring""" with open(__a ,'''r''' ) as f: return json.load(__a ) def __UpperCAmelCase ( __a : Dict ,__a : str ) -> None: """simple docstring""" with open(__a ,'''w''' ) as f: json.dump(__a ,__a ,indent=2 )
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> Dict: _a : Any = n _a : Any = [None] * self.n _a : Tuple = 0 # index of the first element _a : str = 0 _a : List[Any] = 0 def __len__( self ) -> int: return self.size def __lowercase ( self ) -> bool: return self.size == 0 def __lowercase ( self ) -> Dict: return False if self.is_empty() else self.array[self.front] def __lowercase ( self , _a ) -> int: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) _a : Union[str, Any] = data _a : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def __lowercase ( self ) -> Any: if self.size == 0: raise Exception('''UNDERFLOW''' ) _a : Optional[int] = self.array[self.front] _a : Optional[int] = None _a : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
15
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel a__ = False a__ = True a__ = False if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') a__ = parser.parse_args() a__ = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } a__ = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } a__ = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: a__ = reader.read() a__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): a__ = UNetaDModel(**config) else: a__ = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel a__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) a__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: a__ = config[key] del config[key] a__ = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] a__ = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: a__ = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) a__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue a__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: a__ = param_value a__ = True if not has_changed: a__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ,__a : list ,__a : list ) -> float: """simple docstring""" _a : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__a )] ) _a : List[str] = np.array(__a ) _a : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() ,__a ) ) ,x.transpose() ) ,__a ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ) -> float: """simple docstring""" _a : int = (1, 2, 1) _a : List[str] = (1, 1, 0, 7) _a : Tuple = SARIMAX( __a ,exog=__a ,order=__a ,seasonal_order=__a ) _a : int = model.fit(disp=__a ,maxiter=600 ,method='''nm''' ) _a : Optional[int] = model_fit.predict(1 ,len(__a ) ,exog=[test_match] ) return result[0] def __UpperCAmelCase ( __a : list ,__a : list ,__a : list ) -> float: """simple docstring""" _a : int = SVR(kernel='''rbf''' ,C=1 ,gamma=0.1 ,epsilon=0.1 ) regressor.fit(__a ,__a ) _a : Union[str, Any] = regressor.predict(__a ) return y_pred[0] def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" train_user.sort() _a : Tuple = np.percentile(__a ,25 ) _a : List[Any] = np.percentile(__a ,75 ) _a : Optional[Any] = qa - qa _a : str = qa - (iqr * 0.1) return low_lim def __UpperCAmelCase ( __a : list ,__a : float ) -> bool: """simple docstring""" _a : Any = 0 _a : str = 0 for i in list_vote: if i > actual_result: _a : Optional[Any] = not_safe + 1 else: if abs(abs(__a ) - abs(__a ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] a__ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) a__ = Normalizer().fit_transform(data_input_df.values) # split data a__ = normalize_df[:, 2].tolist() a__ = normalize_df[:, 0].tolist() a__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ = normalize_df[:, [1, 2]].tolist() a__ = x[: len(x) - 1] a__ = x[len(x) - 1 :] # for linear regression & sarimax a__ = total_date[: len(total_date) - 1] a__ = total_user[: len(total_user) - 1] a__ = total_match[: len(total_match) - 1] a__ = total_date[len(total_date) - 1 :] a__ = total_user[len(total_user) - 1 :] a__ = total_match[len(total_match) - 1 :] # voting system with forecasting a__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a__ = NewType('''DataClass''', Any) a__ = NewType('''DataClassType''', Any) def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" if isinstance(__a ,__a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __UpperCAmelCase ( __a : list ) -> Callable[[str], Any]: """simple docstring""" _a : List[str] = {str(__a ): choice for choice in choices} return lambda __a : str_to_choice.get(__a ,__a ) def __UpperCAmelCase ( *, __a : Union[str, List[str]] = None ,__a : str = None ,__a : Any = dataclasses.MISSING ,__a : Callable[[], Any] = dataclasses.MISSING ,__a : dict = None ,**__a : str ,) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _a : Optional[int] = {} if aliases is not None: _a : Union[str, Any] = aliases if help is not None: _a : List[str] = help return dataclasses.field(metadata=__a ,default=__a ,default_factory=__a ,**__a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Iterable[DataClassType] def __init__( self , _a , **_a ) -> str: # To make the default appear when using --help if "formatter_class" not in kwargs: _a : Union[str, Any] = ArgumentDefaultsHelpFormatter super().__init__(**_a ) if dataclasses.is_dataclass(_a ): _a : int = [dataclass_types] _a : Optional[int] = list(_a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_a ) @staticmethod def __lowercase ( _a , _a ) -> str: _a : Dict = F"""--{field.name}""" _a : Dict = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _a ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _a : List[str] = kwargs.pop('''aliases''' , [] ) if isinstance(_a , _a ): _a : Tuple = [aliases] _a : Any = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_a , '''UnionType''' ) and isinstance(_a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_a ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(_a ) not in field.type.__args__: # filter `str` in Union _a : Any = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _a : Optional[int] = ( field.type.__args__[0] if isinstance(_a , field.type.__args__[1] ) else field.type.__args__[1] ) _a : Any = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _a : Any = {} if origin_type is Literal or (isinstance(field.type , _a ) and issubclass(field.type , _a )): if origin_type is Literal: _a : Any = field.type.__args__ else: _a : List[Any] = [x.value for x in field.type] _a : List[Any] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _a : Optional[Any] = field.default else: _a : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _a : Optional[Any] = copy(_a ) # Hack because type=bool in argparse does not behave as we want. _a : Union[str, Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _a : int = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _a : Optional[int] = default # This tells argparse we accept 0 or 1 value after --field_name _a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) _a : List[Any] = True elif isclass(_a ) and issubclass(_a , _a ): _a : Any = field.type.__args__[0] _a : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: _a : str = field.default_factory() elif field.default is dataclasses.MISSING: _a : Any = True else: _a : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: _a : Any = field.default elif field.default_factory is not dataclasses.MISSING: _a : List[str] = field.default_factory() else: _a : int = True parser.add_argument(_a , *_a , **_a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _a : Optional[Any] = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_a ) def __lowercase ( self , _a ) -> str: if hasattr(_a , '''_argument_group_name''' ): _a : str = self.add_argument_group(dtype._argument_group_name ) else: _a : int = self try: _a : Dict[str, type] = get_type_hints(_a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(_a ): _a : List[Any] = '''.'''.join(map(_a , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_a ): if not field.init: continue _a : List[str] = type_hints[field.name] self._parse_dataclass_field(_a , _a ) def __lowercase ( self , _a=None , _a=False , _a=True , _a=None , _a=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _a : str = [] if args_filename: args_files.append(Path(_a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_a , type=_a , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _a , _a : Any = args_file_parser.parse_known_args(args=_a ) _a : List[Any] = vars(_a ).get(args_file_flag.lstrip('''-''' ) , _a ) if cmd_args_file_paths: args_files.extend([Path(_a ) for p in cmd_args_file_paths] ) _a : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] _a , _a : Optional[int] = self.parse_known_args(args=_a ) _a : Dict = [] for dtype in self.dataclass_types: _a : int = {f.name for f in dataclasses.fields(_a ) if f.init} _a : Any = {k: v for k, v in vars(_a ).items() if k in keys} for k in keys: delattr(_a , _a ) _a : Optional[int] = dtype(**_a ) outputs.append(_a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __lowercase ( self , _a , _a = False ) -> Tuple[DataClass, ...]: _a : str = set(args.keys() ) _a : List[str] = [] for dtype in self.dataclass_types: _a : Optional[int] = {f.name for f in dataclasses.fields(_a ) if f.init} _a : int = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _a : List[Any] = dtype(**_a ) outputs.append(_a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_a )}""" ) return tuple(_a ) def __lowercase ( self , _a , _a = False ) -> Tuple[DataClass, ...]: with open(Path(_a ) , encoding='''utf-8''' ) as open_json_file: _a : List[str] = json.loads(open_json_file.read() ) _a : int = self.parse_dict(_a , allow_extra_keys=_a ) return tuple(_a ) def __lowercase ( self , _a , _a = False ) -> Tuple[DataClass, ...]: _a : Union[str, Any] = self.parse_dict(yaml.safe_load(Path(_a ).read_text() ) , allow_extra_keys=_a ) return tuple(_a )
15
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a__ = TypeVar('''T''') class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self , _a = True ) -> None: _a : dict[T, list[T]] = {} # dictionary of lists _a : Optional[int] = directed def __lowercase ( self , _a , _a ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_a ) self.adj_list[destination_vertex].append(_a ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_a ) _a : str = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_a ) _a : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _a : Tuple = [destination_vertex] _a : Union[str, Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_a ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_a ) _a : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _a : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _a : Union[str, Any] = [destination_vertex] _a : Optional[Any] = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
15
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss a__ = pytest.mark.integration @require_faiss class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : Tuple = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_a ) for x in np.arange(3_0 ).tolist()]} ) return dset def __lowercase ( self ) -> List[Any]: import faiss _a : Dataset = self._create_dummy_dataset() _a : Union[str, Any] = dset.map( lambda _a , _a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_a , keep_in_memory=_a ) _a : List[str] = dset.add_faiss_index('''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) _a , _a : Optional[Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __lowercase ( self ) -> Optional[int]: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _a , _a : Union[str, Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowercase ( self ) -> str: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) _a , _a : str = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowercase ( self ) -> Optional[int]: _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(_a , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __lowercase ( self ) -> Any: from elasticsearch import Elasticsearch _a : Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : Dict = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0 ) _a : Tuple = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} _a : Optional[int] = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=_a ) _a , _a : Optional[Any] = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: import faiss _a : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query _a : Optional[int] = np.zeros(5 , dtype=np.floataa ) _a : Optional[int] = 1 _a , _a : int = index.search(_a ) self.assertRaises(_a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _a : Dict = np.eye(5 , dtype=np.floataa )[::-1] _a , _a : Any = index.search_batch(_a ) self.assertRaises(_a , index.search_batch , queries[0] ) _a : Dict = [scores[0] for scores in total_scores] _a : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _a ) def __lowercase ( self ) -> str: import faiss _a : int = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _a : Optional[Any] = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_a ): _a : List[str] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __lowercase ( self ) -> str: import faiss _a : int = faiss.IndexFlat(5 ) _a : str = FaissIndex(custom_index=_a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowercase ( self ) -> str: import faiss _a : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: index.save(tmp_file.name ) _a : Union[str, Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _a : List[Any] = np.zeros(5 , dtype=np.floataa ) _a : int = 1 _a , _a : Union[str, Any] = index.search(_a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __UpperCAmelCase ( __a : Optional[int] ) -> List[Any]: """simple docstring""" import faiss _a : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) _a : str = '''index.faiss''' _a : int = F"""mock://{index_name}""" index.save(__a ,storage_options=mockfs.storage_options ) _a : int = FaissIndex.load(__a ,storage_options=mockfs.storage_options ) _a : Tuple = np.zeros(5 ,dtype=np.floataa ) _a : str = 1 _a , _a : Union[str, Any] = index.search(__a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[str]: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : int = Elasticsearch() _a : List[Any] = {'''acknowledged''': True} _a : List[str] = ElasticSearchIndex(es_client=_a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query _a : str = '''foo''' _a : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : Optional[Any] = index.search(_a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _a : Any = '''foo''' _a : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : Optional[int] = index.search(_a , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _a : str = ['''foo''', '''bar''', '''foobar'''] _a : Optional[int] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : Union[str, Any] = index.search_batch(_a ) _a : Union[str, Any] = [scores[0] for scores in total_scores] _a : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a ) # batched queries with timeout _a : Tuple = ['''foo''', '''bar''', '''foobar'''] _a : str = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : int = index.search_batch(_a , request_timeout=3_0 ) _a : Tuple = [scores[0] for scores in total_scores] _a : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a )
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCAmelCase ( __a : Optional[Any] ) -> Optional[Any]: """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> Tuple: """simple docstring""" _a : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _a : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' ,'''mmm_image_head''' ) _a : Optional[int] = key.replace('''heads.cmd.mlm_head.cls.predictions''' ,'''mmm_text_head''' ) _a : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' ,'''itm_head''' ) _a : List[str] = key.replace('''heads.cmd.itm_head.pooler''' ,'''itm_head.pooler''' ) _a : str = key.replace('''heads.cmd.clip_head.logit_scale''' ,'''flava.logit_scale''' ) _a : Any = key.replace('''heads.fairseq_mlm.cls.predictions''' ,'''mlm_head''' ) _a : Optional[Any] = key.replace('''heads.imagenet.mim_head.cls.predictions''' ,'''mim_head''' ) _a : Tuple = key.replace('''mm_text_projection''' ,'''flava.text_to_mm_projection''' ) _a : Optional[int] = key.replace('''mm_image_projection''' ,'''flava.image_to_mm_projection''' ) _a : Optional[int] = key.replace('''image_encoder.module''' ,'''flava.image_model''' ) _a : Optional[Any] = key.replace('''text_encoder.module''' ,'''flava.text_model''' ) _a : List[str] = key.replace('''mm_encoder.module.encoder.cls_token''' ,'''flava.multimodal_model.cls_token''' ) _a : str = key.replace('''mm_encoder.module''' ,'''flava.multimodal_model''' ) _a : str = key.replace('''text_projection''' ,'''flava.text_projection''' ) _a : List[str] = key.replace('''image_projection''' ,'''flava.image_projection''' ) _a : List[str] = value.float() for key, value in codebook_state_dict.items(): _a : Any = value return upgrade @torch.no_grad() def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ,__a : Optional[Any] ,__a : Union[str, Any]=None ) -> List[Any]: """simple docstring""" if config_path is not None: _a : int = FlavaConfig.from_pretrained(__a ) else: _a : Any = FlavaConfig() _a : Any = FlavaForPreTraining(__a ).eval() _a : Union[str, Any] = convert_dalle_checkpoint(__a ,__a ,save_checkpoint=__a ) if os.path.exists(__a ): _a : List[str] = torch.load(__a ,map_location='''cpu''' ) else: _a : int = torch.hub.load_state_dict_from_url(__a ,map_location='''cpu''' ) _a : Dict = upgrade_state_dict(__a ,__a ) hf_model.load_state_dict(__a ) _a : List[str] = hf_model.state_dict() _a : Optional[Any] = count_parameters(__a ) _a : List[str] = count_parameters(__a ) + count_parameters(__a ) assert torch.allclose(__a ,__a ,atol=1E-3 ) hf_model.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
15
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "owlvit_text_model" def __init__( self , _a=4_9_4_0_8 , _a=5_1_2 , _a=2_0_4_8 , _a=1_2 , _a=8 , _a=1_6 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9_4_0_6 , _a=4_9_4_0_7 , **_a , ) -> Dict: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : int = vocab_size _a : Any = hidden_size _a : Optional[Any] = intermediate_size _a : Optional[Any] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Tuple = max_position_embeddings _a : Any = hidden_act _a : str = layer_norm_eps _a : int = attention_dropout _a : Tuple = initializer_range _a : Optional[Any] = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Tuple = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : List[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "owlvit_vision_model" def __init__( self , _a=7_6_8 , _a=3_0_7_2 , _a=1_2 , _a=1_2 , _a=3 , _a=7_6_8 , _a=3_2 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> str: super().__init__(**_a ) _a : Optional[int] = hidden_size _a : Union[str, Any] = intermediate_size _a : Dict = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : str = num_channels _a : Optional[int] = image_size _a : Optional[Any] = patch_size _a : Optional[int] = hidden_act _a : Optional[int] = layer_norm_eps _a : int = attention_dropout _a : Optional[Any] = initializer_range _a : Any = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Tuple = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : Optional[int] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "owlvit" UpperCAmelCase__ : Optional[int] = True def __init__( self , _a=None , _a=None , _a=5_1_2 , _a=2.6592 , _a=True , **_a , ) -> Tuple: super().__init__(**_a ) if text_config is None: _a : str = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a : List[Any] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a : int = OwlViTTextConfig(**_a ) _a : Union[str, Any] = OwlViTVisionConfig(**_a ) _a : List[Any] = projection_dim _a : Optional[Any] = logit_scale_init_value _a : List[str] = return_dict _a : Union[str, Any] = 1.0 @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Optional[Any] = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) @classmethod def __lowercase ( cls , _a , _a , **_a ) -> Union[str, Any]: _a : Dict = {} _a : Tuple = text_config _a : Optional[Any] = vision_config return cls.from_dict(_a , **_a ) def __lowercase ( self ) -> List[str]: _a : Tuple = copy.deepcopy(self.__dict__ ) _a : Tuple = self.text_config.to_dict() _a : Any = self.vision_config.to_dict() _a : Tuple = self.__class__.model_type return output class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4 def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _a : int = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _a : int = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def __lowercase ( self ) -> int: return 1_4
15
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
1
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=3 , _a=3_2 , _a=3 , _a=1_0 , _a=[8, 1_6, 3_2, 6_4] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=1 , ) -> List[Any]: _a : Optional[Any] = parent _a : List[Any] = batch_size _a : str = image_size _a : Any = num_channels _a : Any = embeddings_size _a : Optional[Any] = hidden_sizes _a : Dict = depths _a : List[Any] = is_training _a : List[Any] = use_labels _a : Dict = hidden_act _a : str = num_labels _a : Optional[Any] = scope _a : List[Any] = len(_a ) _a : Optional[Any] = out_features _a : Dict = out_indices _a : Optional[Any] = num_groups def __lowercase ( self ) -> Union[str, Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> Tuple: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __lowercase ( self , _a , _a , _a ) -> Dict: _a : Optional[int] = BitModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __lowercase ( self , _a , _a , _a ) -> List[Any]: _a : List[str] = self.num_labels _a : str = BitForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a ) -> str: _a : str = BitBackbone(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : List[Any] = None _a : Tuple = BitBackbone(config=_a ) model.to(_a ) model.eval() _a : Dict = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.prepare_config_and_inputs() _a , _a , _a : Dict = config_and_inputs _a : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> str: _a : Optional[int] = BitModelTester(self ) _a : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self ) -> str: return @unittest.skip(reason='''Bit does not output attentions''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __lowercase ( self ) -> Tuple: pass def __lowercase ( self ) -> Tuple: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def __lowercase ( self ) -> List[Any]: _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __lowercase ( self ) -> List[Any]: def check_hidden_states_output(_a , _a , _a ): _a : Optional[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _a : Tuple = layer_type _a : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> str: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> List[str]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> str: _a : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _a : Union[str, Any] = self.default_image_processor _a : str = prepare_img() _a : List[str] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Tuple = model(**_a ) # verify the logits _a : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = BitConfig UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: _a : Optional[Any] = BitModelTester(self )
15
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=4 , ) -> Dict: _a : List[Any] = parent _a : int = batch_size _a : Union[str, Any] = seq_length _a : Optional[int] = is_training _a : int = use_attention_mask _a : List[str] = use_token_type_ids _a : Tuple = use_labels _a : Any = vocab_size _a : Dict = hidden_size _a : int = num_hidden_layers _a : List[Any] = num_attention_heads _a : int = intermediate_size _a : Tuple = hidden_act _a : Tuple = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : Dict = type_sequence_label_size _a : str = initializer_range _a : List[Any] = num_choices def __lowercase ( self ) -> Dict: _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[Any] = None if self.use_attention_mask: _a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , ) return config, input_ids, attention_mask def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Dict = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self ) -> Any: for model_class_name in self.all_model_classes: _a : List[Any] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) _a : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ) -> Tuple: _a : Any = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _a : Dict = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _a : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a : Union[str, Any] = model(_a , attention_mask=_a )[0] _a : List[str] = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _a ) _a : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = MobileBertTokenizer UpperCAmelCase__ : List[Any] = MobileBertTokenizerFast UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Dict = filter_non_english UpperCAmelCase__ : List[Any] = "google/mobilebert-uncased" def __lowercase ( self ) -> Any: super().setUp() _a : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowercase ( self , _a ) -> Any: _a : Any = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowercase ( self ) -> str: if not self.test_rust_tokenizer: return _a : int = self.get_tokenizer() _a : Optional[int] = self.get_rust_tokenizer() _a : Any = '''UNwant\u00E9d,running''' _a : List[str] = tokenizer.tokenize(_a ) _a : str = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) _a : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : List[str] = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Any = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing _a : Dict = self.get_tokenizer(do_lower_case=_a ) _a : Tuple = self.get_rust_tokenizer(do_lower_case=_a ) _a : str = '''UNwant\u00E9d,running''' _a : Any = tokenizer.tokenize(_a ) _a : str = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Tuple = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[Any] = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(_a ) _a : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowercase ( self ) -> Dict: _a : str = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowercase ( self ) -> Optional[Any]: _a : Any = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __lowercase ( self ) -> Optional[int]: _a : List[Any] = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowercase ( self ) -> str: _a : str = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowercase ( self ) -> Optional[int]: _a : Dict = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowercase ( self ) -> Union[str, Any]: _a : int = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowercase ( self ) -> Any: _a : Optional[Any] = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowercase ( self ) -> int: _a : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _a : List[str] = {} for i, token in enumerate(_a ): _a : str = i _a : Tuple = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __lowercase ( self ) -> Optional[Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowercase ( self ) -> Optional[Any]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowercase ( self ) -> int: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __lowercase ( self ) -> List[Any]: _a : int = self.get_tokenizer() _a : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) _a : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) _a : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) _a : Any = tokenizer.build_inputs_with_special_tokens(_a ) _a : int = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __lowercase ( self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : int = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _a : Any = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _a : Tuple = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) _a : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False _a : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = ['''的''', '''人''', '''有'''] _a : Optional[int] = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : int = True _a : Union[str, Any] = self.tokenizer_class.from_pretrained(_a , **_a ) _a : Dict = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _a : Any = tokenizer_p.encode(_a , add_special_tokens=_a ) _a : List[str] = tokenizer_r.encode(_a , add_special_tokens=_a ) _a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_a ) _a : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) _a : int = False _a : int = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _a : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _a : Optional[int] = tokenizer_r.encode(_a , add_special_tokens=_a ) _a : Union[str, Any] = tokenizer_p.encode(_a , add_special_tokens=_a ) _a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_a ) _a : Any = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". _a : Optional[int] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
15
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a__ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[str]] @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : List[int] UpperCAmelCase__ : List[int] UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[List[int]] = None class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "train" UpperCAmelCase__ : Dict = "dev" UpperCAmelCase__ : Optional[int] = "test" class UpperCAmelCase_ : """simple docstring""" @staticmethod def __lowercase ( _a , _a ) -> List[InputExample]: raise NotImplementedError @staticmethod def __lowercase ( _a ) -> List[str]: raise NotImplementedError @staticmethod def __lowercase ( _a , _a , _a , _a , _a=False , _a="[CLS]" , _a=1 , _a="[SEP]" , _a=False , _a=False , _a=0 , _a=0 , _a=-1_0_0 , _a=0 , _a=True , ) -> List[InputFeatures]: _a : str = {label: i for i, label in enumerate(_a )} _a : Any = [] for ex_index, example in enumerate(_a ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , _a , len(_a ) ) _a : Optional[int] = [] _a : List[str] = [] for word, label in zip(example.words , example.labels ): _a : str = tokenizer.tokenize(_a ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_a ) > 0: tokens.extend(_a ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_a ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _a : Any = tokenizer.num_special_tokens_to_add() if len(_a ) > max_seq_length - special_tokens_count: _a : Tuple = tokens[: (max_seq_length - special_tokens_count)] _a : Optional[int] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _a : List[str] = [sequence_a_segment_id] * len(_a ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _a : Tuple = [cls_token] + tokens _a : Optional[Any] = [pad_token_label_id] + label_ids _a : Dict = [cls_token_segment_id] + segment_ids _a : Union[str, Any] = tokenizer.convert_tokens_to_ids(_a ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _a : Tuple = [1 if mask_padding_with_zero else 0] * len(_a ) # Zero-pad up to the sequence length. _a : Dict = max_seq_length - len(_a ) if pad_on_left: _a : Dict = ([pad_token] * padding_length) + input_ids _a : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _a : str = ([pad_token_segment_id] * padding_length) + segment_ids _a : Tuple = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length assert len(_a ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_a ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_a ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_a ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_a ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_a ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _a : Dict = None features.append( InputFeatures( input_ids=_a , attention_mask=_a , token_type_ids=_a , label_ids=_a ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self , _a , _a , _a , _a , _a , _a = None , _a=False , _a = Split.train , ) -> List[Any]: # Load data features from cache or dataset file _a : int = os.path.join( _a , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_a ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : Optional[int] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) _a : Tuple = torch.load(_a ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) _a : Optional[int] = token_classification_task.read_examples_from_file(_a , _a ) # TODO clean up all this to leverage built-in features of tokenizers _a : List[str] = token_classification_task.convert_examples_to_features( _a , _a , _a , _a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _a ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = -100 def __init__( self , _a , _a , _a , _a , _a , _a = None , _a=False , _a = Split.train , ) -> List[Any]: _a : Dict = token_classification_task.read_examples_from_file(_a , _a ) # TODO clean up all this to leverage built-in features of tokenizers _a : List[Any] = token_classification_task.convert_examples_to_features( _a , _a , _a , _a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _a : Optional[Any] = tf.data.Dataset.from_generator( _a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _a : Dict = tf.data.Dataset.from_generator( _a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __lowercase ( self ) -> Optional[int]: _a : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i]
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase__ : int = "char" UpperCAmelCase__ : Dict = "bpe" UpperCAmelCase__ : List[Any] = "wp" a__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCAmelCase__ : Dict = ["image_processor", "char_tokenizer"] UpperCAmelCase__ : int = "ViTImageProcessor" UpperCAmelCase__ : Optional[int] = "MgpstrTokenizer" def __init__( self , _a=None , _a=None , **_a ) -> Dict: _a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _a : Any = kwargs.pop('''feature_extractor''' ) _a : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _a : List[Any] = tokenizer _a : List[str] = AutoTokenizer.from_pretrained('''gpt2''' ) _a : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__a , __a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> Any: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _a : Optional[int] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None: _a : int = self.char_tokenizer(__a , return_tensors=__a , **__a ) if text is None: return inputs elif images is None: return encodings else: _a : Optional[int] = encodings['input_ids'] return inputs def __lowercase ( self , _a ) -> List[str]: _a : Union[str, Any] = sequences _a : List[Any] = char_preds.size(0 ) _a : Union[str, Any] = self._decode_helper(__a , '''char''' ) _a : Optional[int] = self._decode_helper(__a , '''bpe''' ) _a : Any = self._decode_helper(__a , '''wp''' ) _a : int = [] _a : Tuple = [] for i in range(__a ): _a : Tuple = [char_scores[i], bpe_scores[i], wp_scores[i]] _a : List[str] = [char_strs[i], bpe_strs[i], wp_strs[i]] _a : Optional[int] = scores.index(max(__a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _a : Optional[Any] = {} _a : int = final_strs _a : Dict = final_scores _a : int = char_strs _a : Dict = bpe_strs _a : Optional[Any] = wp_strs return out def __lowercase ( self , _a , _a ) -> Any: if format == DecodeType.CHARACTER: _a : Dict = self.char_decode _a : Dict = 1 _a : Optional[int] = '[s]' elif format == DecodeType.BPE: _a : Any = self.bpe_decode _a : Dict = 2 _a : Any = '#' elif format == DecodeType.WORDPIECE: _a : Tuple = self.wp_decode _a : Optional[int] = 1_0_2 _a : List[Any] = '[SEP]' else: raise ValueError(F"""Format {format} is not supported.""" ) _a : Optional[int] = [], [] _a : List[Any] = pred_logits.size(0 ) _a : List[str] = pred_logits.size(1 ) _a : Tuple = pred_logits.topk(1 , dim=-1 , largest=__a , sorted=__a ) _a : Any = preds_index.view(-1 , __a )[:, 1:] _a : Optional[int] = decoder(__a ) _a : Optional[int] = torch.nn.functional.softmax(__a , dim=2 ).max(dim=2 ) _a : Dict = preds_max_prob[:, 1:] for index in range(__a ): _a : Optional[int] = preds_str[index].find(__a ) _a : str = preds_str[index][:pred_eos] _a : Any = preds_index[index].cpu().tolist() _a : Any = pred_index.index(__a ) if eos_token in pred_index else -1 _a : Any = preds_max_prob[index][: pred_eos_index + 1] _a : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__a ) conf_scores.append(__a ) return dec_strs, conf_scores def __lowercase ( self , _a ) -> Dict: _a : Optional[int] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__a )] return decode_strs def __lowercase ( self , _a ) -> Union[str, Any]: return self.bpe_tokenizer.batch_decode(__a ) def __lowercase ( self , _a ) -> Any: _a : List[str] = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__a )] return decode_strs
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class UpperCAmelCase_ ( A__ , A__ ): """simple docstring""" UpperCAmelCase__ : List[str] = "focalnet" def __init__( self , _a=2_2_4 , _a=4 , _a=3 , _a=9_6 , _a=False , _a=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1e-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1e-5 , _a=3_2 , _a=None , _a=None , **_a , ) -> List[Any]: super().__init__(**__A ) _a : List[str] = image_size _a : str = patch_size _a : Optional[Any] = num_channels _a : Dict = embed_dim _a : Dict = use_conv_embed _a : List[str] = hidden_sizes _a : List[Any] = depths _a : Tuple = focal_levels _a : Union[str, Any] = focal_windows _a : Any = hidden_act _a : Dict = mlp_ratio _a : Tuple = hidden_dropout_prob _a : str = drop_path_rate _a : Dict = use_layerscale _a : Optional[int] = layerscale_value _a : int = use_post_layernorm _a : int = use_post_layernorm_in_modulation _a : List[Any] = normalize_modulator _a : str = initializer_range _a : int = layer_norm_eps _a : Tuple = encoder_stride _a : str = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _a : Optional[Any] = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
351
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
0
"""simple docstring""" import math class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a=0 ) -> Dict: # a graph with Node 0,1,...,N-1 _a : List[str] = n _a : int = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # adjacency matrix for weight _a : List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def __lowercase ( self , _a , _a , _a ) -> Tuple: _a : Optional[Any] = w def __lowercase ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowercase ( self , _a , _a ) -> Optional[Any]: return self.dp[u][v] if __name__ == "__main__": a__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCAmelCase_ ( A__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = BartphoTokenizer UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Any = True def __lowercase ( self ) -> List[str]: super().setUp() _a : List[str] = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] _a : Optional[int] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _a : str = {'''unk_token''': '''<unk>'''} _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) _a : Any = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self , **_a ) -> str: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __lowercase ( self , _a ) -> str: _a : List[str] = '''This is a là test''' _a : Tuple = '''This is a<unk><unk> test''' return input_text, output_text def __lowercase ( self ) -> str: _a : Any = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) _a : Optional[int] = '''This is a là test''' _a : List[str] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() _a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _a : Union[str, Any] = tokens + [tokenizer.unk_token] _a : str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case )
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Any ,__a : str=False ) -> List[str]: """simple docstring""" _a : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _a : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def __UpperCAmelCase ( __a : Tuple ,__a : Optional[Any] ,__a : Tuple=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _a : Optional[Any] = '''''' else: _a : Union[str, Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _a : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : int = in_proj_weight[ : config.hidden_size, : ] _a : List[str] = in_proj_bias[: config.hidden_size] _a : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _a : Dict = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( __a : Tuple ,__a : Any ,__a : List[Any] ) -> Dict: """simple docstring""" _a : Optional[Any] = dct.pop(lowerCamelCase__ ) _a : Optional[Any] = val def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Any = Image.open(requests.get(lowerCamelCase__ ,stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Any ) -> Optional[Any]: """simple docstring""" _a : Any = DeiTConfig() # all deit models have fine-tuned heads _a : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _a : List[Any] = 1_000 _a : Union[str, Any] = '''huggingface/label-files''' _a : Tuple = '''imagenet-1k-id2label.json''' _a : Dict = json.load(open(hf_hub_download(lowerCamelCase__ ,lowerCamelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Union[str, Any] = {v: k for k, v in idalabel.items()} _a : str = int(deit_name[-6:-4] ) _a : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): _a : Optional[int] = 192 _a : Dict = 768 _a : List[str] = 12 _a : Optional[int] = 3 elif deit_name[9:].startswith('''small''' ): _a : Tuple = 384 _a : int = 1_536 _a : Dict = 12 _a : Any = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): _a : Tuple = 1_024 _a : List[Any] = 4_096 _a : Any = 24 _a : Union[str, Any] = 16 # load original model from timm _a : List[str] = timm.create_model(lowerCamelCase__ ,pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a : List[Any] = timm_model.state_dict() _a : List[Any] = create_rename_keys(lowerCamelCase__ ,lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # load HuggingFace model _a : Optional[Any] = DeiTForImageClassificationWithTeacher(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor _a : str = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _a : Union[str, Any] = DeiTImageProcessor(size=lowerCamelCase__ ,crop_size=config.image_size ) _a : str = image_processor(images=prepare_img() ,return_tensors='''pt''' ) _a : Tuple = encoding['''pixel_values'''] _a : Dict = model(lowerCamelCase__ ) _a : Tuple = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ ,outputs.logits ,atol=1E-3 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
354
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
0
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase_ ( lowercase__ , lowercase__ ): """simple docstring""" UpperCAmelCase__ : str = 1 @register_to_config def __init__( self , _a=2_0_0_0 , _a=0.1 , _a=2_0 , _a=1e-3 ) -> Optional[Any]: _a : Dict = None _a : Dict = None _a : Any = None def __lowercase ( self , _a , _a = None ) -> str: _a : List[str] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def __lowercase ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _a : List[Any] = std.unsqueeze(-1 ) _a : Dict = -score / std # compute _a : Optional[Any] = -1.0 / len(self.timesteps ) _a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a : str = beta_t.unsqueeze(-1 ) _a : Optional[Any] = -0.5 * beta_t * x _a : Tuple = torch.sqrt(_a ) _a : Optional[int] = drift - diffusion**2 * score _a : Optional[int] = x + drift * dt # add noise _a : str = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _a : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Any: return self.config.num_train_timesteps
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
from math import log from scipy.constants import Boltzmann, physical_constants a__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ,) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
356
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
0
def __UpperCAmelCase ( __a : List[str] ) -> Any: """simple docstring""" _a : int = len(__A ) while cur > 1: # Find the maximum number in arr _a : int = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _a : List[str] = arr[mi::-1] + arr[mi + 1 : len(__A )] # Reverse whole list _a : Dict = arr[cur - 1 :: -1] + arr[cur : len(__A )] cur -= 1 return arr if __name__ == "__main__": a__ = input('''Enter numbers separated by a comma:\n''').strip() a__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
357
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCAmelCase ( __a : Namespace ) -> Any: """simple docstring""" return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) a__ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class UpperCAmelCase_ ( lowercase__ ): """simple docstring""" @staticmethod def __lowercase ( _a ) -> Union[str, Any]: _a : Optional[int] = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_UpperCamelCase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_UpperCamelCase , default=_UpperCamelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_UpperCamelCase ) def __init__( self , _a , _a , _a , _a , _a , *_a , ) -> List[str]: _a : Dict = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) _a : str = model_type _a : Dict = tf_checkpoint _a : List[Any] = pytorch_dump_output _a : int = config _a : int = finetuning_task_name def __lowercase ( self ) -> Union[str, Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): _a : Optional[int] = self._tf_checkpoint _a : List[str] = """""" else: _a : Any = self._tf_checkpoint _a : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( _UpperCamelCase , self._config , self._pytorch_dump_output , _UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
358
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> str: super().__init__(features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , **__lowercase ) _a : Any = Sql( cache_dir=__lowercase , features=__lowercase , sql=__lowercase , con=__lowercase , **__lowercase , ) def __lowercase ( self ) -> Dict: _a : int = None _a : str = None _a : List[str] = None _a : Union[str, Any] = None self.builder.download_and_prepare( download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , ) # Build dataset for splits _a : Union[str, Any] = self.builder.as_dataset( split='''train''' , verification_mode=__lowercase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> int: if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : str = dataset _a : Any = name _a : List[str] = con _a : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : str = num_proc _a : int = to_sql_kwargs def __lowercase ( self ) -> Union[str, Any]: _a : int = self.to_sql_kwargs.pop('''sql''' , __lowercase ) _a : str = self.to_sql_kwargs.pop('''con''' , __lowercase ) _a : Optional[Any] = self.to_sql_kwargs.pop('''index''' , __lowercase ) _a : Tuple = self._write(index=__lowercase , **self.to_sql_kwargs ) return written def __lowercase ( self , _a ) -> Tuple: _a , _a , _a : Optional[Any] = args _a : Union[str, Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _a : Tuple = query_table( table=self.dataset.data , key=slice(__lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) _a : str = batch.to_pandas() _a : int = df.to_sql(self.name , self.con , index=__lowercase , **__lowercase ) return num_rows or len(__lowercase ) def __lowercase ( self , _a , **_a ) -> int: _a : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a , _a : Optional[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowercase , __lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
359
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a__ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] a__ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] a__ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) a__ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) a__ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: _a : Dict = k.replace(__lowerCamelCase ,__lowerCamelCase ) return k def __UpperCAmelCase ( __a : dict ,__a : dict ) -> List[str]: """simple docstring""" _a : Optional[Any] = BigBirdPegasusConfig(**__lowerCamelCase ) _a : Optional[int] = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) _a : Optional[Any] = torch_model.state_dict() _a : str = {} # separating decoder weights _a : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} _a : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): _a : Dict = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue _a : Union[str, Any] = DECODER_PATTERNS _a : List[Any] = rename_state_dict_key(__lowerCamelCase ,__lowerCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _a : Tuple = v.T _a : Tuple = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): _a : List[str] = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue _a : Any = REMAINING_PATTERNS _a : Tuple = rename_state_dict_key(__lowerCamelCase ,__lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _a : Union[str, Any] = v.T _a : str = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _a : str = mapping["model.embed_positions.weight"] _a : Optional[int] = mapping.pop('''model.embed_positions.weight''' ) _a : Union[str, Any] = torch_model.load_state_dict(__lowerCamelCase ,strict=__lowerCamelCase ) _a : Tuple = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def __UpperCAmelCase ( __a : int ) -> Optional[Any]: """simple docstring""" _a : Any = tf.train.list_variables(__lowerCamelCase ) _a : Optional[int] = {} _a : int = ["global_step"] for name, shape in tqdm(__lowerCamelCase ,desc='''converting tf checkpoint to dict''' ): _a : Dict = any(pat in name for pat in ignore_name ) if skip_key: continue _a : List[str] = tf.train.load_variable(__lowerCamelCase ,__lowerCamelCase ) _a : Tuple = array return tf_weights def __UpperCAmelCase ( __a : str ,__a : str ,__a : dict ) -> str: """simple docstring""" _a : Tuple = get_tf_weights_as_numpy(__lowerCamelCase ) _a : Union[str, Any] = convert_bigbird_pegasus(__lowerCamelCase ,__lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ = parser.parse_args() a__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
360
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Any = DistilBertTokenizerFast UpperCAmelCase__ : int = True @slow def __lowercase ( self ) -> Any: _a : Union[str, Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) _a : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) _a : Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a ) _a : Optional[int] = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
361
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a , _a=1_0_2_4 , _a=1_0_2_4 , _a=3.6 ) -> str: _a : str = tokenizer _a : Optional[int] = tokenizer.bos_token_id _a : Tuple = dataset _a : Any = seq_length _a : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> List[Any]: _a : Optional[Any] = iter(self.dataset ) _a : Optional[int] = True while more_examples: _a : Union[str, Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_a )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: _a : Optional[Any] = False break _a : List[str] = tokenizer(_a , truncation=_a )['input_ids'] _a : Optional[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_a ) , self.seq_length ): _a : Dict = all_token_ids[i : i + self.seq_length] if len(_a ) == self.seq_length: yield torch.tensor(_a ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a : Union[str, Any] = {'streaming': True} _a : List[Any] = load_dataset(args.dataset_name ,split='''train''' ,**lowercase__ ) _a : List[str] = ConstantLengthDataset(lowercase__ ,lowercase__ ,seq_length=args.seq_length ) _a : List[str] = DataLoader(lowercase__ ,batch_size=args.batch_size ) return eval_dataloader def __UpperCAmelCase ( __a : Union[str, Any] ) -> str: """simple docstring""" model.eval() _a : List[str] = [] for step, batch in enumerate(lowercase__ ): with torch.no_grad(): _a : Optional[Any] = model(lowercase__ ,labels=lowercase__ ) _a : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowercase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _a : Optional[int] = torch.mean(torch.cat(lowercase__ ) ) try: _a : str = torch.exp(lowercase__ ) except OverflowError: _a : Dict = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator a__ = Accelerator() # Parse configuration a__ = HfArgumentParser(EvaluationArguments) a__ = parser.parse_args() set_seed(args.seed) # Logging a__ = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) a__ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a__ = create_dataloader(args) # Prepare everything with our `accelerator`. a__ , a__ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a__ , a__ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
362
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = BertJapaneseTokenizer UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> Optional[int]: super().setUp() _a : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> Dict: _a : Optional[int] = """こんにちは、世界。 \nこんばんは、世界。""" _a : str = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Optional[int] = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __lowercase ( self ) -> Optional[int]: pass # TODO add if relevant def __lowercase ( self ) -> Dict: pass # TODO add if relevant def __lowercase ( self ) -> List[str]: pass # TODO add if relevant def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_a ) _a : int = """こんにちは、世界。\nこんばんは、世界。""" _a : List[str] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _a : Optional[int] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: _a : Tuple = pickle.load(_a ) _a : Dict = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> Dict: _a : Tuple = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowercase ( self ) -> Any: try: _a : List[str] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowercase ( self ) -> Tuple: try: _a : Optional[Any] = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowercase ( self ) -> Optional[int]: _a : str = MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __lowercase ( self ) -> Union[str, Any]: try: _a : Optional[Any] = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __lowercase ( self ) -> Any: _a : List[Any] = MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_a ) _a : Any = """こんにちは、世界。\nこんばんは、世界。""" _a : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _a : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: _a : int = pickle.load(_a ) _a : str = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def __lowercase ( self ) -> Any: _a : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowercase ( self ) -> Any: _a : str = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __lowercase ( self ) -> Optional[int]: _a : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __lowercase ( self ) -> Dict: _a : Optional[int] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __lowercase ( self ) -> Dict: _a : int = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowercase ( self ) -> str: _a : Optional[Any] = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __lowercase ( self ) -> List[str]: _a : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_a ) _a : int = """こんにちは、世界。\nこんばんは、世界。""" _a : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _a : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: _a : Tuple = pickle.load(_a ) _a : Any = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowercase ( self ) -> List[str]: _a : Any = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowercase ( self ) -> str: _a : Tuple = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __lowercase ( self ) -> Tuple: _a : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __lowercase ( self ) -> int: _a : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _a : str = {} for i, token in enumerate(_a ): _a : Any = i _a : Any = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __lowercase ( self ) -> Tuple: _a : Any = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) _a : str = tokenizer.subword_tokenizer _a : List[Any] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) _a : Tuple = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __lowercase ( self ) -> Tuple: _a : Dict = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) _a : Tuple = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) _a : Dict = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) _a : List[str] = tokenizer.build_inputs_with_special_tokens(_a ) _a : List[Any] = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = BertJapaneseTokenizer UpperCAmelCase__ : Union[str, Any] = False def __lowercase ( self ) -> int: super().setUp() _a : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , **_a ) -> str: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a ) def __lowercase ( self , _a ) -> Union[str, Any]: _a : Tuple = """こんにちは、世界。 \nこんばんは、世界。""" _a : List[str] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def __lowercase ( self ) -> str: pass # TODO add if relevant def __lowercase ( self ) -> Tuple: pass # TODO add if relevant def __lowercase ( self ) -> Optional[Any]: pass # TODO add if relevant def __lowercase ( self ) -> Optional[Any]: _a : List[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) _a : Tuple = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _a : Optional[Any] = {} for i, token in enumerate(_a ): _a : int = i _a : str = CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __lowercase ( self ) -> List[str]: _a : int = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) _a : List[str] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) _a : Tuple = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a ) _a : Any = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: _a : Tuple = """cl-tohoku/bert-base-japanese""" _a : Optional[Any] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Any: _a : str = """cl-tohoku/bert-base-japanese""" with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) _a : Optional[Any] = """bert-base-cased""" with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
363
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=3 , _a=3_0 , _a=4_0_0 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=True , _a=1 / 2_5_5 , _a=True , ) -> int: _a : List[Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} _a : List[str] = parent _a : Tuple = batch_size _a : str = num_channels _a : str = min_resolution _a : List[Any] = max_resolution _a : Union[str, Any] = do_resize _a : Optional[int] = size _a : Optional[int] = do_normalize _a : Tuple = image_mean _a : Any = image_std _a : Dict = do_rescale _a : Dict = rescale_factor _a : Union[str, Any] = do_pad def __lowercase ( self ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowercase ( self , _a , _a=False ) -> int: if not batched: _a : Optional[int] = image_inputs[0] if isinstance(lowercase_ , Image.Image ): _a , _a : Dict = image.size else: _a , _a : Dict = image.shape[1], image.shape[2] if w < h: _a : List[Any] = int(self.size['''shortest_edge'''] * h / w ) _a : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: _a : List[Any] = self.size['''shortest_edge'''] _a : str = int(self.size['''shortest_edge'''] * w / h ) else: _a : List[str] = self.size['''shortest_edge'''] _a : Optional[int] = self.size['''shortest_edge'''] else: _a : Union[str, Any] = [] for image in image_inputs: _a , _a : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a : str = max(lowercase_ , key=lambda _a : item[0] )[0] _a : Optional[Any] = max(lowercase_ , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( a_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = DeformableDetrImageProcessor if is_vision_available() else None def __lowercase ( self ) -> Tuple: _a : Tuple = DeformableDetrImageProcessingTester(self ) @property def __lowercase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ) -> str: _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowercase_ , '''do_pad''' ) ) self.assertTrue(hasattr(lowercase_ , '''size''' ) ) def __lowercase ( self ) -> Tuple: _a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowercase_ ) _a : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Tuple: _a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input _a : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a : Union[str, Any] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) _a : Tuple = image_processing(lowercase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self ) -> Any: _a : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input _a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : Any = image_processing(lowercase_ , return_tensors='''pt''' ).pixel_values _a , _a : Any = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a : List[Any] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : Optional[Any] = image_processing(lowercase_ , return_tensors='''pt''' ).pixel_values _a , _a : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _a : Optional[int] = json.loads(f.read() ) _a : Optional[Any] = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them _a : int = DeformableDetrImageProcessor() _a : List[Any] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='''pt''' ) # verify pixel values _a : List[str] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase_ ) _a : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area _a : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase_ ) ) # verify boxes _a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase_ ) _a : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase_ , atol=1e-3 ) ) # verify image_id _a : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase_ ) ) # verify is_crowd _a : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase_ ) ) # verify class_labels _a : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase_ ) ) # verify orig_size _a : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase_ ) ) # verify size _a : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase_ ) ) @slow def __lowercase ( self ) -> str: _a : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _a : str = json.loads(f.read() ) _a : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} _a : str = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _a : Optional[int] = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _a : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='''pt''' ) # verify pixel values _a : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase_ ) _a : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area _a : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase_ ) ) # verify boxes _a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase_ ) _a : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase_ , atol=1e-3 ) ) # verify image_id _a : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase_ ) ) # verify is_crowd _a : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase_ ) ) # verify class_labels _a : Tuple = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase_ ) ) # verify masks _a : Optional[int] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowercase_ ) # verify orig_size _a : Optional[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase_ ) ) # verify size _a : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase_ ) )
364
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_2 , _a=7 , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=3_2 , _a=2 , _a=4 , _a=3_7 , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=0.02 , _a=0 , _a=None , ) -> Dict: _a : List[str] = parent _a : List[str] = batch_size _a : Union[str, Any] = seq_length _a : Any = is_training _a : Any = use_input_mask _a : Union[str, Any] = use_labels _a : Union[str, Any] = vocab_size _a : Optional[int] = hidden_size _a : Union[str, Any] = projection_dim _a : List[str] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Union[str, Any] = intermediate_size _a : List[Any] = dropout _a : Dict = attention_dropout _a : Optional[int] = max_position_embeddings _a : Any = initializer_range _a : int = scope _a : Optional[Any] = bos_token_id def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict = None if self.use_input_mask: _a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a : int = input_mask.numpy() _a : int = input_mask.shape _a : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): _a : Union[str, Any] = 1 _a : str = 0 _a : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase ) def __lowercase ( self ) -> Optional[int]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __lowercase ( self , _a , _a , _a ) -> Union[str, Any]: _a : Any = TFBlipTextModel(config=__UpperCAmelCase ) _a : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase ) _a : int = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self ) -> int: _a : Union[str, Any] = self.prepare_config_and_inputs() _a : Dict = config_and_inputs _a : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Union[str, Any] = False def __lowercase ( self ) -> int: _a : Optional[Any] = BlipTextModelTester(self ) _a : Any = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def __lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __lowercase ( self ) -> Optional[int]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowercase ( self ) -> List[str]: pass def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowercase ( self ) -> Optional[int]: pass @slow def __lowercase ( self ) -> int: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = TFBlipTextModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowercase ( self , _a=True ) -> List[Any]: super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase )
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
0
from importlib import import_module from .logging import get_logger a__ = get_logger(__name__) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=None ) -> Optional[int]: _a : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _a : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Union[str, Any] = [] def __init__( self , _a , _a , _a , _a=None ) -> Optional[Any]: _a : List[Any] = obj _a : int = target _a : Optional[int] = new _a : Any = target.split('''.''' )[0] _a : Optional[int] = {} _a : Dict = attrs or [] def __enter__( self ) -> int: _a : List[str] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _a : int = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _a : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _a : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _a : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _a : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _a : Dict = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _a : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _a : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *_a ) -> Union[str, Any]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __lowercase ( self ) -> Optional[Any]: self.__enter__() self._active_patches.append(self ) def __lowercase ( self ) -> Tuple: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
366
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _UpperCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = 'decision_transformer' UpperCAmelCase__ : List[Any] = ['past_key_values'] UpperCAmelCase__ : List[Any] = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=1_7 , _a=4 , _a=1_2_8 , _a=4_0_9_6 , _a=True , _a=1 , _a=1_0_2_4 , _a=3 , _a=1 , _a=None , _a="relu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a=True , _a=True , _a=5_0_2_5_6 , _a=5_0_2_5_6 , _a=False , _a=False , **_a , ) -> Optional[Any]: _a : Dict = state_dim _a : int = act_dim _a : List[Any] = hidden_size _a : Union[str, Any] = max_ep_len _a : Union[str, Any] = action_tanh _a : Tuple = vocab_size _a : Optional[Any] = n_positions _a : Optional[int] = n_layer _a : int = n_head _a : List[Any] = n_inner _a : int = activation_function _a : List[Any] = resid_pdrop _a : Dict = embd_pdrop _a : int = attn_pdrop _a : Tuple = layer_norm_epsilon _a : int = initializer_range _a : int = scale_attn_weights _a : List[str] = use_cache _a : int = scale_attn_by_inverse_layer_idx _a : Any = reorder_and_upcast_attn _a : Tuple = bos_token_id _a : int = eos_token_id super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
0
from __future__ import annotations from math import pi, sqrt def __UpperCAmelCase ( __a : Optional[Any] ,__a : Tuple ) -> Optional[int]: """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
368
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a__ = None a__ = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a__ = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase__ : str = field(default="Image" , init=__UpperCamelCase , repr=__UpperCamelCase ) def __call__( self ) -> Optional[Any]: return self.pa_type def __lowercase ( self , _a ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _a : str = np.array(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowerCAmelCase ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"""An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def __lowercase ( self , _a , _a=None ) -> str: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _a : Tuple = {} _a : str = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) else: if is_local_path(_lowerCAmelCase ): _a : str = PIL.Image.open(_lowerCAmelCase ) else: _a : List[str] = path.split('''::''' )[-1] try: _a : Dict = string_to_dict(_lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] _a : int = token_per_repo_id.get(_lowerCAmelCase ) except ValueError: _a : List[Any] = None with xopen(_lowerCAmelCase , '''rb''' , use_auth_token=_lowerCAmelCase ) as f: _a : Union[str, Any] = BytesIO(f.read() ) _a : Dict = PIL.Image.open(bytes_ ) else: _a : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase ( self ) -> List[Any]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def __lowercase ( self , _a ) -> Dict: if pa.types.is_string(storage.type ): _a : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) _a : Any = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a : Optional[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) _a : List[str] = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _a : List[str] = storage.field('''bytes''' ) else: _a : List[Any] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _a : Optional[int] = storage.field('''path''' ) else: _a : int = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) _a : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a : Optional[Any] = pa.array( [encode_np_array(np.array(_lowerCAmelCase ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _a : Optional[int] = pa.array([None] * len(_lowerCAmelCase ) , type=pa.string() ) _a : List[str] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __lowercase ( self , _a ) -> Optional[int]: @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_lowerCAmelCase , '''rb''' ) as f: _a : Optional[int] = f.read() return bytes_ _a : Tuple = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _a : Optional[Any] = pa.array( [os.path.basename(_lowerCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _a : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_lowerCAmelCase , self.pa_type ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __UpperCAmelCase ( __a : "PIL.Image.Image" ) -> List[Any]: """simple docstring""" _a : List[Any] = BytesIO() if image.format in list_image_compression_formats(): _a : Union[str, Any] = image.format else: _a : List[Any] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__SCREAMING_SNAKE_CASE ,format=__SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __UpperCAmelCase ( __a : "PIL.Image.Image" ) -> str: """simple docstring""" if hasattr(__SCREAMING_SNAKE_CASE ,'''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __UpperCAmelCase ( __a : np.ndarray ) -> Any: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) _a : List[Any] = array.dtype _a : List[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _a : Dict = dtype.kind _a : Union[str, Any] = dtype.itemsize _a : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a : int = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a : int = dtype_byteorder + dtype_kind + str(__SCREAMING_SNAKE_CASE ) _a : Any = np.dtype(__SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _a : Optional[int] = PIL.Image.fromarray(array.astype(__SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(__SCREAMING_SNAKE_CASE )} def __UpperCAmelCase ( __a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> str: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: _a : Any = first_non_null_value(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__SCREAMING_SNAKE_CASE ,np.ndarray ): _a : int = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(__SCREAMING_SNAKE_CASE ,PIL.Image.Image ): _a : List[str] = no_op_if_value_is_null(__SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(__SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
369
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , '''width_multiplier''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=6_4 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=3_2 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=1_0 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ) -> Optional[int]: _a : Optional[int] = parent _a : List[str] = batch_size _a : str = image_size _a : Dict = patch_size _a : int = num_channels _a : str = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _a : Tuple = hidden_act _a : Union[str, Any] = conv_kernel_size _a : Optional[int] = output_stride _a : List[str] = classifier_dropout_prob _a : Optional[Any] = use_labels _a : List[Any] = is_training _a : List[Any] = num_labels _a : int = initializer_range _a : List[Any] = scope _a : List[str] = width_multiplier _a : Dict = ffn_dropout _a : Any = attn_dropout def __lowercase ( self ) -> str: _a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[str] = None _a : int = None if self.use_labels: _a : Any = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> str: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __lowercase ( self , _a , _a , _a , _a ) -> int: _a : Optional[int] = MobileViTVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _a : Any = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self , _a , _a , _a , _a ) -> List[str]: _a : Dict = self.num_labels _a : Dict = MobileViTVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _a : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a ) -> int: _a : Any = self.num_labels _a : Dict = MobileViTVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() _a : Optional[int] = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a : Optional[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.prepare_config_and_inputs() _a : Optional[int] = config_and_inputs _a : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Union[str, Any] = False def __lowercase ( self ) -> Any: _a : Optional[int] = MobileViTVaModelTester(self ) _a : List[str] = MobileViTVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def __lowercase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __lowercase ( self ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __lowercase ( self ) -> Optional[int]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Optional[Any]: _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(lowercase_ ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] = [*signature.parameters.keys()] _a : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def __lowercase ( self ) -> Tuple: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowercase ( self ) -> Optional[Any]: def check_hidden_states_output(_a , _a , _a ): _a : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _a : List[str] = outputs.hidden_states _a : List[Any] = 5 self.assertEqual(len(lowercase_ ) , lowercase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a : Optional[int] = 2 for i in range(len(lowercase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def __lowercase ( self ) -> Any: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowercase ( self ) -> Any: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def __lowercase ( self ) -> str: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = MobileViTVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> int: _a : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowercase_ ) _a : List[Any] = self.default_image_processor _a : Any = prepare_img() _a : Tuple = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**lowercase_ ) # verify the logits _a : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _a : int = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Tuple: _a : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Dict = model.to(lowercase_ ) _a : Optional[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Dict = prepare_img() _a : Union[str, Any] = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): _a : List[Any] = model(**lowercase_ ) _a : Optional[int] = outputs.logits # verify the logits _a : List[str] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowercase_ ) _a : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Optional[int]: _a : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Optional[Any] = model.to(lowercase_ ) _a : Optional[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : str = prepare_img() _a : str = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): _a : Any = model(**lowercase_ ) _a : str = outputs.logits.detach().cpu() _a : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(5_0, 6_0)] ) _a : Union[str, Any] = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowercase_ ) _a : str = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) _a : Tuple = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowercase_ )
370
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = "" UpperCAmelCase__ : List[Any] = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCAmelCase__ : Tuple = None # compression type in fsspec. ex: "gzip" UpperCAmelCase__ : Optional[Any] = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _a = "" , _a = None , _a = None , **_a ) -> str: super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _a : int = fsspec.open( _a , mode='''rb''' , protocol=_a , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _a : Optional[Any] = os.path.basename(self.file.path.split('''::''' )[0] ) _a : int = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) _a : Optional[int] = None @classmethod def __lowercase ( cls , _a ) -> Optional[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip('''/''' ) def __lowercase ( self ) -> Tuple: if self.dir_cache is None: _a : List[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} _a : Any = {f['''name''']: f} def __lowercase ( self , _a ) -> List[str]: return self.file.open().read() def __lowercase ( self , _a , _a = "rb" , _a=None , _a=True , _a=None , **_a , ) -> str: _a : Optional[Any] = self._strip_protocol(_a ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "bz2" UpperCAmelCase__ : Optional[Any] = "bz2" UpperCAmelCase__ : Optional[Any] = ".bz2" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "gzip" UpperCAmelCase__ : Optional[Any] = "gzip" UpperCAmelCase__ : Optional[int] = ".gz" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "lz4" UpperCAmelCase__ : Tuple = "lz4" UpperCAmelCase__ : int = ".lz4" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "xz" UpperCAmelCase__ : str = "xz" UpperCAmelCase__ : List[str] = ".xz" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Dict = "zstd" UpperCAmelCase__ : List[Any] = "zstd" UpperCAmelCase__ : Optional[Any] = ".zst" def __init__( self , _a , _a = "rb" , _a = None , _a = None , _a = DEFAULT_BLOCK_SIZE , **_a , ) -> Optional[Any]: super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _a : str = self.file.__enter__ class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> int: _a : Dict = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self , *_a , **_a ) -> Dict: self._file.__exit__(*_a , **_a ) def __iter__( self ) -> Optional[Any]: return iter(self._file ) def __lowercase ( self ) -> Optional[int]: return next(self._file ) def __getattr__( self , _a ) -> Union[str, Any]: return getattr(self._file , _a ) def fixed_enter(*_a , **_a ): return WrappedFile(_enter(*_a , **_a ) ) _a : Tuple = fixed_enter
371
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate a__ = trt.Logger(trt.Logger.WARNING) a__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) a__ = logging.getLogger(__name__) a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) a__ = parser.parse_args() if args.tokenizer_name: a__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) a__ = args.per_device_eval_batch_size a__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties a__ = True a__ = """temp_engine/bert-fp32.engine""" if args.fpaa: a__ = """temp_engine/bert-fp16.engine""" if args.inta: a__ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') a__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network a__ = [network.get_input(i) for i in range(network.num_inputs)] a__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: a__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) a__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) a__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Optional[Any] ,__a : str ,__a : Optional[int] ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : List[Any] ) -> Any: """simple docstring""" _a : Optional[int] = np.asarray(inputs['''input_ids'''] ,dtype=np.intaa ) _a : Optional[int] = np.asarray(inputs['''attention_mask'''] ,dtype=np.intaa ) _a : Tuple = np.asarray(inputs['''token_type_ids'''] ,dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] ,input_ids.ravel() ,_snake_case ) cuda.memcpy_htod_async(d_inputs[1] ,attention_mask.ravel() ,_snake_case ) cuda.memcpy_htod_async(d_inputs[2] ,token_type_ids.ravel() ,_snake_case ) # start time _a : int = time.time() # Run inference context.execute_async( bindings=[int(_snake_case ) for d_inp in d_inputs] + [int(_snake_case ), int(_snake_case )] ,stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_snake_case ,_snake_case ,_snake_case ) cuda.memcpy_dtoh_async(_snake_case ,_snake_case ,_snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _a : List[str] = time.time() _a : str = end_time - start_time _a : List[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. a__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. a__ = raw_datasets["""validation"""].column_names a__ = """question""" if """question""" in column_names else column_names[0] a__ = """context""" if """context""" in column_names else column_names[1] a__ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). a__ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) a__ = min(args.max_seq_length, tokenizer.model_max_length) def __UpperCAmelCase ( __a : List[str] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _a : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] ,examples[context_column_name if pad_on_right else question_column_name] ,truncation='''only_second''' if pad_on_right else '''only_first''' ,max_length=_snake_case ,stride=args.doc_stride ,return_overflowing_tokens=_snake_case ,return_offsets_mapping=_snake_case ,padding='''max_length''' ,) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _a : Optional[Any] = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _a : Dict = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _a : Tuple = tokenized_examples.sequence_ids(_snake_case ) _a : int = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _a : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _a : Optional[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples a__ = raw_datasets["""validation"""] # Validation Feature Creation a__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) a__ = default_data_collator a__ = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) a__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __UpperCAmelCase ( __a : List[Any] ,__a : Dict ,__a : Tuple ,__a : Tuple="eval" ) -> Any: """simple docstring""" _a : Optional[Any] = postprocess_qa_predictions( examples=_snake_case ,features=_snake_case ,predictions=_snake_case ,version_2_with_negative=args.version_2_with_negative ,n_best_size=args.n_best_size ,max_answer_length=args.max_answer_length ,null_score_diff_threshold=args.null_score_diff_threshold ,output_dir=args.output_dir ,prefix=_snake_case ,) # Format the result to the format the metric expects. if args.version_2_with_negative: _a : Tuple = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: _a : str = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] _a : List[Any] = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_snake_case ,label_ids=_snake_case ) a__ = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __UpperCAmelCase ( __a : str ) -> Dict: """simple docstring""" return trt.volume(engine.get_binding_shape(_snake_case ) ) * engine.get_binding_dtype(_snake_case ).itemsize # Allocate device memory for inputs and outputs. a__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer a__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) a__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) a__ = cuda.mem_alloc(h_outputa.nbytes) a__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. a__ = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') a__ = 0.0 a__ = 0 a__ = timeit.default_timer() a__ = None for step, batch in enumerate(eval_dataloader): a__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 a__ = outputs a__ = torch.tensor(start_logits) a__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered a__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) a__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) a__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) a__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: a__ = nested_truncate(all_preds, len(eval_dataset)) a__ = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) a__ = post_processing_function(eval_examples, eval_dataset, all_preds) a__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
351
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """Hello world! cécé herlolip""" def __UpperCAmelCase ( __a : Any ,__a : List[Any] ,__a : str ) -> Dict: """simple docstring""" _a : Any = FairseqRobertaModel.from_pretrained(_A ) roberta.eval() # disable dropout _a : Tuple = roberta.model.encoder.sentence_encoder _a : List[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: _a : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('''Our RoBERTa config:''' ,_A ) _a : List[str] = XLMRobertaXLForSequenceClassification(_A ) if classification_head else XLMRobertaXLForMaskedLM(_A ) model.eval() # Now let's copy all the weights. # Embeddings _a : Optional[int] = roberta_sent_encoder.embed_tokens.weight _a : Optional[Any] = roberta_sent_encoder.embed_positions.weight _a : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _a : Dict = roberta_sent_encoder.layer_norm.weight _a : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _a : BertLayer = model.roberta.encoder.layer[i] _a : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] _a : RobertaAttention = layer.attention _a : int = roberta_layer.self_attn_layer_norm.weight _a : str = roberta_layer.self_attn_layer_norm.bias # self attention _a : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _a : Optional[Any] = roberta_layer.self_attn.q_proj.weight _a : Union[str, Any] = roberta_layer.self_attn.q_proj.bias _a : Optional[Any] = roberta_layer.self_attn.k_proj.weight _a : Dict = roberta_layer.self_attn.k_proj.bias _a : List[Any] = roberta_layer.self_attn.v_proj.weight _a : Optional[int] = roberta_layer.self_attn.v_proj.bias # self-attention output _a : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _a : Tuple = roberta_layer.self_attn.out_proj.weight _a : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _a : Dict = roberta_layer.final_layer_norm.weight _a : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate _a : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _a : List[Any] = roberta_layer.fca.weight _a : int = roberta_layer.fca.bias # output _a : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _a : Tuple = roberta_layer.fca.weight _a : Tuple = roberta_layer.fca.bias # end of layer if classification_head: _a : str = roberta.model.classification_heads['mnli'].dense.weight _a : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias _a : Optional[Any] = roberta.model.classification_heads['mnli'].out_proj.weight _a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _a : List[Any] = roberta.model.encoder.lm_head.dense.weight _a : Dict = roberta.model.encoder.lm_head.dense.bias _a : Any = roberta.model.encoder.lm_head.layer_norm.weight _a : Dict = roberta.model.encoder.lm_head.layer_norm.bias _a : int = roberta.model.encoder.lm_head.weight _a : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _a : torch.Tensor = roberta.encode(_A ).unsqueeze(0 ) # batch of size 1 _a : int = model(_A )[0] if classification_head: _a : List[Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(_A ) ) else: _a : Dict = roberta.model(_A )[0] print(our_output.shape ,their_output.shape ) _a : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 _a : List[Any] = torch.allclose(_A ,_A ,atol=1E-3 ) print('''Do both models output the same tensors?''' ,'''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_A ).mkdir(parents=_A ,exist_ok=_A ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) a__ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = RobertaConfig UpperCAmelCase__ : Tuple = "roberta" def __init__( self , _a ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) _a : Tuple = RobertaEmbeddings(__UpperCAmelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = RobertaConfig UpperCAmelCase__ : Optional[Any] = "roberta" def __init__( self , _a ) -> Any: super().__init__(__UpperCAmelCase ) _a : str = config.num_labels _a : Optional[Any] = config.num_hidden_layers _a : List[Any] = DeeRobertaModel(__UpperCAmelCase ) _a : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _a : str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> int: _a : List[str] = self.num_layers try: _a : Any = self.roberta( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) _a : Optional[Any] = outputs[1] _a : Dict = self.dropout(__UpperCAmelCase ) _a : Tuple = self.classifier(__UpperCAmelCase ) _a : str = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _a : List[str] = e.message _a : List[Any] = e.exit_layer _a : str = outputs[0] if not self.training: _a : Any = entropy(__UpperCAmelCase ) _a : Any = [] _a : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression _a : Optional[Any] = MSELoss() _a : Optional[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _a : Dict = CrossEntropyLoss() _a : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _a : List[Any] = [] for highway_exit in outputs[-1]: _a : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _a : List[str] = MSELoss() _a : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _a : Tuple = CrossEntropyLoss() _a : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: _a : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _a : Union[str, Any] = (loss,) + outputs if not self.training: _a : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _a : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def __UpperCAmelCase ( __a : Callable ) -> Union[str, Any]: """simple docstring""" @wraps(snake_case_ ) def _inner_fn(*__a : Dict ,**__a : int ): warnings.warn( (F"""\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.""") ,snake_case_ ,) return fn(*snake_case_ ,**snake_case_ ) return _inner_fn
354
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
0
from __future__ import annotations from typing import Any class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a = 6 ) -> Union[str, Any]: _a : Node | None = None _a : Node | None = None self.create_linked_list(_a ) def __lowercase ( self , _a ) -> List[str]: _a : Any = Node() _a : int = current_node _a : str = current_node _a : Union[str, Any] = current_node for _ in range(1 , _a ): _a : Any = Node() _a : Dict = current_node _a : Optional[int] = previous_node _a : Optional[Any] = current_node _a : List[str] = self.front _a : Optional[int] = previous_node def __lowercase ( self ) -> Tuple: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowercase ( self ) -> int: self.check_can_perform_operation() return self.front.data if self.front else None def __lowercase ( self , _a ) -> Tuple: if self.rear is None: return self.check_is_full() if not self.is_empty(): _a : int = self.rear.next if self.rear: _a : Union[str, Any] = data def __lowercase ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _a : int = self.front.data _a : Optional[Any] = None return data _a : Optional[int] = self.front _a : Any = old_front.next _a : Tuple = old_front.data _a : str = None return data def __lowercase ( self ) -> Any: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowercase ( self ) -> Dict: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> List[Any]: _a : Any | None = None _a : Node | None = None _a : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __lowercase ( self ) -> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. _a : Any = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a : int = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , UpperCamelCase_ ) @require_multi_gpu def __lowercase ( self ) -> Any: _a : Union[str, Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": a__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a__ = Accelerator(kwargs_handlers=[ddp_scaler]) a__ = torch.nn.Linear(100, 200) a__ = accelerator.prepare(model) # Check the values changed in kwargs a__ = '''''' a__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
356
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
0
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a ) -> Any: if len(__lowerCAmelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) _a : Union[str, Any] = list(__lowerCAmelCase ) _a : Optional[int] = degree def __add__( self , _a ) -> Union[str, Any]: if self.degree > polynomial_a.degree: _a : Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCAmelCase ) else: _a : Union[str, Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCAmelCase ) def __sub__( self , _a ) -> Optional[int]: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Dict: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , _a ) -> Dict: _a : Dict = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCAmelCase ) def __lowercase ( self , _a ) -> Any: _a : Dict = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: _a : str = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCAmelCase ) return polynomial def __repr__( self ) -> List[Any]: return self.__str__() def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = [0] * self.degree for i in range(self.degree ): _a : List[str] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCAmelCase ) def __lowercase ( self , _a = 0 ) -> Union[str, Any]: _a : Dict = [0] * (self.degree + 2) _a : List[Any] = constant for i in range(self.degree + 1 ): _a : int = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCAmelCase ) def __eq__( self , _a ) -> Union[str, Any]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , _a ) -> int: return not self.__eq__(__lowerCAmelCase )
357
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def __UpperCAmelCase ( __a : np.ndarray ) -> np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" _a : List[str] = np.nan for i in range(_UpperCamelCase ): _a : Any = features[:, labels == i] _a : Any = data.mean(1 ) # Centralize the data of class i _a : Optional[Any] = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase ,centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _a : Any = np.dot(_UpperCamelCase ,centered_data.T ) return covariance_sum / features.shape[1] def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" _a : Optional[Any] = features.mean(1 ) _a : str = np.nan for i in range(_UpperCamelCase ): _a : Optional[Any] = features[:, labels == i] _a : Any = data.shape[1] _a : Dict = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) ,(column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T ,) else: # If covariance_sum is np.nan (i.e. first loop) _a : Any = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) ,(column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T ,) return covariance_sum / features.shape[1] def __UpperCAmelCase ( __a : np.ndarray ,__a : int ) -> np.ndarray: """simple docstring""" if features.any(): _a : List[Any] = features.mean(1 ) # Center the dataset _a : Union[str, Any] = features - np.reshape(_UpperCamelCase ,(data_mean.size, 1) ) _a : Optional[int] = np.dot(_UpperCamelCase ,centered_data.T ) / features.shape[1] _a , _a : Optional[Any] = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _a : Optional[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _a : Tuple = np.dot(filtered_eigenvectors.T ,_UpperCamelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format='''%(message)s''' ,force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : int ,__a : int ) -> np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: _a , _a : int = eigh( covariance_between_classes(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) ,covariance_within_classes(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) ,) _a : Any = eigenvectors[:, ::-1][:, :dimensions] _a , _a , _a : List[Any] = np.linalg.svd(_UpperCamelCase ) _a : int = svd_matrix[:, 0:dimensions] _a : Any = np.dot(filtered_svd_matrix.T ,_UpperCamelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format='''%(message)s''' ,force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : Union[str, Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _a : str = np.array([0, 0, 0, 1, 1] ) _a : Optional[Any] = 2 _a : Tuple = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: _a : Optional[Any] = linear_discriminant_analysis( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) if isinstance(_UpperCamelCase ,np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _a : Dict = 2 _a : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: _a : str = principal_component_analysis(_UpperCamelCase ,_UpperCamelCase ) if not np.allclose(_UpperCamelCase ,_UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
358
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : int = 3.0 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __lowercase ( self ) -> str: """simple docstring""" _a : List[str] = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a : Dict = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a : Any = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def __lowercase ( self ) -> int: """simple docstring""" _a : Tuple = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": a__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a__ = Accelerator(kwargs_handlers=[ddp_scaler]) a__ = torch.nn.Linear(100, 200) a__ = accelerator.prepare(model) # Check the values changed in kwargs a__ = '' a__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
360
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
from __future__ import annotations def __UpperCAmelCase ( __a : Dict ,__a : Optional[Any] ,__a : Union[str, Any] ,) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
361
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
0
import torch from torch import nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , _a , _a , _a , _a , _a=1 , _a=False ) -> Optional[int]: super().__init__() _a : int = n_token _a : Optional[int] = d_embed _a : Optional[Any] = d_proj _a : List[str] = cutoffs + [n_token] _a : str = [0] + self.cutoffs _a : Tuple = div_val _a : str = self.cutoffs[0] _a : str = len(self.cutoffs ) - 1 _a : Dict = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _a : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _a : str = nn.Parameter(torch.zeros(self.n_clusters ) ) _a : Union[str, Any] = nn.ModuleList() _a : str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_a , _a ) ) ) else: self.out_projs.append(_a ) self.out_layers.append(nn.Linear(_a , _a ) ) else: for i in range(len(self.cutoffs ) ): _a , _a : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Any = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_a , _a ) ) ) self.out_layers.append(nn.Linear(_a , r_idx - l_idx ) ) _a : List[str] = keep_order def __lowercase ( self , _a , _a , _a , _a ) -> str: if proj is None: _a : Optional[int] = nn.functional.linear(_a , _a , bias=_a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _a : Union[str, Any] = nn.functional.linear(_a , proj.t().contiguous() ) _a : Optional[int] = nn.functional.linear(_a , _a , bias=_a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __lowercase ( self , _a , _a=None , _a=False ) -> Optional[Any]: if labels is not None: # Shift so that tokens < n predict n _a : List[Any] = hidden[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : int = hidden.view(-1 , hidden.size(-1 ) ) _a : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: _a : str = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _a : List[str] = self._compute_logit(_a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _a : Dict = labels != -1_0_0 _a : List[str] = torch.zeros_like(_a , dtype=hidden.dtype , device=hidden.device ) _a : str = ( -nn.functional.log_softmax(_a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _a : int = nn.functional.log_softmax(_a , dim=-1 ) else: # construct weights and biases _a , _a : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Dict = self.out_layers[0].weight[l_idx:r_idx] _a : Any = self.out_layers[0].bias[l_idx:r_idx] else: _a : str = self.out_layers[i].weight _a : Any = self.out_layers[i].bias if i == 0: _a : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_a ) biases.append(_a ) _a , _a , _a : Tuple = weights[0], biases[0], self.out_projs[0] _a : Dict = self._compute_logit(_a , _a , _a , _a ) _a : Dict = nn.functional.log_softmax(_a , dim=1 ) if labels is None: _a : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _a : Optional[int] = torch.zeros_like(_a , dtype=hidden.dtype , device=hidden.device ) _a : List[str] = 0 _a : Optional[int] = [0] + self.cutoffs for i in range(len(_a ) - 1 ): _a , _a : List[str] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _a : Dict = (labels >= l_idx) & (labels < r_idx) _a : Optional[Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _a : Optional[int] = labels.index_select(0 , _a ) - l_idx _a : List[str] = head_logprob.index_select(0 , _a ) _a : List[str] = hidden.index_select(0 , _a ) else: _a : Optional[Any] = hidden if i == 0: if labels is not None: _a : List[str] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _a : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a : List[Any] = weights[i], biases[i], self.out_projs[i] _a : Tuple = self._compute_logit(_a , _a , _a , _a ) _a : Any = nn.functional.log_softmax(_a , dim=1 ) _a : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _a : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _a : Optional[int] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _a : Any = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __lowercase ( self , _a ) -> int: if self.n_clusters == 0: _a : Union[str, Any] = self._compute_logit(_a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_a , dim=-1 ) else: # construct weights and biases _a , _a : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Any = self.out_layers[0].weight[l_idx:r_idx] _a : str = self.out_layers[0].bias[l_idx:r_idx] else: _a : Optional[Any] = self.out_layers[i].weight _a : List[Any] = self.out_layers[i].bias if i == 0: _a : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_a ) biases.append(_a ) _a , _a , _a : Any = weights[0], biases[0], self.out_projs[0] _a : List[Any] = self._compute_logit(_a , _a , _a , _a ) _a : Dict = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _a : List[Any] = nn.functional.log_softmax(_a , dim=1 ) _a : int = [0] + self.cutoffs for i in range(len(_a ) - 1 ): _a , _a : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _a : List[str] = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a : Tuple = weights[i], biases[i], self.out_projs[i] _a : Optional[int] = self._compute_logit(_a , _a , _a , _a ) _a : Union[str, Any] = nn.functional.log_softmax(_a , dim=1 ) _a : Any = head_logprob[:, -i] + tail_logprob_i _a : Tuple = logprob_i return out
362
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
0
import argparse from collections import defaultdict import yaml a__ = '''docs/source/en/_toctree.yml''' def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : int = defaultdict(_a ) _a : int = [] _a : Dict = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(_a ) _a : List[str] = new_doc_list _a : Dict = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(_a ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) _a : List[str] = sorted(_a ,key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_a ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(_a ) # Sort return overview_doc def __UpperCAmelCase ( __a : Union[str, Any]=False ) -> str: """simple docstring""" with open(_a ,encoding='''utf-8''' ) as f: _a : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _a : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : List[Any] = content[api_idx]["sections"] # Then to the model doc _a : Optional[int] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _a : Any = api_doc[scheduler_idx]["sections"] _a : Tuple = clean_doc_toc(_a ) _a : Any = False if new_scheduler_doc != scheduler_doc: _a : List[Any] = True if overwrite: _a : Optional[int] = new_scheduler_doc if diff: if overwrite: _a : Dict = api_doc with open(_a ,'''w''' ,encoding='''utf-8''' ) as f: f.write(yaml.dump(_a ,allow_unicode=_a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __UpperCAmelCase ( __a : List[Any]=False ) -> Union[str, Any]: """simple docstring""" with open(_a ,encoding='''utf-8''' ) as f: _a : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _a : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : str = content[api_idx]["sections"] # Then to the model doc _a : Optional[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _a : Union[str, Any] = False _a : Optional[Any] = api_doc[pipeline_idx]["sections"] _a : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _a : Any = pipeline_doc["section"] _a : int = clean_doc_toc(_a ) if overwrite: _a : List[Any] = new_sub_pipeline_doc new_pipeline_docs.append(_a ) # sort overall pipeline doc _a : int = clean_doc_toc(_a ) if new_pipeline_docs != pipeline_docs: _a : str = True if overwrite: _a : List[Any] = new_pipeline_docs if diff: if overwrite: _a : Optional[Any] = api_doc with open(_a ,'''w''' ,encoding='''utf-8''' ) as f: f.write(yaml.dump(_a ,allow_unicode=_a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
363
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a__ = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : str = 0 def __lowercase ( self ) -> Any: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __lowercase ( self ) -> Optional[int]: _a : List[str] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> int: _a : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _a : int = os.path.join(UpperCAmelCase_ , '''fake-roberta''' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) _a : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __lowercase ( self ) -> List[Any]: try: AutoConfig.register('''custom''' , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('''model''' , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('''bert''' , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _a : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) _a : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowercase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCAmelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): _a : Union[str, Any] = AutoConfig.from_pretrained('''bert-base''' ) def __lowercase ( self ) -> Tuple: with self.assertRaisesRegex( UpperCAmelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision='''aaaaaa''' ) def __lowercase ( self ) -> Tuple: with self.assertRaisesRegex( UpperCAmelCase_ , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _a : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __lowercase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): _a : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _a : Any = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) _a : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) _a : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( snake_case__ ): """simple docstring""" UpperCAmelCase__ : str = "new-model" try: AutoConfig.register('''new-model''' , UpperCAmelCase_ ) # If remote code is not set, the default is to use local _a : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. _a : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub _a : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
364
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
0
def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" _a : List[str] = 2**power _a : Optional[int] = str(SCREAMING_SNAKE_CASE_ ) _a : List[Any] = list(SCREAMING_SNAKE_CASE_ ) _a : Optional[int] = 0 for i in list_num: sum_of_num += int(SCREAMING_SNAKE_CASE_ ) return sum_of_num if __name__ == "__main__": a__ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) a__ = solution(power) print('''Sum of the digits is: ''', result)
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a__ = ['text', 'image', 'audio'] def __UpperCAmelCase ( __a : List[str] ) -> Optional[int]: """simple docstring""" _a : str = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): inputs.append(create_inputs(UpperCamelCase__ ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __UpperCAmelCase ( __a : List ) -> Optional[int]: """simple docstring""" _a : Any = [] for output in outputs: if isinstance(UpperCamelCase__ ,(str, AgentText) ): output_types.append('''text''' ) elif isinstance(UpperCamelCase__ ,(Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(UpperCamelCase__ ,(torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase_ : """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) _a : Dict = self.tool.inputs for _input in inputs: if isinstance(_input , __lowerCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _a : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __lowercase ( self ) -> List[Any]: _a : Optional[Any] = create_inputs(self.tool.inputs ) _a : List[str] = self.tool(*__lowerCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: _a : Tuple = [outputs] self.assertListEqual(output_types(__lowerCamelCase ) , self.tool.outputs ) def __lowercase ( self ) -> int: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __lowercase ( self ) -> Dict: _a : int = create_inputs(self.tool.inputs ) _a : List[Any] = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): _a : Any = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__lowerCamelCase , self.tool.outputs ): _a : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) def __lowercase ( self ) -> Any: _a : Any = create_inputs(self.tool.inputs ) _a : Any = [] for _input, input_type in zip(__lowerCamelCase , self.tool.inputs ): if isinstance(__lowerCamelCase , __lowerCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _a : Optional[int] = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): _a : Dict = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) )
366
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } a__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class UpperCAmelCase_ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = ["input_ids", "attention_mask"] UpperCAmelCase__ : Optional[int] = RobertaTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ) -> str: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) _a : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: _a : Optional[Any] = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) _a : int = add_prefix_space _a : List[Any] = pre_tok_class(**_lowerCamelCase ) _a : Dict = add_prefix_space _a : Optional[int] = '''post_processor''' _a : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: _a : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a : str = tuple(state['''sep'''] ) if "cls" in state: _a : int = tuple(state['''cls'''] ) _a : Tuple = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: _a : List[Any] = add_prefix_space _a : Optional[int] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: _a : List[str] = trim_offsets _a : int = True if changes_to_apply: _a : Dict = getattr(_lowerCamelCase , state.pop('''type''' ) ) _a : List[str] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property def __lowercase ( self ) -> List[Any]: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self , _a ) -> str: _a : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value _a : List[str] = value def __lowercase ( self , *_a , **_a ) -> List[Any]: _a : Optional[int] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowercase ( self , *_a , **_a ) -> Any: _a : Optional[int] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowercase ( self , _a , _a = None ) -> int: _a : Optional[Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowercase ( self , _a , _a=None ) -> int: _a : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , _a , _a = None ) -> List[Any]: _a : Optional[int] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = "▁" a__ = {"vocab_file": "spiece.model"} a__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } a__ = { "google/pegasus-xsum": 512, } a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _a , _a="<pad>" , _a="</s>" , _a="<unk>" , _a="<mask_2>" , _a="<mask_1>" , _a=None , _a=1_0_3 , _a = None , **_a , ) -> int: _a : str = offset if additional_special_tokens is not None: if not isinstance(_a , _a ): raise TypeError( F"""additional_special_tokens should be of type {type(_a )}, but is""" F""" {type(_a )}""" ) _a : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_a ) , self.offset - 1 ) ] if len(set(_a ) ) != len(_a ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _a : Tuple = additional_special_tokens_extended else: _a : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] _a : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a , unk_token=_a , mask_token=_a , pad_token=_a , mask_token_sent=_a , offset=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : Any = mask_token_sent _a : List[str] = vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # add special tokens to encoder dict _a : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _a : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowercase ( self ) -> int: return len(self.sp_model ) + self.offset def __lowercase ( self ) -> str: _a : Optional[int] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _a : Dict = self.__dict__.copy() _a : int = None return state def __setstate__( self , _a ) -> List[Any]: _a : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Optional[int] = {} _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a ) -> Tuple: return self.sp_model.encode(_a , out_type=_a ) def __lowercase ( self , _a ) -> Optional[Any]: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _a : Any = self.sp_model.piece_to_id(_a ) return sp_id + self.offset def __lowercase ( self , _a ) -> List[str]: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _a : str = self.sp_model.IdToPiece(index - self.offset ) return token def __lowercase ( self , _a ) -> int: _a : Union[str, Any] = [] _a : int = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token _a : Optional[int] = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def __lowercase ( self , _a=False ) -> List[str]: return 1 def __lowercase ( self , _a ) -> List[Any]: _a : Union[str, Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowercase ( self , _a , _a = None , _a = False ) -> Optional[Any]: if already_has_special_tokens: return self._special_token_mask(_a ) elif token_ids_a is None: return self._special_token_mask(_a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowercase ( self , _a , _a=None ) -> Any: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowercase ( self , _a , _a = None ) -> Optional[Any]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Any = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: _a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
368
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
0
import datasets from .evaluate import evaluate a__ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' a__ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' a__ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowercase ( self , _a , _a ) -> List[Any]: _a : Optional[Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _a : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _a : int = evaluate(dataset=_a , predictions=_a ) return score
369
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a__ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') a__ = [file for file in filepaths if ''' ''' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') a__ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') a__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') a__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
370
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') a__ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str = field( default=__lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : str = field( default=__lowerCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : Optional[bool] = field( default=__lowerCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) UpperCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' ,__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a : List[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _a : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _a : Union[str, Any] = load_dataset( '''xnli''' ,model_args.language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: _a : Tuple = load_dataset( '''xnli''' ,model_args.train_language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) _a : Tuple = train_dataset.features['''label'''].names if training_args.do_eval: _a : List[str] = load_dataset( '''xnli''' ,model_args.language ,split='''validation''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) _a : Optional[int] = eval_dataset.features['''label'''].names if training_args.do_predict: _a : Optional[Any] = load_dataset( '''xnli''' ,model_args.language ,split='''test''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) _a : Any = predict_dataset.features['''label'''].names # Labels _a : Union[str, Any] = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__lowerCAmelCase ,idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} ,labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} ,finetuning_task='''xnli''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _a : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _a : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__lowerCAmelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _a : int = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _a : str = False def preprocess_function(__a : str ): # Tokenize the texts return tokenizer( examples['''premise'''] ,examples['''hypothesis'''] ,padding=__lowerCAmelCase ,max_length=data_args.max_seq_length ,truncation=__lowerCAmelCase ,) if training_args.do_train: if data_args.max_train_samples is not None: _a : Any = min(len(__lowerCAmelCase ) ,data_args.max_train_samples ) _a : List[Any] = train_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): _a : Tuple = train_dataset.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on train dataset''' ,) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCAmelCase ) ) ,3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _a : Any = min(len(__lowerCAmelCase ) ,data_args.max_eval_samples ) _a : Tuple = eval_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): _a : Any = eval_dataset.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on validation dataset''' ,) if training_args.do_predict: if data_args.max_predict_samples is not None: _a : Any = min(len(__lowerCAmelCase ) ,data_args.max_predict_samples ) _a : Tuple = predict_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): _a : List[str] = predict_dataset.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on prediction dataset''' ,) # Get the metric function _a : str = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__a : str ): _a : Optional[int] = p.predictions[0] if isinstance(p.predictions ,__lowerCAmelCase ) else p.predictions _a : Optional[int] = np.argmax(__lowerCAmelCase ,axis=1 ) return metric.compute(predictions=__lowerCAmelCase ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _a : int = default_data_collator elif training_args.fpaa: _a : Union[str, Any] = DataCollatorWithPadding(__lowerCAmelCase ,pad_to_multiple_of=8 ) else: _a : List[str] = None # Initialize our Trainer _a : Dict = Trainer( model=__lowerCAmelCase ,args=__lowerCAmelCase ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,data_collator=__lowerCAmelCase ,) # Training if training_args.do_train: _a : int = None if training_args.resume_from_checkpoint is not None: _a : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a : int = last_checkpoint _a : List[str] = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) _a : Optional[int] = train_result.metrics _a : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) _a : Any = min(__lowerCAmelCase ,len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,__lowerCAmelCase ) trainer.save_metrics('''train''' ,__lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _a : Optional[int] = trainer.evaluate(eval_dataset=__lowerCAmelCase ) _a : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) _a : Union[str, Any] = min(__lowerCAmelCase ,len(__lowerCAmelCase ) ) trainer.log_metrics('''eval''' ,__lowerCAmelCase ) trainer.save_metrics('''eval''' ,__lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) _a : List[str] = trainer.predict(__lowerCAmelCase ,metric_key_prefix='''predict''' ) _a : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase ) ) _a : int = min(__lowerCAmelCase ,len(__lowerCAmelCase ) ) trainer.log_metrics('''predict''' ,__lowerCAmelCase ) trainer.save_metrics('''predict''' ,__lowerCAmelCase ) _a : List[Any] = np.argmax(__lowerCAmelCase ,axis=1 ) _a : str = os.path.join(training_args.output_dir ,'''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase ,'''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__lowerCAmelCase ): _a : List[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
371
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __UpperCamelCase ): """simple docstring""" UpperCAmelCase__ : str = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : List[str] = num_channels _a : Optional[int] = image_size _a : Dict = depth_multiplier _a : Tuple = min_depth _a : Union[str, Any] = hidden_act _a : List[Any] = tf_padding _a : List[str] = classifier_dropout_prob _a : List[str] = initializer_range _a : int = layer_norm_eps class UpperCAmelCase_ ( __UpperCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
def __UpperCAmelCase ( __a : Tuple ) -> str: """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) _a : Optional[int] = '''''' while len(__a ) % 3 != 0: _a : int = '''0''' + bin_string _a : Optional[Any] = [ bin_string[index : index + 3] for index in range(len(__a ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _a : Optional[Any] = 0 for index, val in enumerate(__a ): oct_val += int(2 ** (2 - index) * int(__a ) ) oct_string += str(__a ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
351
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
0
"""simple docstring""" import math def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Any: """simple docstring""" return math.pow(lowerCamelCase__ ,2 ) - a def __UpperCAmelCase ( __a : Tuple ) -> Optional[Any]: """simple docstring""" return 2 * x def __UpperCAmelCase ( __a : str ) -> Dict: """simple docstring""" _a : Union[str, Any] = 2.0 while start <= a: _a : Any = math.pow(lowerCamelCase__ ,2 ) return start def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] = 9_999 ,__a : Optional[Any] = 0.00_00_00_00_00_00_01 ) -> Optional[Any]: """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) _a : str = get_initial_point(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): _a : Dict = value _a : Tuple = value - fx(lowerCamelCase__ ,lowerCamelCase__ ) / fx_derivative(lowerCamelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a__ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , _a , _a , _a = None , _a = None ) -> int: _a : Optional[int] = None _a : Optional[Any] = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _a : Any = os.path.abspath('''examples''' ) for item in os.listdir(_lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: _a : Tuple = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCAmelCase , feature_script=_lowerCAmelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): _a : List[Any] = compare_against_test( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _a : str = '''\n'''.join(_lowerCAmelCase ) if special_strings is not None: for string in special_strings: _a : List[Any] = diff.replace(_lowerCAmelCase , '''''' ) self.assertEqual(_lowerCAmelCase , '''''' ) def __lowercase ( self ) -> List[Any]: self.one_complete_example('''complete_nlp_example.py''' , _lowerCAmelCase ) self.one_complete_example('''complete_nlp_example.py''' , _lowerCAmelCase ) def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _a : Optional[Any] = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.one_complete_example('''complete_cv_example.py''' , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = False @classmethod def __lowercase ( cls ) -> List[Any]: super().setUpClass() _a : Union[str, Any] = tempfile.mkdtemp() _a : Any = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _a : str = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __lowercase ( cls ) -> Any: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowercase ( self ) -> str: _a : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _a : Optional[int] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __lowercase ( self ) -> Optional[Any]: _a : Tuple = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() _a : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) self.assertNotIn('''epoch 0:''' , _lowerCAmelCase ) self.assertIn('''epoch 1:''' , _lowerCAmelCase ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() _a : Any = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) if torch.cuda.is_available(): _a : int = torch.cuda.device_count() else: _a : List[Any] = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , _lowerCAmelCase ) self.assertIn('''epoch 1:''' , _lowerCAmelCase ) else: self.assertIn('''epoch 0:''' , _lowerCAmelCase ) self.assertIn('''epoch 1:''' , _lowerCAmelCase ) @slow def __lowercase ( self ) -> int: _a : List[Any] = '''\n examples/by_feature/cross_validation.py\n --num_folds 2\n '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _a : Optional[int] = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) _a : Optional[int] = re.findall('''({.+})''' , _lowerCAmelCase ) _a : int = [r for r in results if '''accuracy''' in r][-1] _a : Optional[int] = ast.literal_eval(_lowerCAmelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __lowercase ( self ) -> str: _a : Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowercase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: _a : Optional[Any] = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , '''tracking''' ) ) ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __lowercase ( self ) -> Dict: _a : int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
0
"""simple docstring""" def __UpperCAmelCase ( __a : int = 4_000_000 ) -> int: """simple docstring""" _a : Optional[int] = [0, 1] _a : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _a : Tuple = 0 for j in range(len(_A ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
354
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
0
from math import factorial def __UpperCAmelCase ( __a : int = 100 ) -> List[str]: """simple docstring""" return sum(map(__a ,str(factorial(__a ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a__ = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } a__ = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def __UpperCAmelCase ( __a : int ) -> Any: """simple docstring""" _a : Tuple = list(state_dict.keys() ) for name in state_dict_keys: _a : Dict = state_dict.pop(__a ) # emb -> embedding if name.startswith('''emb.''' ): _a : Optional[int] = name.replace('''emb.''' ,'''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): _a : Any = name.replace('''blocks.0.ln0''' ,'''blocks.0.pre_ln''' ) # att -> attention _a : Optional[int] = re.sub(R'''blocks\.(\d+)\.att''' ,R'''blocks.\1.attention''' ,__a ) # ffn -> feed_forward _a : Any = re.sub(R'''blocks\.(\d+)\.ffn''' ,R'''blocks.\1.feed_forward''' ,__a ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): _a : Optional[int] = name.replace('''.time_mix_k''' ,'''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): _a : int = name.replace('''.time_mix_v''' ,'''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): _a : Any = name.replace('''.time_mix_r''' ,'''.time_mix_receptance''' ) if name != "head.weight": _a : List[Any] = '''rwkv.''' + name _a : Union[str, Any] = weight return state_dict def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : str ,__a : List[str]=None ,__a : Optional[Any]=None ,__a : Optional[Any]=False ,__a : Any=None ) -> Dict: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) _a : Dict = 50_277 _a : Any = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: _a : Optional[int] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : Optional[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : List[Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a ,num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] ,hidden_size=HIDEN_SIZE_MAPPING[size] ,) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Any = hf_hub_download(__a ,__a ) _a : Tuple = torch.load(__a ,map_location='''cpu''' ) _a : List[Any] = convert_state_dict(__a ) # 4. Split in shards and save _a : int = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a ,os.path.join(__a ,__a ) ) if index is not None: _a : Dict = os.path.join(__a ,__a ) # Save the index as well with open(__a ,'''w''' ,encoding='''utf-8''' ) as f: _a : Dict = json.dumps(__a ,indent=2 ,sort_keys=__a ) + '''\n''' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) _a : Tuple = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : int = torch.load(os.path.join(__a ,__a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} ,os.path.join(__a ,__a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) _a : Optional[int] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a ,max_shard_size='''2GB''' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) a__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
356
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
0
def __UpperCAmelCase ( __a : Dict ) -> Optional[int]: """simple docstring""" _a : Tuple = len(A__ ) for i in range(length - 1 ): _a : Optional[int] = i for k in range(i + 1 ,A__ ): if collection[k] < collection[least]: _a : Any = k if least != i: _a , _a : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": a__ = input('''Enter numbers separated by a comma:\n''').strip() a__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
357
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
0
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase__ : Dict = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase__ : List[str] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase__ : Union[str, Any] = "image_qa" UpperCAmelCase__ : Tuple = AutoProcessor UpperCAmelCase__ : int = AutoModelForVisualQuestionAnswering UpperCAmelCase__ : int = ["image", "text"] UpperCAmelCase__ : Optional[Any] = ["text"] def __init__( self , *_a , **_a ) -> str: requires_backends(self , ['''vision'''] ) super().__init__(*_a , **_a ) def __lowercase ( self , _a , _a ) -> Dict: return self.pre_processor(_a , _a , return_tensors='''pt''' ) def __lowercase ( self , _a ) -> Tuple: with torch.no_grad(): return self.model(**_a ).logits def __lowercase ( self , _a ) -> Union[str, Any]: _a : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
358
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a__ = '''src/transformers''' a__ = '''docs/source/en/tasks''' def __UpperCAmelCase ( __a : Optional[int] ,__a : str ,__a : str ) -> int: """simple docstring""" with open(a__ ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Any = f.readlines() # Find the start prompt. _a : List[Any] = 0 while not lines[start_index].startswith(a__ ): start_index += 1 start_index += 1 _a : str = start_index while not lines[end_index].startswith(a__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a__ = direct_transformers_import(TRANSFORMERS_PATH) a__ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a__ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __UpperCAmelCase ( __a : Dict ) -> Optional[int]: """simple docstring""" _a : List[Any] = TASK_GUIDE_TO_MODELS[task_guide] _a : int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(a__ ,set() ) _a : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __UpperCAmelCase ( __a : int ,__a : int=False ) -> List[str]: """simple docstring""" _a , _a , _a , _a : Union[str, Any] = _find_text_in_file( filename=os.path.join(a__ ,a__ ) ,start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' ,end_prompt='''<!--End of the generated tip-->''' ,) _a : str = get_model_list_for_task(a__ ) if current_list != new_list: if overwrite: with open(os.path.join(a__ ,a__ ) ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
359
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=1_3 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=5 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=1_6 , _a=2 , _a=0.02 , _a=4 , ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = parent _a : List[Any] = batch_size _a : Any = seq_length _a : str = is_training _a : str = use_attention_mask _a : List[Any] = use_token_type_ids _a : Dict = use_labels _a : int = vocab_size _a : str = hidden_size _a : Any = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Tuple = intermediate_size _a : Tuple = hidden_act _a : int = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : Any = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : List[str] = num_choices def __lowercase ( self ) -> List[Any]: """simple docstring""" _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[Any] = None if self.use_attention_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : int = None if self.use_token_type_ids: _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Dict = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self ) -> Union[str, Any]: """simple docstring""" _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a , _a : str = config_and_inputs _a : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __lowercase ( self ) -> int: """simple docstring""" _a : int = self.prepare_config_and_inputs() _a , _a , _a , _a : Any = config_and_inputs _a : Union[str, Any] = True _a : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self ) -> int: """simple docstring""" _a : str = FlaxRobertaModelTester(self ) @slow def __lowercase ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: _a : List[Any] = model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCAmelCase__ ) _a : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
360
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a__ = "true" def __UpperCAmelCase ( __a : Dict ,__a : Optional[int]=82 ,__a : Any=16 ) -> List[str]: """simple docstring""" set_seed(42 ) _a : Optional[int] = RegressionModel() _a : str = deepcopy(__lowerCAmelCase ) _a : Optional[int] = RegressionDataset(length=__lowerCAmelCase ) _a : str = DataLoader(__lowerCAmelCase ,batch_size=__lowerCAmelCase ) model.to(accelerator.device ) _a : List[Any] = accelerator.prepare(__lowerCAmelCase ,__lowerCAmelCase ) return model, ddp_model, dataloader def __UpperCAmelCase ( __a : str ,__a : str=False ) -> str: """simple docstring""" _a : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _a : Tuple = load_dataset('''glue''' ,'''mrpc''' ,split='''validation''' ) def tokenize_function(__a : Optional[int] ): _a : Tuple = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ) return outputs with accelerator.main_process_first(): _a : Any = dataset.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) _a : Union[str, Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__a : Dict ): if use_longest: return tokenizer.pad(__lowerCAmelCase ,padding='''longest''' ,return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return DataLoader(__lowerCAmelCase ,shuffle=__lowerCAmelCase ,collate_fn=__lowerCAmelCase ,batch_size=16 ) def __UpperCAmelCase ( __a : Tuple ,__a : int ) -> List[Any]: """simple docstring""" _a : Any = Accelerator(dispatch_batches=__lowerCAmelCase ,split_batches=__lowerCAmelCase ) _a : Optional[int] = get_dataloader(__lowerCAmelCase ,not dispatch_batches ) _a : Dict = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' ,return_dict=__lowerCAmelCase ) _a : Tuple = accelerator.prepare(__lowerCAmelCase ,__lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __UpperCAmelCase ( __a : Optional[int] ,__a : Any ,__a : Optional[Any] ) -> Optional[int]: """simple docstring""" _a : int = [] for batch in dataloader: _a : Tuple = batch.values() with torch.no_grad(): _a : List[Any] = model(__lowerCAmelCase ) _a : List[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _a : Union[str, Any] = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCAmelCase ) targs.append(__lowerCAmelCase ) _a : List[str] = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase ) return logits, targs def __UpperCAmelCase ( __a : Optional[Any] ,__a : List[str]=82 ,__a : List[Any]=False ,__a : Any=False ,__a : List[Any]=16 ) -> Optional[Any]: """simple docstring""" _a : Union[str, Any] = get_basic_setup(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _a : Union[str, Any] = generate_predictions(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) assert ( len(__lowerCAmelCase ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}""" def __UpperCAmelCase ( __a : Tuple = False ,__a : List[str] = False ) -> Optional[Any]: """simple docstring""" _a : Dict = evaluate.load('''glue''' ,'''mrpc''' ) _a : List[Any] = get_mrpc_setup(__lowerCAmelCase ,__lowerCAmelCase ) # First do baseline _a : List[Any] = setup["""no"""] model.to(__lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(__lowerCAmelCase ) with torch.inference_mode(): _a : List[str] = model(**__lowerCAmelCase ) _a : int = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCAmelCase ,references=batch['''labels'''] ) _a : str = metric.compute() # Then do distributed _a : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): _a : int = model(**__lowerCAmelCase ) _a : Any = outputs.logits.argmax(dim=-1 ) _a : Dict = batch["""labels"""] _a : List[str] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCAmelCase ,references=__lowerCAmelCase ) _a : Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __UpperCAmelCase ( ) -> int: """simple docstring""" _a : List[Any] = Accelerator(split_batches=__lowerCAmelCase ,dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__lowerCAmelCase ,__lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _a : Optional[int] = Accelerator(split_batches=__lowerCAmelCase ,dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__lowerCAmelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _a : str = Accelerator() test_torch_metrics(__lowerCAmelCase ,512 ) accelerator.state._reset_state() def __UpperCAmelCase ( __a : Optional[Any] ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
361
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def __UpperCAmelCase ( __a : List[Any] ,__a : int ) -> List[Any]: """simple docstring""" _a : Dict = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } _a : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _a : Union[str, Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] ,num_layers=predefined_args['''num_layers'''] ,units=predefined_args['''units'''] ,hidden_size=predefined_args['''hidden_size'''] ,max_length=predefined_args['''max_length'''] ,num_heads=predefined_args['''num_heads'''] ,scaled=predefined_args['''scaled'''] ,dropout=predefined_args['''dropout'''] ,output_attention=lowercase__ ,output_all_encodings=lowercase__ ,use_residual=predefined_args['''use_residual'''] ,activation=predefined_args.get('''activation''' ,'''gelu''' ) ,layer_norm_eps=predefined_args.get('''layer_norm_eps''' ,lowercase__ ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _a : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab _a : str = os.path.join(get_home_dir() ,'''models''' ) _a : Dict = _load_vocab(lowercase__ ,lowercase__ ,lowercase__ ,cls=lowercase__ ) _a : List[Any] = nlp.model.BERTModel( lowercase__ ,len(lowercase__ ) ,units=predefined_args['''units'''] ,embed_size=predefined_args['''embed_size'''] ,embed_dropout=predefined_args['''embed_dropout'''] ,word_embed=predefined_args['''word_embed'''] ,use_pooler=lowercase__ ,use_token_type_embed=lowercase__ ,token_type_vocab_size=predefined_args['''token_type_vocab_size'''] ,use_classifier=lowercase__ ,use_decoder=lowercase__ ,) original_bort.load_parameters(lowercase__ ,cast_dtype=lowercase__ ,ignore_extra=lowercase__ ) _a : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 _a : int = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(lowercase__ ), } _a : Optional[Any] = BertConfig.from_dict(lowercase__ ) _a : List[Any] = BertForMaskedLM(lowercase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__a : List[str] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__a : List[Any] ,__a : Dict ): _a : List[Any] = hf_param.shape _a : Dict = to_torch(params[gluon_param] ) _a : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param _a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,'''word_embed.0.weight''' ) _a : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,'''encoder.position_weight''' ) _a : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,'''encoder.layer_norm.beta''' ) _a : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,'''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _a : Optional[Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _a : Tuple = hf_bort_model.bert.encoder.layer[i] # self attention _a : Tuple = layer.attention.self _a : Optional[Any] = check_and_map_params( self_attn.key.bias.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) _a : List[Any] = check_and_map_params( self_attn.key.weight.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) _a : Union[str, Any] = check_and_map_params( self_attn.query.bias.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) _a : Optional[int] = check_and_map_params( self_attn.query.weight.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) _a : Optional[int] = check_and_map_params( self_attn.value.bias.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) _a : Dict = check_and_map_params( self_attn.value.weight.data ,F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output _a : Any = layer.attention.output _a : Dict = check_and_map_params( self_output.dense.bias ,F"""encoder.transformer_cells.{i}.proj.bias""" ) _a : int = check_and_map_params( self_output.dense.weight ,F"""encoder.transformer_cells.{i}.proj.weight""" ) _a : int = check_and_map_params( self_output.LayerNorm.bias ,F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) _a : str = check_and_map_params( self_output.LayerNorm.weight ,F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate _a : List[Any] = layer.intermediate _a : Optional[int] = check_and_map_params( intermediate.dense.bias ,F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) _a : List[str] = check_and_map_params( intermediate.dense.weight ,F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output _a : str = layer.output _a : Optional[int] = check_and_map_params( bert_output.dense.bias ,F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) _a : str = check_and_map_params( bert_output.dense.weight ,F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) _a : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias ,F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) _a : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight ,F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _a : Optional[int] = RobertaTokenizer.from_pretrained('''roberta-base''' ) _a : int = tokenizer.encode_plus(lowercase__ )['''input_ids'''] # Get gluon output _a : List[Any] = mx.nd.array([input_ids] ) _a : Dict = original_bort(inputs=lowercase__ ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase__ ) _a : str = BertModel.from_pretrained(lowercase__ ) hf_bort_model.eval() _a : Dict = tokenizer.encode_plus(lowercase__ ,return_tensors='''pt''' ) _a : int = hf_bort_model(**lowercase__ )[0] _a : Union[str, Any] = output_gluon[0].asnumpy() _a : Union[str, Any] = output_hf[0].detach().numpy() _a : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() _a : Any = np.allclose(lowercase__ ,lowercase__ ,atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' ,lowercase__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
362
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) # TODO Update this a__ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "esm" def __init__( self , _a=None , _a=None , _a=None , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a=0.1 , _a=0.1 , _a=1_0_2_6 , _a=0.02 , _a=1e-1_2 , _a="absolute" , _a=True , _a=None , _a=False , _a=False , _a=None , _a=None , **_a , ) -> Tuple: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , mask_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _a : Optional[Any] = vocab_size _a : Any = hidden_size _a : Dict = num_hidden_layers _a : List[str] = num_attention_heads _a : List[Any] = intermediate_size _a : List[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : int = initializer_range _a : List[Any] = layer_norm_eps _a : List[Any] = position_embedding_type _a : Optional[Any] = use_cache _a : List[str] = emb_layer_norm_before _a : Tuple = token_dropout _a : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _a : str = EsmFoldConfig() elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _a : int = EsmFoldConfig(**_SCREAMING_SNAKE_CASE ) _a : Dict = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _a : List[Any] = get_default_vocab_list() else: _a : Tuple = vocab_list else: _a : Union[str, Any] = None _a : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , _SCREAMING_SNAKE_CASE ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __lowercase ( self ) -> Dict: _a : List[str] = super().to_dict() if isinstance(self.esmfold_config , _SCREAMING_SNAKE_CASE ): _a : List[str] = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = 128 UpperCAmelCase__ : Tuple = None def __lowercase ( self ) -> Any: if self.trunk is None: _a : List[str] = TrunkConfig() elif isinstance(self.trunk , _SCREAMING_SNAKE_CASE ): _a : List[str] = TrunkConfig(**self.trunk ) def __lowercase ( self ) -> List[Any]: _a : Any = asdict(self ) _a : Tuple = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Dict = 48 UpperCAmelCase__ : int = 1024 UpperCAmelCase__ : Dict = 128 UpperCAmelCase__ : Optional[Any] = 32 UpperCAmelCase__ : Dict = 32 UpperCAmelCase__ : Optional[int] = 32 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Union[str, Any] = 4 UpperCAmelCase__ : int = 128 UpperCAmelCase__ : Tuple = None def __lowercase ( self ) -> Optional[int]: if self.structure_module is None: _a : Optional[Any] = StructureModuleConfig() elif isinstance(self.structure_module , _SCREAMING_SNAKE_CASE ): _a : Any = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _a : int = self.sequence_state_dim // self.sequence_head_width _a : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __lowercase ( self ) -> str: _a : int = asdict(self ) _a : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Optional[int] = 384 UpperCAmelCase__ : List[Any] = 128 UpperCAmelCase__ : Dict = 16 UpperCAmelCase__ : int = 128 UpperCAmelCase__ : int = 12 UpperCAmelCase__ : Any = 4 UpperCAmelCase__ : List[Any] = 8 UpperCAmelCase__ : Optional[int] = 0.1 UpperCAmelCase__ : Optional[Any] = 8 UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : str = 10 UpperCAmelCase__ : List[Any] = 1E-8 UpperCAmelCase__ : Dict = 1E5 def __lowercase ( self ) -> Union[str, Any]: return asdict(self ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
363
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( __snake_case ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCAmelCase__ : List[str] = "CIDAS/clipseg-rd64-refined" UpperCAmelCase__ : str = "image_segmenter" UpperCAmelCase__ : int = CLIPSegForImageSegmentation UpperCAmelCase__ : List[Any] = ["image", "text"] UpperCAmelCase__ : Union[str, Any] = ["image"] def __init__( self , *_a , **_a ) -> List[Any]: requires_backends(self , ['''vision'''] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def __lowercase ( self , _a , _a ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase_ , return_tensors='''pt''' ) def __lowercase ( self , _a ) -> Union[str, Any]: with torch.no_grad(): _a : Dict = self.model(**lowerCamelCase_ ).logits return logits def __lowercase ( self , _a ) -> Optional[int]: _a : Tuple = outputs.cpu().detach().numpy() _a : Dict = 0 _a : List[Any] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
364
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = """Salesforce/blip-image-captioning-base""" UpperCAmelCase__ : List[str] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) UpperCAmelCase__ : int = """image_captioner""" UpperCAmelCase__ : Dict = AutoModelForVisionaSeq UpperCAmelCase__ : Tuple = ["""image"""] UpperCAmelCase__ : Tuple = ["""text"""] def __init__( self , *_a , **_a ) -> Tuple: requires_backends(self , ['''vision'''] ) super().__init__(*_lowercase , **_lowercase ) def __lowercase ( self , _a ) -> Any: return self.pre_processor(images=_lowercase , return_tensors='''pt''' ) def __lowercase ( self , _a ) -> Union[str, Any]: return self.model.generate(**_lowercase ) def __lowercase ( self , _a ) -> Tuple: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase )[0].strip()
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[int] ,__a : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _a : List[str] = val def __UpperCAmelCase ( __a : Dict ) -> Tuple: """simple docstring""" _a : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _a : List[Any] = key.replace('''backbone.0.body''' ,'''backbone.conv_encoder.model''' ) _a : Union[str, Any] = value else: _a : Dict = value return new_state_dict def __UpperCAmelCase ( __a : Dict ,__a : Tuple=False ) -> Optional[Any]: """simple docstring""" _a : Dict = '''''' if is_panoptic: _a : Dict = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[:256, :] _a : List[str] = in_proj_bias[:256] _a : Union[str, Any] = in_proj_weight[256:512, :] _a : Optional[int] = in_proj_bias[256:512] _a : int = in_proj_weight[-256:, :] _a : Any = in_proj_bias[-256:] def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ ,stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple ) -> Optional[int]: """simple docstring""" _a : List[str] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _a : Optional[int] = '''resnet101''' if "dc5" in model_name: _a : Dict = True _a : Union[str, Any] = '''panoptic''' in model_name if is_panoptic: _a : str = 250 else: _a : Dict = 91 _a : Optional[Any] = '''huggingface/label-files''' _a : List[Any] = '''coco-detection-id2label.json''' _a : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,repo_type='''dataset''' ) ,'''r''' ) ) _a : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _a : str = idalabel _a : List[str] = {v: k for k, v in idalabel.items()} # load image processor _a : List[Any] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' _a : Union[str, Any] = ConditionalDetrImageProcessor(format=SCREAMING_SNAKE_CASE__ ) # prepare image _a : Dict = prepare_img() _a : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ) _a : Tuple = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub _a : Tuple = torch.hub.load('''DeppMeng/ConditionalDETR''' ,SCREAMING_SNAKE_CASE__ ,pretrained=SCREAMING_SNAKE_CASE__ ).eval() _a : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _a : Tuple = '''conditional_detr.''' + src rename_key(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _a : str = rename_backbone_keys(SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ ,is_panoptic=SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : Any = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): _a : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _a : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _a : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _a : Tuple = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: _a : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _a : Union[str, Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _a : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _a : Any = val # finally, create HuggingFace model and load state dict _a : Optional[int] = ConditionalDetrForSegmentation(SCREAMING_SNAKE_CASE__ ) if is_panoptic else ConditionalDetrForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() model.push_to_hub(repo_id=SCREAMING_SNAKE_CASE__ ,organization='''DepuMeng''' ,commit_message='''Add model''' ) # verify our conversion _a : List[str] = conditional_detr(SCREAMING_SNAKE_CASE__ ) _a : List[str] = model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(outputs.logits ,original_outputs['''pred_logits'''] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs['''pred_boxes'''] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs['''pred_masks'''] ,atol=1E-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) a__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
366
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
import tensorflow as tf from ...tf_utils import shape_list class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _a , _a , _a , _a , _a=1 , _a=False , **_a ) -> int: super().__init__(**__lowerCamelCase ) _a : Tuple = vocab_size _a : Tuple = d_embed _a : Any = d_proj _a : Optional[int] = cutoffs + [vocab_size] _a : Optional[int] = [0] + self.cutoffs _a : Union[str, Any] = div_val _a : List[str] = self.cutoffs[0] _a : Tuple = len(self.cutoffs ) - 1 _a : Union[str, Any] = self.shortlist_size + self.n_clusters _a : int = keep_order _a : Dict = [] _a : Dict = [] def __lowercase ( self , _a ) -> str: if self.n_clusters > 0: _a : Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=__lowerCamelCase , name='''cluster_weight''' ) _a : Dict = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=__lowerCamelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _a : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_projs_._{i}""" , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) _a : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._weight""" , ) _a : List[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _a : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Tuple = self.d_embed // (self.div_val**i) _a : Tuple = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_projs_._{i}""" ) self.out_projs.append(__lowerCamelCase ) _a : Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._weight""" , ) _a : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def __lowercase ( _a , _a , _a , _a=None ) -> Union[str, Any]: _a : Optional[Any] = x if proj is not None: _a : Tuple = tf.einsum('''ibd,ed->ibe''' , __lowerCamelCase , __lowerCamelCase ) return tf.einsum('''ibd,nd->ibn''' , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def __lowercase ( _a , _a ) -> str: _a : Dict = shape_list(__lowerCamelCase ) _a : Dict = tf.range(lp_size[0] , dtype=target.dtype ) _a : Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def __lowercase ( self , _a , _a , _a=True , _a=False ) -> List[str]: _a : Optional[int] = 0 if self.n_clusters == 0: _a : List[str] = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _a : Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) _a : Dict = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: _a : Union[str, Any] = shape_list(__lowerCamelCase ) _a : Optional[int] = [] _a : Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _a : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _a : Tuple = (target >= l_idx) & (target < r_idx) _a : Union[str, Any] = tf.where(__lowerCamelCase ) _a : Tuple = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: _a : Optional[Any] = self.out_layers[0][0][l_idx:r_idx] _a : Optional[int] = self.out_layers[0][1][l_idx:r_idx] else: _a : Optional[int] = self.out_layers[i][0] _a : int = self.out_layers[i][1] if i == 0: _a : str = tf.concat([cur_W, self.cluster_weight] , 0 ) _a : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 ) _a : Union[str, Any] = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) _a : List[str] = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _a : Optional[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) _a : str = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: _a : str = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) _a : Dict = tf.nn.log_softmax(__lowerCamelCase ) _a : str = self.cutoffs[0] + i - 1 # No probability for the head cluster _a : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: _a : List[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) _a : Any = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) _a : Dict = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) _a : Union[str, Any] = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: _a : List[Any] = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
0
def __UpperCAmelCase ( __a : Dict ) -> Optional[Any]: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __UpperCAmelCase ( __a : Dict ) -> list[tuple[int, int]]: """simple docstring""" _a : List[str] = 0 _a : str = len(a__ ) # No of vertices in graph _a : Dict = [0] * n _a : List[str] = [False] * n def dfs(__a : str ,__a : Dict ,__a : Union[str, Any] ,__a : Optional[int] ): _a : Optional[Any] = True _a : List[Any] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(a__ ,a__ ,a__ ,id_ ) _a : Tuple = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _a : List[str] = min(low[at] ,low[to] ) _a : Optional[Any] = [] for i in range(a__ ): if not visited[i]: dfs(a__ ,-1 ,a__ ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
368
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a__ = logging.getLogger(__name__) a__ = '''pytorch_model.bin''' @dataclasses.dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Any = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Dict = dataclasses.field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : int = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : Optional[Any] = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : str = dataclasses.field( default=a__ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : List[str] = dataclasses.field( default=a__ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Dict = dataclasses.field( default=a__ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Tuple = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : List[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Union[str, Any] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : str = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Dict = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Dict = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Any = dataclasses.field( default=a__ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Tuple = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Any = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : int = dataclasses.field( default=a__ , metadata={"help": "Random seed for initialization."} , ) def __UpperCAmelCase ( __a : Any ,__a : Tuple ,__a : Any ,__a : Union[str, Any] ,__a : List[str] ,__a : Optional[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = datasets.concatenate_datasets([infer_input, infer_output] ,axis=1 ) if args.do_filter_by_confidence: _a : Optional[int] = dataset.filter(lambda __a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(_lowerCamelCase ) ) print(_lowerCamelCase ) _a : int = dataset.sort('''probability''' ,reverse=_lowerCamelCase ) _a : Optional[Any] = dataset.select(range(_lowerCamelCase ) ) _a : List[str] = dataset.remove_columns(['''label''', '''probability'''] ) _a : Dict = dataset.rename_column('''prediction''' ,'''label''' ) _a : Optional[int] = dataset.map(lambda __a : {"label": idalabel[example["label"]]} ) _a : str = dataset.shuffle(seed=args.seed ) _a : int = os.path.join(_lowerCamelCase ,F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(_lowerCamelCase ,index=_lowerCamelCase ) else: dataset.to_json(_lowerCamelCase ) def __UpperCAmelCase ( __a : str ,__a : Dict ,__a : Tuple ,__a : Optional[int] ,**__a : Any ) -> Optional[Any]: """simple docstring""" _a : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO ,) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Union[str, Any] = STModelArguments(model_name_or_path=_lowerCamelCase ) _a : Dict = STDataArguments(train_file=_lowerCamelCase ,infer_file=_lowerCamelCase ) _a : int = STTrainingArguments(output_dir=_lowerCamelCase ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_lowerCamelCase ).items(): setattr(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for key, value in kwargs.items(): if hasattr(_lowerCamelCase ,_lowerCamelCase ): setattr(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Sanity checks _a : Any = {} _a : Union[str, Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : Optional[int] = args.train_file _a : str = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : str = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : Optional[int] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _a : int = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir ,exist_ok=_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) accelerator.wait_for_everyone() _a : Tuple = None _a : Optional[Any] = None _a : Optional[int] = 0 _a : Any = False # Show the progress bar _a : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) ,disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 ,int(args.max_selftrain_iterations ) ): _a : Optional[Any] = data_dir_format(_lowerCamelCase ) assert os.path.exists(_lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : Any = os.path.join(_lowerCamelCase ,'''stage-1''' ) _a : str = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_lowerCamelCase ,_lowerCamelCase ): arguments_dict.update({key: value} ) _a : List[str] = os.path.join(_lowerCamelCase ,'''best-checkpoint''' ,_lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' ,_lowerCamelCase ,_lowerCamelCase ,) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' ,_lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' ,_lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Union[str, Any] = os.path.join(_lowerCamelCase ,'''best-checkpoint''' ) _a : List[Any] = os.path.join(_lowerCamelCase ,'''stage-2''' ) # Update arguments_dict _a : Any = model_path _a : List[Any] = data_files["train"] _a : Optional[Any] = current_output_dir _a : int = os.path.join(_lowerCamelCase ,'''best-checkpoint''' ,_lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' ,_lowerCamelCase ,_lowerCamelCase ,) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' ,_lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' ,_lowerCamelCase ) _a : Union[str, Any] = iteration _a : Optional[Any] = data_dir_format(iteration + 1 ) _a : Optional[Any] = AutoConfig.from_pretrained(os.path.join(_lowerCamelCase ,'''best-checkpoint''' ) ) _a : Tuple = config.idalabel _a : Tuple = os.path.join(_lowerCamelCase ,'''eval_results_best-checkpoint.json''' ) _a : Any = os.path.join(_lowerCamelCase ,'''test_results_best-checkpoint.json''' ) assert os.path.exists(_lowerCamelCase ) with open(_lowerCamelCase ,'''r''' ) as f: _a : Optional[Any] = float(json.load(_lowerCamelCase )[args.eval_metric] ) _a : str = os.path.join(_lowerCamelCase ,'''infer_output_best-checkpoint.csv''' ) assert os.path.exists(_lowerCamelCase ) # Loading the dataset from local csv or json files. _a : Union[str, Any] = load_dataset(args.data_file_extension ,data_files={'''data''': data_files['''infer''']} )["data"] _a : Any = load_dataset('''csv''' ,data_files={'''data''': infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) shutil.copy(_lowerCamelCase ,os.path.join(_lowerCamelCase ,F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(_lowerCamelCase ): shutil.copy(_lowerCamelCase ,os.path.join(_lowerCamelCase ,F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) accelerator.wait_for_everyone() _a : str = os.path.join(_lowerCamelCase ,F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : str = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : Optional[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : str = new_iteration _a : List[str] = new_eval_result _a : Any = 0 else: if new_eval_result == best_eval_result: _a : Optional[Any] = new_iteration _a : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Optional[int] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' ,_lowerCamelCase ) logger.info('''Best evaluation result: %s = %f''' ,args.eval_metric ,_lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase ,F"""eval_results_iter-{iteration}.json""" ) ,os.path.join(_lowerCamelCase ,'''eval_results_best-iteration.json''' ) ,) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' ,args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' ,args.eval_metric ,_lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase ,F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) ,os.path.join(_lowerCamelCase ,'''eval_results_best-iteration.json''' ) ,)
369
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "openai-gpt" UpperCAmelCase__ : List[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=4_0_4_7_8 , _a=5_1_2 , _a=7_6_8 , _a=1_2 , _a=1_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ) -> List[Any]: _a : Tuple = vocab_size _a : int = n_positions _a : Optional[Any] = n_embd _a : Any = n_layer _a : Any = n_head _a : List[str] = afn _a : Optional[int] = resid_pdrop _a : Optional[int] = embd_pdrop _a : Optional[int] = attn_pdrop _a : Optional[Any] = layer_norm_epsilon _a : Optional[Any] = initializer_range _a : Dict = summary_type _a : Optional[int] = summary_use_proj _a : Optional[int] = summary_activation _a : Union[str, Any] = summary_first_dropout _a : List[str] = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
370
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : Any = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _a : str = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __lowercase ( self , **_a ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> str: _a : List[str] = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Dict: _a : List[str] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : List[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Dict = self.get_image_processor() _a : str = self.get_tokenizer() _a : int = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : List[Any] = image_processor(_a , return_tensors='''np''' ) _a : Dict = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Tuple = '''lower newer''' _a : int = processor(text=_a ) _a : str = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> List[Any]: _a : Any = self.get_image_processor() _a : str = self.get_tokenizer() _a : Tuple = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Union[str, Any] = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : int = processor.batch_decode(_a ) _a : int = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : Tuple = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _a : Optional[int] = '''lower newer''' _a : Dict = self.prepare_image_inputs() _a : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
0
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a = "" , _a = False ) -> None: _a : Any = {} # A node will be a leaf if the tree contains its word _a : Dict = is_leaf _a : int = prefix def __lowercase ( self , _a ) -> tuple[str, str, str]: _a : int = 0 for q, w in zip(self.prefix , _a ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __lowercase ( self , _a ) -> None: for word in words: self.insert(_a ) def __lowercase ( self , _a ) -> None: if self.prefix == word: _a : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _a : Optional[Any] = RadixNode(prefix=_a , is_leaf=_a ) else: _a : List[str] = self.nodes[word[0]] _a , _a , _a : List[str] = incoming_node.match( _a ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_a ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _a : str = remaining_prefix _a : str = self.nodes[matching_string[0]] _a : List[str] = RadixNode(_a , _a ) _a : Optional[Any] = aux_node if remaining_word == "": _a : List[Any] = True else: self.nodes[matching_string[0]].insert(_a ) def __lowercase ( self , _a ) -> bool: _a : Union[str, Any] = self.nodes.get(word[0] , _a ) if not incoming_node: return False else: _a , _a , _a : Tuple = incoming_node.match( _a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_a ) def __lowercase ( self , _a ) -> bool: _a : Tuple = self.nodes.get(word[0] , _a ) if not incoming_node: return False else: _a , _a , _a : str = incoming_node.match( _a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_a ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _a : List[str] = list(self.nodes.values() )[0] _a : List[str] = merging_node.is_leaf self.prefix += merging_node.prefix _a : Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _a : List[Any] = False # If there is 1 edge, we merge it with its child else: _a : List[str] = list(incoming_node.nodes.values() )[0] _a : List[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _a : Union[str, Any] = merging_node.nodes return True def __lowercase ( self , _a = 0 ) -> None: if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _a : List[str] = '''banana bananas bandana band apple all beast'''.split() _a : Optional[Any] = RadixNode() root.insert_many(lowerCamelCase__ ) assert all(root.find(lowerCamelCase__ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert test_trie() def __UpperCAmelCase ( ) -> Any: """simple docstring""" _a : Any = RadixNode() _a : int = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowerCamelCase__ ) print('''Words:''' ,lowerCamelCase__ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
371
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __UpperCAmelCase ( __a : Optional[Any] ) -> int: """simple docstring""" _a : Tuple = SwinConfig(image_size=192 ) if "base" in model_name: _a : Dict = 6 _a : Union[str, Any] = 128 _a : List[str] = (2, 2, 18, 2) _a : Dict = (4, 8, 16, 32) elif "large" in model_name: _a : Union[str, Any] = 12 _a : Union[str, Any] = 192 _a : Union[str, Any] = (2, 2, 18, 2) _a : List[str] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) _a : str = window_size _a : List[Any] = embed_dim _a : Tuple = depths _a : Optional[Any] = num_heads return config def __UpperCAmelCase ( __a : List[Any] ) -> List[str]: """simple docstring""" if "encoder.mask_token" in name: _a : Union[str, Any] = name.replace('''encoder.mask_token''' ,'''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: _a : List[str] = name.replace('''encoder.patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: _a : Tuple = name.replace('''encoder.patch_embed.norm''' ,'''embeddings.norm''' ) if "attn.proj" in name: _a : int = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : Dict = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : int = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Any = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : List[str] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : Union[str, Any] = name.replace('''mlp.fc2''' ,'''output.dense''' ) if name == "encoder.norm.weight": _a : Union[str, Any] = "layernorm.weight" if name == "encoder.norm.bias": _a : List[str] = "layernorm.bias" if "decoder" in name: pass else: _a : Tuple = "swin." + name return name def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Optional[int] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: _a : Optional[int] = key.split('''.''' ) _a : List[Any] = int(key_split[2] ) _a : Optional[Any] = int(key_split[4] ) _a : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a : Tuple = val[:dim, :] _a : List[str] = val[ dim : dim * 2, : ] _a : Dict = val[-dim:, :] else: _a : List[Any] = val[ :dim ] _a : int = val[ dim : dim * 2 ] _a : Dict = val[ -dim: ] else: _a : Optional[Any] = val return orig_state_dict def __UpperCAmelCase ( __a : Optional[int] ,__a : str ,__a : Dict ,__a : Any ) -> Optional[int]: """simple docstring""" _a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE ,map_location='''cpu''' )["model"] _a : List[str] = get_swin_config(_SCREAMING_SNAKE_CASE ) _a : Tuple = SwinForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.eval() _a : Union[str, Any] = convert_state_dict(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) _a : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _a : Any = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) _a : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) _a : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) with torch.no_grad(): _a : Dict = model(**_SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = JukeboxTokenizer UpperCAmelCase__ : List[str] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __lowercase ( self ) -> str: import torch _a : List[Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) _a : Optional[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off _a : List[Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __lowercase ( self ) -> int: import torch _a : Any = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) _a : Dict = tokenizer(**self.metas )['''input_ids'''] # fmt: off _a : Dict = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
351
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
0
"""simple docstring""" import sys a__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( __a : str ) -> Tuple: """simple docstring""" _a : int = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def __UpperCAmelCase ( __a : str = N ) -> Union[str, Any]: """simple docstring""" _a : List[str] = -sys.maxsize - 1 _a : Tuple = n[:13] _a : Any = 13 while cur_index < len(UpperCAmelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _a : List[Any] = substr[1:] + n[cur_index] cur_index += 1 else: _a : List[Any] = max(UpperCAmelCase_ ,str_eval(UpperCAmelCase_ ) ) _a : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any]=False ) -> str: """simple docstring""" _a : Dict = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): _a : Tuple = "segformer.encoder." + key if key.startswith('''backbone''' ): _a : List[str] = key.replace('''backbone''' ,'''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _a : str = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _a : Tuple = key.replace(F"""patch_embed{idx}""" ,F"""patch_embeddings.{int(_lowerCAmelCase )-1}""" ) if "norm" in key: _a : Any = key.replace('''norm''' ,'''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _a : Dict = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] _a : List[str] = key.replace(F"""layer_norm{idx}""" ,F"""layer_norm.{int(_lowerCAmelCase )-1}""" ) if "layer_norm1" in key: _a : int = key.replace('''layer_norm1''' ,'''layer_norm_1''' ) if "layer_norm2" in key: _a : List[Any] = key.replace('''layer_norm2''' ,'''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _a : Tuple = key[key.find('''block''' ) + len('''block''' )] _a : int = key.replace(F"""block{idx}""" ,F"""block.{int(_lowerCAmelCase )-1}""" ) if "attn.q" in key: _a : Optional[Any] = key.replace('''attn.q''' ,'''attention.self.query''' ) if "attn.proj" in key: _a : Optional[int] = key.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in key: _a : int = key.replace('''attn''' ,'''attention.self''' ) if "fc1" in key: _a : int = key.replace('''fc1''' ,'''dense1''' ) if "fc2" in key: _a : Dict = key.replace('''fc2''' ,'''dense2''' ) if "linear_pred" in key: _a : Optional[Any] = key.replace('''linear_pred''' ,'''classifier''' ) if "linear_fuse" in key: _a : Optional[Any] = key.replace('''linear_fuse.conv''' ,'''linear_fuse''' ) _a : Optional[Any] = key.replace('''linear_fuse.bn''' ,'''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _a : List[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] _a : List[Any] = key.replace(F"""linear_c{idx}""" ,F"""linear_c.{int(_lowerCAmelCase )-1}""" ) if key.startswith('''head''' ): _a : str = key.replace('''head''' ,'''classifier''' ) _a : Union[str, Any] = value return new_state_dict def __UpperCAmelCase ( __a : List[Any] ,__a : Any ) -> List[str]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _a : Dict = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _a : int = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _a : List[str] = kv_weight[ : config.hidden_sizes[i], : ] _a : Dict = kv_bias[: config.hidden_sizes[i]] _a : str = kv_weight[ config.hidden_sizes[i] :, : ] _a : List[Any] = kv_bias[ config.hidden_sizes[i] : ] def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _a : List[Any] = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : str ) -> Tuple: """simple docstring""" _a : str = SegformerConfig() _a : List[Any] = False # set attributes based on model_name _a : Any = "huggingface/label-files" if "segformer" in model_name: _a : Dict = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: _a : Optional[Any] = 150 _a : List[str] = "ade20k-id2label.json" _a : Union[str, Any] = (1, 150, 128, 128) elif "city" in model_name: _a : List[str] = 19 _a : Tuple = "cityscapes-id2label.json" _a : List[str] = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _a : int = True _a : Tuple = model_name[4:6] _a : Optional[Any] = 1_000 _a : List[Any] = "imagenet-1k-id2label.json" _a : str = (1, 1_000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _a : Optional[int] = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _a : Union[str, Any] = idalabel _a : Dict = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _a : Tuple = [64, 128, 320, 512] _a : Dict = 256 elif size == "b2": _a : List[str] = [64, 128, 320, 512] _a : Union[str, Any] = 768 _a : int = [3, 4, 6, 3] elif size == "b3": _a : Optional[int] = [64, 128, 320, 512] _a : List[Any] = 768 _a : str = [3, 4, 18, 3] elif size == "b4": _a : List[Any] = [64, 128, 320, 512] _a : Dict = 768 _a : Optional[Any] = [3, 8, 27, 3] elif size == "b5": _a : Optional[Any] = [64, 128, 320, 512] _a : List[Any] = 768 _a : List[str] = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _a : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase ) # prepare image _a : str = prepare_img() _a : int = image_processor(images=_lowerCAmelCase ,return_tensors='''pt''' ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _a : Dict = torch.load(_lowerCAmelCase ,map_location=torch.device('''cpu''' ) ) else: _a : Dict = torch.load(_lowerCAmelCase ,map_location=torch.device('''cpu''' ) )["state_dict"] # rename keys _a : str = rename_keys(_lowerCAmelCase ,encoder_only=_lowerCAmelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCAmelCase ,_lowerCAmelCase ) # create HuggingFace model and load state dict if encoder_only: _a : Tuple = False _a : int = SegformerForImageClassification(_lowerCAmelCase ) else: _a : Dict = SegformerForSemanticSegmentation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # forward pass _a : List[str] = model(_lowerCAmelCase ) _a : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _a : int = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _a : Optional[Any] = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _a : Optional[int] = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _a : List[Any] = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _a : Optional[int] = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _a : Tuple = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _a : List[Any] = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _a : Optional[int] = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _a : Any = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _a : List[Any] = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _a : str = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _a : List[str] = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _a : Union[str, Any] = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _a : Optional[Any] = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _a : Optional[int] = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _a : str = logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) a__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : int = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Optional[int] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : Dict = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCAmelCase ( __a : List[Any] ) -> List[str]: """simple docstring""" _a : Optional[Any] = filter(lambda __a : p.requires_grad ,model.parameters() ) _a : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ = logging.getLogger(__name__) def __UpperCAmelCase ( __a : Optional[int] ,__a : Any ) -> Union[str, Any]: """simple docstring""" if metric == "rouge2": _a : Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _a : str = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _a : List[Any] = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _a : int = ModelCheckpoint( dirpath=__a ,filename=__a ,monitor=F"""val_{metric}""" ,mode='''max''' ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def __UpperCAmelCase ( __a : Dict ,__a : Optional[Any] ) -> List[str]: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" ,mode='''min''' if '''loss''' in metric else '''max''' ,patience=__a ,verbose=__a ,) class UpperCAmelCase_ ( pl.Callback ): """simple docstring""" def __lowercase ( self , _a , _a ) -> Dict: _a : Any = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase_ ) @rank_zero_only def __lowercase ( self , _a , _a , _a , _a=True ) -> List[Any]: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _a : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _a : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": _a : Dict = od / '''test_results.txt''' _a : int = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _a : Optional[int] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase_ ) with open(lowerCamelCase_ , '''a+''' ) as writer: for key in sorted(lowerCamelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _a : str = metrics[key] if isinstance(lowerCamelCase_ , torch.Tensor ): _a : Optional[int] = val.item() _a : Any = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase_ ) if not save_generations: return if "preds" in metrics: _a : Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCamelCase_ ) @rank_zero_only def __lowercase ( self , _a , _a ) -> Union[str, Any]: try: _a : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: _a : Tuple = pl_module.model.num_parameters() _a : List[str] = count_trainable_parameters(lowerCamelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowercase ( self , _a , _a ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase_ , lowerCamelCase_ , '''test''' ) @rank_zero_only def __lowercase ( self , _a , _a ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
354
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : """simple docstring""" def __lowercase ( self , _a , _a , _a ) -> Optional[int]: return None class UpperCAmelCase_ : """simple docstring""" def __lowercase ( self , _a , _a , _a , _a ) -> Dict: return None class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowercase ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , '''tf''' , 1_2 , **lowercase_ ) @require_torch @slow def __lowercase ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , '''pt''' , 1_2 , **lowercase_ ) @require_torch @slow def __lowercase ( self ) -> Optional[int]: from transformers import BertModel _a : Optional[int] = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(lowercase_ ) ) vocab_file.flush() _a : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _a : str = BertModel(BertConfig(vocab_size=len(lowercase_ ) ) ) model.save_pretrained(lowercase_ ) self._test_export(lowercase_ , '''pt''' , 1_2 , lowercase_ ) @require_tf @slow def __lowercase ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _a : int = self._test_export(lowercase_ , '''tf''' , 1_2 , **lowercase_ ) _a : int = quantize(Path(lowercase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def __lowercase ( self ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _a : int = self._test_export(lowercase_ , '''pt''' , 1_2 , **lowercase_ ) _a : List[Any] = quantize(lowercase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def __lowercase ( self , _a , _a , _a , _a=None , **_a ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: _a : Optional[Any] = Path(lowercase_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) return path except Exception as e: self.fail(lowercase_ ) @require_torch @require_tokenizers @slow def __lowercase ( self ) -> int: from transformers import BertModel _a : Tuple = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _a : Union[str, Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , '''pt''' ) @require_tf @require_tokenizers @slow def __lowercase ( self ) -> Tuple: from transformers import TFBertModel _a : Optional[int] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _a : Dict = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , '''tf''' ) def __lowercase ( self , _a , _a , _a ) -> int: _a : Union[str, Any] = FeatureExtractionPipeline(lowercase_ , lowercase_ ) _a : Any = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _a , _a , _a , _a : Union[str, Any] = infer_shapes(lowercase_ , lowercase_ ) # Assert all variables are present self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowercase_ ) self.assertSequenceEqual(variable_names[3:] , lowercase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def __lowercase ( self ) -> List[Any]: _a : Tuple = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _a : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _a , _a : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowercase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowercase_ ) , set(lowercase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowercase_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _a , _a : Optional[Any] = ensure_valid_input(FuncNonContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowercase_ ) , 1 ) self.assertEqual(len(lowercase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[Any] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __UpperCAmelCase ( __a : List[Any] ) -> Tuple: """simple docstring""" if "cls_token" in name: _a : List[str] = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: _a : List[Any] = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: _a : str = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: _a : List[str] = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _a : int = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : int = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: _a : List[Any] = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: _a : List[str] = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: _a : str = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: _a : List[Any] = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: _a : Dict = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Dict = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : Tuple = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : int = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: _a : Optional[int] = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: _a : Dict = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: _a : int = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: _a : List[str] = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: _a : List[Any] = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __UpperCAmelCase ( __a : List[Any] ,__a : Any ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : Any = orig_state_dict.pop(lowercase_ ) if "qkv" in key: _a : List[Any] = key.split('''.''' ) _a : List[str] = int(key_split[1] ) if "decoder_blocks" in key: _a : Optional[Any] = config.decoder_hidden_size _a : Optional[Any] = '''decoder.decoder_layers.''' if "weight" in key: _a : str = val[:dim, :] _a : Optional[int] = val[dim : dim * 2, :] _a : List[str] = val[-dim:, :] elif "bias" in key: _a : str = val[:dim] _a : Optional[Any] = val[dim : dim * 2] _a : Tuple = val[-dim:] else: _a : Optional[int] = config.hidden_size _a : Optional[int] = '''vit.encoder.layer.''' if "weight" in key: _a : Union[str, Any] = val[:dim, :] _a : Any = val[dim : dim * 2, :] _a : Any = val[-dim:, :] elif "bias" in key: _a : str = val[:dim] _a : Optional[int] = val[dim : dim * 2] _a : Any = val[-dim:] else: _a : Dict = val return orig_state_dict def __UpperCAmelCase ( __a : List[Any] ,__a : Any ) -> Optional[int]: """simple docstring""" _a : Any = ViTMAEConfig() if "large" in checkpoint_url: _a : List[Any] = 1_024 _a : Optional[int] = 4_096 _a : int = 24 _a : Union[str, Any] = 16 elif "huge" in checkpoint_url: _a : Dict = 14 _a : Tuple = 1_280 _a : Optional[Any] = 5_120 _a : Union[str, Any] = 32 _a : Dict = 16 _a : Union[str, Any] = ViTMAEForPreTraining(lowercase_ ) _a : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase_ ,map_location='''cpu''' )['''model'''] _a : List[str] = ViTMAEImageProcessor(size=config.image_size ) _a : Optional[int] = convert_state_dict(lowercase_ ,lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() _a : Tuple = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' _a : List[str] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) _a : Dict = ViTMAEImageProcessor(size=config.image_size ) _a : Optional[int] = image_processor(images=lowercase_ ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) _a : Dict = model(**lowercase_ ) _a : int = outputs.logits if "large" in checkpoint_url: _a : List[Any] = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: _a : Optional[int] = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: _a : Any = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,lowercase_ ,atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
356
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
0
from __future__ import annotations import requests def __UpperCAmelCase ( __a : str ) -> Optional[int]: """simple docstring""" _a : Dict = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(A_ ).json() def __UpperCAmelCase ( __a : Dict = 10 ) -> Optional[int]: """simple docstring""" _a : int = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' _a : Optional[int] = requests.get(A_ ).json()[:max_stories] return [get_hackernews_story(A_ ) for story_id in story_ids] def __UpperCAmelCase ( __a : Any = 10 ) -> int: """simple docstring""" _a : Tuple = hackernews_top_stories(A_ ) return "\n".join('''* [{title}]({url})'''.format(**A_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
357
import argparse import os import re import packaging.version a__ = '''examples/''' a__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } a__ = '''README.md''' def __UpperCAmelCase ( __a : List[str] ,__a : int ,__a : Optional[Any] ) -> int: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Tuple = f.read() _a , _a : str = REPLACE_PATTERNS[pattern] _a : List[str] = replace.replace('''VERSION''' ,__a ) _a : List[Any] = re_pattern.sub(__a ,__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a ,__a ) ,__a ,pattern='''examples''' ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a ,__a ,__a ) if not patch: update_version_in_examples(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' _a : str = '''1. Want to contribute a new model?''' with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Find the start of the list. _a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__a ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__a ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: _a : Optional[Any] = f.read() _a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def __UpperCAmelCase ( __a : Dict=False ) -> str: """simple docstring""" _a : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a : List[Any] = default_version.base_version elif patch: _a : str = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _a : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _a : Dict = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__a ) == 0: _a : int = default_version print(F"""Updating version to {version}.""" ) global_version_update(__a ,patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : str = get_version() _a : int = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _a : List[Any] = current_version.base_version # Check with the user we got that right. _a : Union[str, Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__a ) == 0: _a : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
15
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a__ = random.Random() def __UpperCAmelCase ( __a : str ,__a : int=1.0 ,__a : int=None ,__a : List[Any]=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _a : List[Any] = global_rng _a : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_4 , _a=2_4 , _a=0.0 , _a=1_6_0_0_0 , _a=True , _a=True , ) -> int: _a : str = parent _a : Tuple = batch_size _a : int = min_seq_length _a : Dict = max_seq_length _a : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : Union[str, Any] = feature_size _a : Dict = num_mel_bins _a : List[Any] = padding_value _a : Tuple = sampling_rate _a : Optional[Any] = return_attention_mask _a : str = do_normalize def __lowercase ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowercase ( self , _a=False , _a=False ) -> Tuple: def _flatten(_a ): return list(itertools.chain(*__A ) ) if equal_length: _a : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : List[str] = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = SpeechaTextFeatureExtractionTester(self ) def __lowercase ( self , _a ) -> List[str]: self.assertTrue(np.all(np.mean(__A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A , axis=0 ) - 1 ) < 1e-3 ) ) def __lowercase ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _a : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size _a : Dict = feature_extractor(__A , padding=__A , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _a : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test batched _a : Any = feature_extractor(__A , return_tensors='''np''' ).input_features _a : int = feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _a : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : str = np.asarray(__A ) _a : List[Any] = feature_extractor(__A , return_tensors='''np''' ).input_features _a : Any = feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) def __lowercase ( self ) -> List[Any]: _a : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : int = ['''longest''', '''max_length''', '''do_not_pad'''] _a : str = [None, 1_6, None] for max_length, padding in zip(__A , __A ): _a : List[Any] = feature_extractor( __A , padding=__A , max_length=__A , return_attention_mask=__A ) _a : Optional[int] = inputs.input_features _a : Optional[int] = inputs.attention_mask _a : List[str] = [np.sum(__A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowercase ( self ) -> Dict: _a : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _a : List[Any] = [None, 1_6, None] for max_length, padding in zip(__A , __A ): _a : List[Any] = feature_extractor( __A , max_length=__A , padding=__A , return_tensors='''np''' , return_attention_mask=__A ) _a : Dict = inputs.input_features _a : Tuple = inputs.attention_mask _a : List[Any] = [np.sum(__A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowercase ( self ) -> int: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : Optional[int] = feature_extractor( __A , padding='''max_length''' , max_length=4 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _a : Any = inputs.input_features _a : Union[str, Any] = inputs.attention_mask _a : Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __lowercase ( self ) -> str: _a : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : Any = feature_extractor( __A , padding='''longest''' , max_length=4 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _a : Optional[Any] = inputs.input_features _a : List[Any] = inputs.attention_mask _a : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) _a : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : Optional[int] = feature_extractor( __A , padding='''longest''' , max_length=1_6 , truncation=__A , return_tensors='''np''' , return_attention_mask=__A , ) _a : Dict = inputs.input_features _a : Tuple = inputs.attention_mask _a : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __lowercase ( self ) -> List[Any]: import torch _a : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Any = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _a : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a : Any = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _a : List[str] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowercase ( self , _a ) -> Union[str, Any]: from datasets import load_dataset _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : str = ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> Dict: # fmt: off _a : Optional[Any] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _a : Optional[int] = self._load_datasamples(1 ) _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : int = feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __A , atol=1e-4 ) )
358
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__a ,__a ): return 0 elif n == 2: return 1 else: _a : Any = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Any = 0 _a : Dict = 2 while digits < n: index += 1 _a : Dict = len(str(fibonacci(__a ) ) ) return index def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
15
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} a__ = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } a__ = { "google/rembert": 256, } a__ = "▁" class UpperCAmelCase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = RemBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> List[Any]: _a : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _a : Dict = do_lower_case _a : Dict = remove_space _a : Any = keep_accents _a : Optional[Any] = vocab_file _a : List[str] = False if not self.vocab_file else True def __lowercase ( self , _a , _a = None ) -> List[int]: _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __lowercase ( self , _a , _a = None ) -> List[int]: _a : str = [self.sep_token_id] _a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_SCREAMING_SNAKE_CASE ) ) return _a : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
359
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
0
import os from collections.abc import Iterator def __UpperCAmelCase ( __a : str = "." ) -> Optional[int]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_a ): _a : int = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_a )[1] in (".py", ".ipynb"): yield os.path.join(_a ,_a ).lstrip('''./''' ) def __UpperCAmelCase ( __a : Dict ) -> int: """simple docstring""" return F"""{i * ' '}*""" if i else "\n##" def __UpperCAmelCase ( __a : str ,__a : str ) -> List[Any]: """simple docstring""" _a : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_a ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_a )} {new_part.replace('_' ,' ' ).title()}""" ) return new_path def __UpperCAmelCase ( __a : str = "." ) -> Optional[Any]: """simple docstring""" _a : int = '''''' for filepath in sorted(good_file_paths(_a ) ): _a , _a : Any = os.path.split(_a ) if filepath != old_path: _a : int = print_path(_a ,_a ) _a : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _a : int = F"""{filepath}/{filename}""".replace(''' ''' ,'''%20''' ) _a : Tuple = os.path.splitext(filename.replace('''_''' ,''' ''' ).title() )[0] print(F"""{md_prefix(_a )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
360
import numpy as np def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ,__a : float = 1E-12 ,__a : int = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(__a )[0] == np.shape(__a )[1] # Ensure proper dimensionality. assert np.shape(__a )[0] == np.shape(__a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__a ) == np.iscomplexobj(__a ) _a : List[str] = np.iscomplexobj(__a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__a ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] = False _a : List[str] = 0 _a : Tuple = 0 _a : str = 1E12 while not convergence: # Multiple matrix by the vector. _a : str = np.dot(__a ,__a ) # Normalize the resulting output vector. _a : List[Any] = w / np.linalg.norm(__a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : Dict = vector.conj().T if is_complex else vector.T _a : Tuple = np.dot(__a ,np.dot(__a ,__a ) ) # Check convergence. _a : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Dict = True _a : str = lambda_ if is_complex: _a : Tuple = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : int = np.array([41, 4, 20] ) _a : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _a : int = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : Optional[int] = real_input_matrix _a : Union[str, Any] = real_vector elif problem_type == "complex": _a : str = complex_input_matrix _a : str = complex_vector # Our implementation. _a , _a : Optional[Any] = power_iteration(__a ,__a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a : List[str] = np.linalg.eigh(__a ) # Last eigenvalue is the maximum one. _a : Tuple = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__a ) - np.abs(__a ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
import math import sys def __UpperCAmelCase ( __a : Union[str, Any] ) -> int: """simple docstring""" if number != int(__lowerCAmelCase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 _a : Optional[int] = [-1] * (number + 1) _a : Dict = 0 for i in range(1 ,number + 1 ): _a : List[str] = sys.maxsize _a : int = int(math.sqrt(__lowerCAmelCase ) ) for j in range(1 ,root + 1 ): _a : str = 1 + answers[i - (j**2)] _a : int = min(__lowerCAmelCase ,__lowerCAmelCase ) _a : List[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
361
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Any = PandasConfig def __lowercase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> List[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Dict = data_files if isinstance(_a , _a ): _a : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def __lowercase ( self , _a ) -> List[str]: for i, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , '''rb''' ) as f: _a : str = pa.Table.from_pandas(pd.read_pickle(_a ) ) yield i, self._cast_table(_a )
15
0
a__ = 8.314462 # Unit - J mol-1 K-1 def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
362
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
0
from string import ascii_uppercase a__ = {char: i for i, char in enumerate(ascii_uppercase)} a__ = dict(enumerate(ascii_uppercase)) def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" _a : int = len(__a ) _a : int = 0 while True: if x == i: _a : Tuple = 0 if len(__a ) == len(__a ): break key += key[i] i += 1 return key def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" _a : Tuple = '''''' _a : Union[str, Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: _a : List[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" _a : Tuple = '''''' _a : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _a : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : str = '''THE GERMAN ATTACK''' _a : Tuple = '''SECRET''' _a : List[str] = generate_key(__a ,__a ) _a : str = cipher_text(__a ,__a ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__a ,__a )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
0